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We demonstrate analytically and numerically that the dispersive Dirac cone emulating an epsilon-
near-zero (ENZ) behavior is a universal property within a family of plasmonic crystals consisting of
two-dimensional (2D) metals. Our starting point is a periodic array of 2D metallic sheets embed-
ded in an inhomogeneous and anisotropic dielectric host that allows for propagation of transverse-
magnetic (TM) polarized waves. By invoking a systematic bifurcation argument for arbitrary di-
electric profiles in one spatial dimension, we show how TM Bloch waves experience an effective
dielectric function that averages out microscopic details of the host medium. The corresponding
effective dispersion relation reduces to a Dirac cone when the conductivity of the metallic sheet and
the period of the array satisfy a critical condition for ENZ behavior. Our analytical findings are in
excellent agreement with numerical simulations.

I. INTRODUCTION10

In the past few years the dream of manipulating the11

laws of optics at will has evolved into a reality with the12

use of metamaterials. These structures have made it13

possible to observe aberrant behavior like no refraction,14

referred to as epsilon-near-zero (ENZ)1–5, and negative15

refraction6. This level of control of the path and dis-16

persion of light is of fundamental interest and can lead17

to exciting applications. In particular, plasmonic meta-18

materials offer significant flexibility in tuning permittiv-19

ity or permeability values. This advance has opened20

the door to novel devices and applications that include21

optical holography7, tunable metamaterials8,9, optical22

cloaking10,11, and subwavelength focusing lenses12,13.23

Plasmonic crystals, a class of particularly interesting24

metamaterials, consist of stacked metallic layers arranged25

periodically with subwavelength distance, and embed-26

ded in a dielectric host. These metamaterials offer new27

‘knobs’ for controlling optical properties and can serve28

as negative-refraction or ENZ media14–16. The advent29

of truly two-dimensional (2D) materials with a wide30

range of electronic and optical properties, comprising31

metals, semi-metals, semiconductors, and dielectrics17,32

promise exceptional quantum efficiency for light-matter33

interaction18. In this paper, we characterize the ENZ34

behavior of a wide class of plasmonic crystals by using a35

general theory based on Bloch waves.36

The ultra-subwavelength propagating waves (plas-37

mons) found in plasmonic crystals based on 2D met-38

als, in addition to providing extreme control over optical39

properties19–22, also demonstrate low optical losses due40

to reduced dimensionality5,6. In particular, graphene is41

a rather special 2D plasmonic material exhibiting ultra-42

subwavelength plasmons, and a high density of free car-43

riers which is controllable by chemical doping or bias44

voltage21,23–25. An important finding is that the ENZ45

behavior introduced by subwavelength plasmons is char-46

acterized by the presence of dispersive Dirac cones in47

wavenumber space2–5. This linear iso-frequency disper-48

sion relation was shown for the special case of plas-49

monic crystals containing 2D dielectrics with spatial-50

independent dielectric permittivity. This relation re-51

quires precise tuning of system features5. It is not clear52

from this earlier result to what extent the ENZ behav-53

ior depends on the homogeneity of the 2D dielectric, or54

could be generalized to a wider class of materials.55

In this paper, we show that the occurrence of disper-56

sive Dirac cones in wavenumber space is a universal prop-57

erty in plasmonic crystals with dielectrics characterized58

by any spatial-dependent dielectric permittivity within a59

class of anisotropic materials. We provide an exact ex-60

pression for the critical structural period at which the61

multilayer system behaves as an ENZ medium. This dis-62

tance between adjacent sheets depends on the permittiv-63

ity profile of the dielectric host as well as on the surface64

conductivity of the 2D metallic sheets. In addition, we65

give an analytical derivation and provide computational66

evidence for our predictions. To demonstrate the applica-67

bility of our approach, we investigate numerically electro-68

magnetic wave propagation in finite multilayer plasmonic69

structures, and verify the ENZ behavior at the predicted70

structural period. These results suggest a systematic ap-71

proach to making general and accurate predictions about72

the optical response of metamaterials based on 2D mul-73

tilayered systems. An implication of our method is the74

emergence of an effective dielectric function in the dis-75

persion relation, which can be interpreted as the result76

of an averaging procedure (homogenization). This view77

further supports the universal character of our theory.78

The remainder of the paper is organized as follows. In79

Sec. II, we introduce the problem geometry and general80

formulation by Bloch-wave theory. Section III outlines81

the exactly solvable example of parabolic permittivity of82



2

σ

x

z
y

FIG. 1: Geometry of the plasmonic crystal. The
layered structure is periodic in the x-direction and
consists of planar 2D metallic sheets with isotropic

conductivity σ.

the dielectric host. In Sec. IV, we develop a bifurcation83

argument that indicates the universality of the disper-84

sion relation and ENZ behavior for a class of plasmonic85

crystals. Section V concludes our analysis by pointing86

out a linkage of our results to the homogenization of87

Maxwell’s equations. The e−iωt time dependence is as-88

sumed throughout, where ω is the angular frequency. We89

write f = O(h) to imply that |f/h| is bounded in a pre-90

scribed limit.91

II. GEOMETRY AND BLOCH-WAVE THEORY92

In this section, we describe the geometry of the prob-93

lem and the related Bloch-wave theory. Consider a plas-94

monic crystal that is periodic in the x-direction and con-95

sists of flat 2D metallic sheets with isotropic surface con-96

ductivity σ (see Fig. 1). Each sheet is parallel to the97

yz-plane and positioned at x = nd for integer n.98

The material filling the space between any two consec-99

utive sheets is described by the anisotropic relative per-100

mittivity tensor diag (εx, εy, εz), where εx = constant,101

and εy(x) = εz(x) depends on the spatial coordinate102

x with period d. Here, we set the vaccuum permittiv-103

ity equal to unity, ε0 = 1. We seek solutions of time-104

harmonic Maxwell’s equations with transverse-magnetic105

(TM) polarization, that is, with electric and magnetic106

field components E = (Ex, 0, Ez) and H = (0, Hy, 0).107

The assumed TM-polarization and the symmetry of the108

physical system suggest that109

Ez(x, z) = E(x) eikzz,

which effectively reduces the system of governing equa-110

tions to a 2D problem. Substituting the above ansatz111

into time-harmonic Maxwell’s equations and eliminating112

Ex and Hy leads to the following ordinary differential113

equation for E(x):114

−∂2
xE + κ(kz)εz(x)E = 0, κ(kz) =

k2
z − k2

0εx
εx

, (1)

where µ denotes the permeability of the ambient mate-115

rial and k0 = ω
√
µ. By the continuity of the tangential116

electric field and the jump discontinuity of the tangen-117

tial magnetic field due to surface current, the metallic118

sheets give rise to the following transmission conditions119

at x = nd:120 E
+ = E−,

−i(ω/σ)
[(
∂xE

)+ − (∂xE)−] = κ(kz) E+,

where (.)± indicates the limit from the right (+) or the121

left (−) of the metallic boundary. In order to close the122

system of equations, we make a Bloch-wave ansatz in the123

x-direction, with kx denoting the real Bloch wavenumber:124

E(x) = eikxdE(x− d), ∂xE(x) = eikxd∂xE(x− d).

The combination of the transmission conditions and the125

periodicity assumption leads to a closed system consist-126

ing of Eq. (1) and the following boundary conditions:127 [
E(d−)
E ′(d−)

]
= eikxd

[
1 0

−i(σ/ω)κ(kz) 1

] [
E(0+)
E ′(0+)

]
,

with E ′(x) = ∂xE(x).128

We next describe the dispersion relation between kx129

and kz in general terms. In the following analysis, we130

work in the 2D wavenumber space with k = (kx, kz).131

To render Eqs. (1) with the above boundary condi-132

tions amenable to analytical and numerical investigation,133

we perform an additional algebraic manipulation: Let134

E(1)(x) and E(2)(x) be solutions of Eq. (1) with initial135

conditions136

E(1)(0) = 1, E ′(1)(0) = 0, E(2)(0) = 0, E ′(2)(0) = 1. (2)

These solutions are linearly independent and there-137

fore the general solution for E(x) is given by E(x) =138

c1E(1)(x) + c2E(2)(x). The existence of a non-trivial solu-139

tion implies the condition140

D[k] = det

(
eikxd

[
1 0

−i(σ/ω)κ(kz) 1

]

−
[
E(1)(d) E(2)(d)
E ′(1)(d) E ′(2)(d)

])
= 0. (3)

Equation (3) expresses an implicit dispersion relation,141

namely, the locus of points k such that D[k] = 0.142

III. AN EXAMPLE: PARABOLIC DIELECTRIC143

PROFILE144

For certain permittivity profiles εz(x) of period d, the145

system of Eqs. (1) and (2) admits exact, closed-form so-146

lutions. Thus, Eq. (3) is made explicit. Next, we present147

analytical and computational results for a parabolic per-148

mittivity profile εz(x). Note that the case of constant149

permittivity, εz(x) = const., is analyzed in Ref. 5.150

Accordingly, consider the parabolic dielectric profile151

εz(x) = εz,0

[
1 + 6α

x

d

(
1− x

d

)]
, (4)
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FIG. 2: Parameter study of numerically computed dispersion curves for (a) the parabolic profile (4) with the scaling
parameter α = 20/3, (b) double-well profile fdw and (c) non-symmetric profile fns. d/d0 is chosen in the range from
0.8 to 1.2. The red solid lines indicate the Dirac cones dispersion at d = d0. The inset shows the dispersion relation

at the center of the Brillouin zone k∗ as function of d (blue and green cutlines in the major image).

which is well known in optics26,27. Here, α > 0 is a152

scaling parameter with background dielectric permittiv-153

ity εz,0 > 0. In this case, E(1) and E(2) can be written in154

terms of closed-form special functions (see Appendix A).155

Relation (3) can be further simplified in the vicinity of156

the center of the Brillouin zone, where |kxd| � 1, by157

choosing the branch of the dispersion relation containing158

k∗ = (k∗x, k
∗
z) = (0,±k0

√
εx). As a result of this sim-159

plification, the Bloch wave sees a homogeneous medium160

with effective permittivity ε = diag
(
εx, ε

eff
z , ε

eff
z

)
. The161

dispersion relation is162

k2
x

εeff
z

+
k2
z

εx
= k2

0,
εeff
z

εz,0
= 1 + α− ξ0

d
. (5)

In the above, ξ0 denotes the plasmonic thickness, ξ0 =163

−iσ/(ωεz,0)5,6,20. Here, we assume for the sake of argu-164

ment that σ is a purely imaginary number so that ξ0 is165

real valued. Below, we will provide a derivation of (5) for166

general profiles εz(x). Dispersion relation (5) is valid in a167

neighborhood of k∗. For εeff
z ≷ 0, this relation describes168

an elliptic, or hyperbolic band, respectively.169

The ENZ behavior is characterized by εeff
z ≈ 0 in dis-170

persion relation (5)5. In the case of the parabolic profile171

of this section, this condition is achieved if ξ0/d = 1 +α.172

This motivates the definition of the critical ENZ struc-173

tural period,174

d0 = ξ0/
(
1 + α

)
. (6)

A breakdown of Eq. (5) due to εeff
z = 0 is a necessary175

condition to observe linear dispersion and thus disper-176

sive Dirac cones5. Even though Eq. (5) is an approximate177

formula describing the dispersion relation in the neigh-178

borhood of k∗, the ENZ condition d = d0 is exact for the179

existence of a Dirac cone for this example of a parabolic180

profile.181

In the case with a lossy metallic sheet, when σ has pos-182

itive real part, d0 becomes a complex-valued number an,183

thus, the ENZ condition d = d0 cannot be satisfied ex-184

actly. However, for all practical purposes, losses are typ-185

ically very small such that an effective ENZ behavior can186

be approximately observed with the choice d = Re(d0).187

We now verify the effective theory given by Eqs. (5)188

and (6) numerically. In order to compute all real-valued189

dispersion bands located near k∗, we solve the system of190

Eqs. (1), (2), and (3) (for details see Appendix B). We191

carry out a parameter study with the scaling parameter192

α = 20/3, background permittivity components εz,0 = 2193

(in-plane) and εx = 1 (out-of-plane), and d/d0 in the194

range from 0.8 to 1.2. The numerically computed disper-195

sion bands are shown in Fig. 2a. A band gap appears for196

values of d different than d0.197

IV. UNIVERSALITY OF DISPERSION198

RELATION AND ENZ CONDITION199

In this section, we address the problem of arbitrary200

εz(x), both analytically and numerically. We claim that201

effective dispersion relation (5) and ENZ condition (6)202

are in fact universal within the model of Sec. II. This203

means that they are valid for any tensor permittivity204

diag (εx, εz, εz) with arbitrary, spatial-dependent εz(x).205

To develop a general argument, we set206

εz(x) = εz,0f(x/d), f(x) > 0, (7)

where f(x) is an arbitrarily chosen, continuous and pe-207

riodic positive function. Guided by our results for the208

parabolic profile (Sec. III), we now make the conjecture209

that dispersion relation (5) still holds with the definitions210

d0 = ξ0

[∫ 1

0

f(x)dx

]−1

,
εeff
z

εz,0
= ξ0

(
1

d0
− 1

d

)
. (8)

In the following analysis, we give a formal bifurcation211

argument justifying definition (8). We start by expand-212

ing Eq. (3) in the neighborhood of k∗ in powers of the213

components of δk = (δkx, δkz) = k∗ − k. First, it can214

be readily shown that at k = k∗ Eq. (1) reduces to215

−∂2
xE = 0. Thus, the system of fundamental solutions216
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is given by E(1)(x) = 1, E(2)(x) = x. This implies that217

D[k∗] = 0. The expansion of D[k] up to second order in218

δk leads to an expression of the form219

D[k∗ + δk] =

bxδkx + bzδkz + bxx(δkx)2 + bzz(δkz)
2 + bxzδkxδkz.

The occurrence of a Dirac point is identified with the ap-220

pearance of a critical point for D[k], when bx = bz = 0.221

In order to express bx and bz in terms of physical param-222

eters, we notice that only the term
[
ieikxd(σ/ω)κ(kz) +223

E ′(1)(d)
]
E(2)(d) of D[(kx, kz)] contributes to first order in224

δk. Accordingly, we find225

D[k∗ + δk] =

− d
(−iσ

ωεx
2kzδkz − δE ′(1)(d)[δkz]

)
+O((δk)2).

Here, δE [δkz] denotes the total variation of E with re-226

spect to kz in the direction δkz. It can be shown (see227

Appendix B) that δE(1)[δkz] solves the differential equa-228

tion −∂2
xδE(1) = −εz(x)/εx 2kzδkz. The solution has the229

derivative230

δE ′(1)(x) = 2kzδkz

[
εx

∫ x

0

εz(ξ) dξ

]−1

,

which enters D[k∗ + δk]. Thus, we obtain bx = 0 and231

bz =

[
ξ0 − d

∫ 1

0

f(x)dx

]
2dkzεz,0
εx

.

At the critical point, the expression in the bracket must232

vanish, which produces Eq. (8).233

A refined computation for the critical case of d = d0234

gives bxx = −d2, bxz = 0, and bzz > 0. Thus, the effective235

dispersion relation at d/d0 = 1 up to second-order terms236

is bxxδk
2
x+bzzδk

2
z = 0 with bxxbzz < 0, which corresponds237

to a Dirac cone. Moreover, for εeff
z /εx ∼ 1 it can be shown238

that239

D[k∗ + δk] ≈ −d2
[
δk2
x +

εeff
z

εx
(k∗z + δkz)

2 − εeff
z

εx
(k∗z)2

]
.

By (k∗z)2/εx = k2
0, the above relation recovers the elliptic240

profile of Eq. (5).241

In order to support this bifurcation argument with242

numerical evidence, we test Eq. (8) for two additional243

dielectric profiles which to our knowledge do not ad-244

mit exact solutions in simple closed form. In the spirit245

of Ref. 28, we study distinctly different profiles εz(x).246

Specifically, we use the symmetric double-well profile247

fdw(x) = 1 − 3.2x + 13.2x2 − 20x3 + 10x4 and the non-248

symmetric profile fns(x) = 1 + 0.5 (e5x − 1)(1− x). The249

computational results for the dispersion relation are given250

in Fig. 2b-c. Furthermore, for k in the neighborhood of251

k∗ and d/d0 = 1.1 we notice excellent agreement of ef-252

fective dispersion relation (5) with the numerically com-253

puted curve kz(kx) (Fig. 3).254

0.5

1

1.5

2

−1 −0.5 0 0.5 1

k
z
/
k
0

kx/k0

k∗

FIG. 3: Numerically computed dispersion curves (solid
lines) and the effective dispersion relation Eq. 5 (dashed
lines) for d/d0 = 1.1 computed for the parabolic (blue),
double-well fdw(x) (orange), and nonsymmetric profile
fns(x) (green). The curvatures agree at the critical

point k∗.

To test the results of our model against more prac-255

tical configurations, we carry out direct numerical sim-256

ulations for a system with a finite number of metal-257

lic sheets. We choose graphene as the material for the258

2D conducting sheets, since it has been used exten-259

sively in plasmonic and optoelectronic applications18,23.260

In the THz frequency regime, doped graphene behaves261

like a Drude metal because intraband transitions are262

dominant23,24. In this frequency regime doped graphene263

supports plasmons23. Hence, the conductivity of the264

metallic sheets is approximated by the Drude formula,265

σ = ie2µc/[π~2(ω + i/τ)]. The doping amount is µc =266

0.5 eV and the transport scattering time of electrons is267

τ = 0.5 ps to account for optical losses5,6.268

In Fig. 4, we present the spatial distribution ofHy(x, z)269

propagating through a structure of 100 graphene layers270

embedded periodically in a lossless dielectric host with271

anisotropic and spatial-dependent permittivity. The nu-272

merical computation is carried out for parabolic profile273

(4) with α = 20/3, εz,0 = 2, εx = 1, as well as the274

double-well profile, with εz,0 = 2 and εx = 4. By setting275

the structural period to d = d0, we observe the expected276

signature of ENZ behavior, namely, wave propagation277

with no phase delay through the periodic structure1,4,5.278

V. DISCUSSION AND CONCLUSION279

In this section, we conclude our analysis by discussing280

implications of our approach, summarizing our results281

and mentioning open related problems. Of particular282

interest is a generalization of our result for the effective283

dielectric permittivity of the layered plasmonic structure.284

The notion of an effective permittivity εeff
z that arises285

in Eqs. (5) and (8) bears a striking similarity to homog-286

enization results for Maxwell’s equations29. In fact, it287

can be shown that Eq. (8) can also be derived by ap-288
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FIG. 4: Spatial distribution of Hy in an anisotropic dielectric host with 100 layers of doped graphene with structural
period d = Re(d0) (black rectangle). A magnetic dipole source is located below the multilayer structures (white

dots) emitting at f = 25 THz. The permittivity profile εz(x) in (a) is a parabolic, and in (b) a double-well (insets).
In the multilayer, waves propagate without dispersion and with no phase delay.

plying an asymptotic analysis procedure to the full sys-289

tem of time-harmonic Maxwell’s equations. For a general290

tensor-valued permittivity ε(x/d) and sheet conductiv-291

ity σ(x/d), the effective permittivity of the metamaterial292

takes the form293

εeff = 〈ε χ〉host +
i

ω
〈σ χ〉sheet .

Here, 〈 . 〉R denotes the arithmetic average over region R294

and χ is a weight function that solves a closed boundary295

value problem in the individual layer30. In the special296

case of ε = diag (εx, εz, εz), the weight function reduces297

to the unit tensor, χ = I. Understanding the ENZ behav-298

ior on the basis of this more general effective permittivity299

is the subject of work in progress.300

Our work points to several open questions. For exam-301

ple, we analyzed wave propagation through a plasmonic302

structure primarily in absence of a current-carrying303

source. A related problem is to analytically investigate304

how the dispersion band and ENZ condition derived here305

may affect the modes excited by dipole sources located306

in the proximity of a finite layered structure. This more307

demanding problem will be the subject of future work.308

In conclusion, we have shown that dispersive Dirac309

cones are universal for a wide class of plasmonic mul-310

tilayer systems consisting of 2D metals with isotropic,311

constant conductivity. We also derived a general, exact312

condition on the structural period d to obtain a corre-313

sponding dispersion relation with ENZ behavior. The314

universality of our approach is key for the investigation315

of wave coupling effects in discrete periodic systems and316

the design of effective ENZ media. Our results pave the317

way to a systematic study of homogenization and effec-318

tive parameters in the context of more general multilayer319

plasmonic systems.320
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Appendix A: Exact solution for parabolic dielectric328

profile329

In this appendix, we outline the derivation of the exact330

dispersion relation for parabolic dielectric profile (4). As331

a first step, we characterize the general solution of the332

differential equation333

−∂2
xE(x) + κ(kz)εz(x)E(x) = 0, κ(kz) =

k2
z − k2

0εx
εx

,

where the free space permittivity is set ε0 = 1 and334

k0 = ω
√
µ. In order to derive the solution of the above335

differential equation, we apply a change of coordinate336

from x to χ, viz.,337

x→ χ = ρ

(
x

d
− 1

2

)
,

using a complex-valued scaling parameter, ρ, to be deter-338

mined below. By identifying Ẽ(χ) = E(x) the differential339

equation now reads340

−∂2
χẼ(χ) + κ(kz)εz,0

1

ρ2

(
1 +

6

4
α− 6α

1

ρ2
χ2
)
Ẽ(χ) = 0.

We now fix ρ by the requirement that341

−6α
1

ρ4
κ(kz)εz,0 =

1

4
.
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Thus, if α ≤ 0, we set342

ρ(α) =
(
− 24ακ(kz)εz,0

)1/4

. (A1)

We can analytically continue the above function ρ(α)343

to values α > 0 by properly choosing one of the344

four branches of the (complex) multiple-valued function345

w(z) = z1/4. By the definition346

ν = −1−
√
κ(kz)εz,0

1 + (3/2)α

(−24α)1/2
,

the transformed differential equation for Ẽ(χ) takes the347

canonical form348

−∂2
χẼ(χ) +

(1

2
χ2 − ν − 1

2

)
Ẽ(χ) = 0.

This differential equation has the general solution349

Ẽ(χ) = C1Dν(χ) + C2Dν(−χ), (A2)

where Dν(χ) is the parabolic cylinder or Weber-Hermite350

function, given by the formula351

Dν(χ) = 2ν/2e−χ
2/4
[ Γ(1/2)

Γ(1/2− ν/2)
Φ
(
−ν/2, 1/2;χ2/2

)
+

χ

21/2

Γ(−1/2)

Γ(−ν/2)
Φ
(
1/2− ν/2, 3/2;χ2/2

)]
,

and C1 and C2 are integration constants. In the above,352

Γ(z) is the Gamma function and Φ(a, b; z) is the confluent353

hypergeometric function defined by the power series354

Φ(a, b; z) =

∞∑
n=0

(a)n
(b)n

zn

n!
,

where (a)0 = 1, (a)n = (a+ n− 1)(a)n−1 for n ≥ 1.355

To derive the corresponding exact dispersion relation,356

we need to identify the fundamental solutions Ẽ(j)(x)357

(j = 1, 2) and then substitute general solution (A2)358

written in terms of these Ẽ(j)(x) into determinant con-359

dition (3). The resulting condition reads360

D[k] = det

(
eikxd

[
1 0

−i(σ/ω)κ(kz) 1

]

−

[
Ẽ(1)(ρ/2) Ẽ(2)(ρ/2)

Ẽ ′(1)(ρ/2) Ẽ ′(2)(ρ/2)

])
= 0.

After some algebra, the exact dispersion relation reads361

cos(kxd) +
Γ(−ν)√

2π

{
Dν(−ρ/2)D′ν(−ρ/2)

+Dν(ρ/2)D′ν(ρ/2)

− κ(kz)εz,0 ξ0d

2ρ

[
Dν(ρ/2)2 −Dν(−ρ/2)2

]}
= 0. (A3)

Here, ξ0 = −iσ/(ωεz,0) is the plasmonic thickness. Note362

that, by our construction, ρ and ν are kz dependent,363

viz., ρ = ρ(kz) and ν = ν(kz). Thus, Eq. (A3) still364

expresses an implicit relationship between kx and kz. To365

further simplify Eq. (A3), we expand Dν(ρ/2) to fourth366

order in z. For sufficiently small structural period, d, i.e.,367

|κ(kz)d| � 1, and after some algebraic manipulations the368

exact dispersion relation simplifies to369

cos(kxd) ≈ 1− κ(kz)εz,0ξ0d

2
− (2ν + 1)(−(3/2)α)1/2

×
(√

κ(kz)εz,0 d
)
− 1

4
ακ(kz)εz,0d

2.

Furthermore, in the vicinity of Brillouin zone center, i.e.,370

if |kxd| � 1, we apply the Taylor expansion cos(kxd) ≈371

1 − (1/2) k2
xd

2 and use the definitions of ν and κ(kz) to372

obtain the effective dispersion relation373

k2
x

εeff
z

+
k2
z

εx
= k2

0,
εeff
z

εz,0
= 1 + α− ξ0

d
,

which is identical to Eq. (5).374

Appendix B: Numerical scheme for computation of375

dispersion bands376

In this appendix, we present more details on the nu-377

merical procedure to compute dispersion bands for arbi-378

trary dielectric profiles εz(x). For given problem param-379

eters σ, ω, and profile εz(x), and fixed real kx, consider380

the task of finding a complex-valued solution kz of (3).381

We formulate a Newton method in order to solve the382

implicit dispersion relation D[k] = 0 numerically. For383

this purpose, we first need to characterize the variation384

δE(i) of solutions E(i) of Eq. (1) with respect to kz. We385

make the observation that δE(i) is the unique solution of386

the differential equation387

−∂2
xδE(i) + κ(kz)εz(x)δE(i) + κ′(kz)εz(x)E(i) = 0,

where388

κ′(kz) =
2kz
εx

,

δE(i)(0) = 0, δE ′(i)(0) = 0.

With this prerequisite at hand, the variation of D[k] with389

respect to kz can be expressed as follows:390

δD[k] = −eikxd
{
δE(1)(d)

(
1− E ′(2)(d)

)
+
(
1− E(1)(d)

)
δE ′(2)(d)

+
(
i(σ/ω)κ′(kz) + δE ′(1)(d)

)
E(2)(d)

+
(
i(σ/ω)κ(kz) + E ′(1)(d)

)
δE(2)(d)

}
. (B1)

Next, we outline the steps of the Newton scheme. Let391

kx be fixed. Suppose that starting from an initial guess392
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k
(0)
z we have computed an approximate solution k

(n)
z of393

Eq. (3). We then compute a new approximation k
(n+1)
z394

according to the following sequence of steps:

395

• Solve the first order systems (i = 1, 2)396

{
−∂x(E ′(i)) + κ(kz)εz(x)E(i) = 0,

−∂x(E(i)) = E ′(i),

with initial conditions E(1)(0) = 1, E ′(1)(0) = 0,397

E(2)(0) = 0, E ′(2)(0) = 1.398

• Solve the systems (i = 1, 2)399 
−∂x(δE ′(i)) + κ(kz)εz(x)δE(i) + κ′(kz)εz(x)E(i) = 0,

−∂x(δE(i)) = δE ′(i),
∂E(i)(0) = 0, ∂E ′(i)(0) = 0.

• Compute D[kx, k
(n)
z ] and δD[kx, k

(n)
z ] given by400

Eqs. (3) and (B1).401

• Update:402

k(n+1)
z = k(n)

z − D[kx, k
(n)
z ]

δD[kx, k
(n)
z ]

.
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