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We have theoretically investigated the influence of interface roughness scattering on the low
temperature mobility of electrons in quantum wires when electrons fill one or many subbands.
We find the Drude conductance of the wire with length L first increases with increasing linear
concentration of electrons η and then decreases at larger concentrations. For small radius R of the
wire with length L the peak of the conductance Gmax is below e2/h so that electrons are localized.
The height of this peak grows as a large power of R, so that at large R the conductance Gmax

exceeds e2/h and a window of concentrations with delocalized states (which we call the metallic
window) opens around the peak. Thus, we predict an insulator-metal-insulator transition with
increasing concentration for large enough R. Furthermore, we show that the metallic domain can
be sub-divided into three smaller domains: 1) single-subband ballistic conductor, 2) many-subband
ballistic conductor 3) diffusive metal, and use our results to estimate the conductance in these
domains. Finally we estimate the critical value of Rc(L) at which the metallic window opens for a
given length L and find it to be in reasonable agreement with experiment.

I. INTRODUCTION

Semiconductor nanowires attracted lots of attention
due to their potential applications, such as field-effect
transistors, elementary logic circuits, resonant tunneling
diodes, light-emitting diodes, lasers, and biochemical
sensors1,2. Advances in the nanowire growth have also
led to the development of novel quantum devices3–7.
They allow the exploration of mesoscopic transport
in a highly confined system. Recently, hybrid
superconductor-semiconductor nanowire devices have
been identified8,9 as a platform to study Majorana end
modes10, which exhibit topological properties11–13. To
further improve this topological system, a reduction
of the disorder in the nanowire is essential14,15.
Performance of some of these devices is limited by
scattering of electrons on surface roughness16–21. A
theory of roughness scattering limited mobility of
nanowires as a function of their radius R and linear
electron concentration η controlled by a back gate would
be helpful. In spite of some attempts to create such a
theory22–24 the full picture of roughness limited transport
in nanowires currently is not available. This is not
surprising because as we show below even in the case
of quantum wells there are big gaps in the roughness
limited mobility theory, namely, for wells with many
subbands filled. In this paper, we fill the gaps in the
theoretical description of roughness limited mobility both
for quantum wells and quantum wires.

Much of the focus in nanowire technology is in creating
ballistic nanowires that can support the Majorana zero
edge modes for quantum computation14,15. We show
below that the possibility to achieve ballistic transport
depends strongly on the radius R and the length L of the
wire. Namely, we show that for a fixed L, there exists
a critical value Rc(L) such that electrons in wires with
R < Rc(L) are localized, while for R > Rc(L) there is a
window of concentrations where a metallic phase exists.

Before addressing why such a window exists, let us

describe conventional models of roughness developed for
quantum wells. In a quantum well confined by interfaces
at z = 0 and z = L, the surface roughness is a random
shift of the interface position ∆(~r) from the average
level so that < ∆(~r) >= 0, where ~r = (x, y) is the
coordinate in z = 0 (or z = L) interface plane. The
roughness is described by the height correlator and its
Fourier transform

< ∆(~r)∆(~r′) >=W (~r − ~r′),
< |∆(q)|2 >=W (q).

(1)

First theories of surface roughness scattering have
assumed the correlator to be Gaussian.25–29.

W (~r − ~r′) =∆2e−(~r−
~r′)2/d2

,

W (q) =π∆2d2e−q
2d2/4.

(2)

However, experimental observations using TEM and
STM measurements of Si/SiO2 interfaces and InAs/GaSb
interfaces found that the spacial correlations follow an
exponential behavior30,31

W (~r − ~r′) =∆2e−
√
2|~r−~r′|/d,

W (q) =π∆2d2(1 + q2d2/2)−3/2.
(3)

This correlator describes randomly distributed flat
islands of typical thickness ∆ and diameter d on the top
of the last complete layer of the crystal32. On the other
hand, Gaussian roughness can be visualized as randomly
positioned stacks of total height ∆ and diameter d made
of progressively smaller islands of flat atomic layers on
the top of bigger ones32 similar to the ancient Mayan
pyramids. As we show below, in many cases the two
correlators give the same expression for the mobility in
terms of ∆ and d, and so the difference in parameter
values can have serious implications. Only at very large
electron densities when kF d � 1, (kF is the Fermi wave
number), do the two correlators give different expressions
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for the mobility. This difference is relatively unimportant
for this work, so we give results only for the exponential
correlator.

While the above isotropic roughness models were
designed for quantum wells with flat interfaces, they are
valid for quantum wires of characteristic size R > d.33

In the most of this paper we deal with such roughness.
However TEM images of InAs wires21 suggest that in
quantum wires another model of roughness in which
the radius of the wire varies along its axis may be
more realistic. We discuss this “Variable Radius Model”
(VRM) and its implications in Sec. VI.

In this paper we consider wires with linear electron
concentration η doped by a relatively distant back gate
(we assume that there are no chemical donors in the
wire). Then the interplay between the concentration η,
the radius of the wire R, and the semiconductor Bohr
radius aB determines the number of filled subbands of
radial quantization, what is the Fermi wavenumber kF
of electrons, and whether the confinement is electrostatic
or by the surface barriers (referred to as geometric
confinement). Here the effective Bohr radius aB =
κ~2/m∗e2, κ is the effective dielectric constant, ~ is the
reduced Planck constant, and m∗ is the effective electron
mass. This means that for quantum wires, there are
five lengths ∆, d, η−1, R, and aB , or four dimensionless
lengths when all are scaled by aB , that determine the
Drude mobility.

Below we use the scaling theory to calculate the low
temperature roughness limited Drude mobility µ in units
(e/~)

(
d4/∆2

)
as a function of the dimensionless variables

R/aB and ηaB . Here the use of Drude’s name signifies
that we ignore interference effects and electron-electron
correlations. We summarize our results for different
regions in Fig. 1 as a “phase diagram” in the plane of
R/aB and ηaB , the details of which are elaborated in
Sec. IV. For the most interesting case ∆ � d � aB
we find a total of 9 regions A − I whose mobilities are
listed in Table II. It should be noted that due to the
limitations of the scaling theory, the mobility expressions
for the different regions of the phase diagram are valid
only away from the borders between different regions.
In the vicinity of the border between regions, there
is a smooth crossover between the two mobilities, the
details of which are beyond the scope of this paper.
While the scaling approach only gives the dependence of
mobility on the different parameters without numerical
precision, its simplicity allows for a clear picture of the
different physical domains and the approximate limits
under which they occur.

Now we are ready to address the origin of the Drude
conductance peak which leads to a metallic window for
large R, illustrated by the colored regions in Fig. 1.
Schematic plots of the Drude conductance (in units e2/h)
G = ηµh/Le of the wire with length L are shown in
Fig. 2 for two representative values of R by full lines.
They are obtained from cross sections of Fig. 1 and
the mobilities in Table II. At low concentrations, we see

FIG. 1. The scaling “phase diagram” of roughness limited
electron Drude mobility of a long quantum wire plotted as
a function of radius R and linear electron concentration
η for d < aB in the log-log scale. Different ”phases”
or regions are denoted by capital letters. Drude mobility
expressions corresponding to these regions are given in Table
II. Region boundaries are given by the equations next to them.
The schematic self-consistent electron potential energy profile
along the wire diameter and subbands occupied by electrons
are shown for each region. Small arrows show the direction of
mobility decrease in each region. The colored areas illustrate
where the wire of length L is metallic. The dark red, light red,
and pink regions correspond to the single-subband ballistic
conductor, many-subband ballistic conductor, and diffusive
metal regions for Rc(L) < aB . Electrons are localized in
all the colorless regions. The border between them and
colored regions is determined by the length of the wire L.
We assumed that L ∼ 1 µm as is used in quantum devices.
For shorter wires Rc(L) decreases, and the colored metallic
regions expand to cover most of the area of the phase diagram.

that the Drude conductance increases with increasing
concentration. This corresponds to Region G of Fig.
1, where there is a single radial subband occupied and
the electrons are confined geometrically. We know from
Fermi’s golden rule that the relaxation time τ is inversely
proportional to the density of states at the Fermi energy,
which in the one-dimensional (1D) case goes like 1/kF ∼
1/η. The scattering potential however is independent of
concentration in this regime. Therefore, the relaxation
time τ , the mobility µ, and conductance G increase
with concentration due to the decrease in the density
of states. This trend continues until the concentration is
large enough that multiple subbands become occupied.
Now electrons have more states to scatter into, and
the relaxation time quickly decreases with increasing
concentration. Thus the conductance peaks at the
border concentration ηc when electrons begin to populate
multiple subbands. The peak of the Drude conductance
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for the most interesting cases of R ≤ aB is given by

Gmax =
R5

L∆2d2
. (4)

FIG. 2. The scaling behavior of the dimensionless Drude
conductance of a quantum wire with length L and radius R as
a function of the linear electron concentration η at different
wire radii for d � aB in the log-log scale (full lines). The
upper curve corresponds to R = aB and the lower one is R =

(aBd)1/2. They are obtained from cross-sections of the “phase
diagram” in Fig. 1 and the mobilities in Table II. The dashed
line on the upper curve shows the metal-insulator crossover
near ηaB = 0.5 induced by electron-electron interactions. We
see that for R = aB the metallic window is open, while for

R = (aBd)1/2 the window is closed. L = a
7/2
B ∆−2d−1/2 was

chosen.

So far we have ignored electron-electron interactions
and quantum interference effects. They dramatically
change the conductivity of one dimensional systems
at low temperatures. For single subband wires
(regions D and G) electron-electron interactions result
in Wigner-crystal-like correlations and pinning of the
electron gas leading to the metal-insulator crossover near
ηaB = 0.534. In Fig. 2 the corresponding collapse of
conductance at ηaB < 0.5 is shown by the dashed lines.
According to Luttinger liquid theory35,36 similar effects
persist at very low temperatures in very long wires. We
are interested here in relatively short wires with L ∼ 1
µm, where plasmon quantization does not allow such
effects to develop36. Therefore, for ηaB > 1 we can ignore
electron-electron interactions. However, in this case
we should still take into account quantum interference
effects. They lead to one-electron localization when
Drude G < 1. This means that when Gmax < 1 (see
lower curve in Fig. 2), the wire is an insulator at any
concentration η. On the other hand, for Gmax > 1 (see
upper curve in in Fig. 2) the wire has a concentration
window of metallic behavior. The critical radius Rc(L)
in which the metallic window opens is then determined
by the condition that Gmax = 1. For Gmax defined by
Eq. (4) we find

Rc(L) = (∆2d2L)1/5. (5)

Note that the restriction that ηaB > 0.5 necessary for the
single subband wires to be metallic requires Rc < 2aB .

Thus, we predict a zero temperature reentrant
insulator-metal-insulator transition with increasing η in
quantum wires with R > Rc(L). Such a transition was
first predicted for a two-dimensional electron gas (2DEG)
in silicon MOSFET37. However it was later shown32 that
there is no second reentrant metal-insulator transition
at large concentrations of a 2DEG as the dimensionless
conductance saturates at a value larger than unity. As
our paper shows the idea of Ref. 37 is realized in quantum
wires. (For more details see our Sec. II below.)

The metallic regimes for a wire with Rc(L) < aB
are shown in different colors in Fig. 1, while regions
where the electrons are localized are left blank. The dark
red, light red, and pink colored regions of the metallic
regime specify a single-subband ballistic conductor,
a many-subband ballistic conductor, and a diffusive
metal respectively. It should be emphasized that the
metal-insulator and ballistic-diffusive borders depend on
the wire length. With decreasing L and Rc(L) the
colored regions expand dramatically and for short wires
eventually cover most of the phase diagram. In Fig. 1
we used L ∼ 1 µm as in Fig. 2, which is typically used
in quantum devices (see details in Sec. VII).

The detailed derivation of all the metallic border
equations are given in Sec. V and in Tab. III. Here we
give a brief summary of the derivation. Let us begin with
the metal-insulator border. For ηaB > 0.5 this border
comes from the condition that the Drude conductance
GD = e2/h, and gives rise to the sequence of border
lines between the colored and uncolored regions with
minimum at Rc(L) in Fig. 1. For ηaB < 0.5 there is no
metallic regime for the single subband regions (G and H),
as illustrated by the vertical line that cuts off the dark red
region of Fig. 1 at low concentrations. This line continues
vertically to the asymptotic line ηaB ∼ C(R/aB), which
can be understood as the Wigner crystallization of the
2DEG at na2B = C � 1, where n = η/2πR. Finally we
address the ballistic-diffusive border which only exists in
the regions with many subbands occupied. Typically, a
diffusive metal becomes ballistic when the mean free path
l = L. However, for the many subband regions there
is an ambiguity, as we can have different l for different
subbands. Fortunately, the conductance in these cases
is determined by a small subset of subbands which have
identical l and we define the ballistic-diffusive border by
the line where l = L for these subbands.

Let us discuss the conductance in the different colored
regions of Fig. 1. We begin with the ballistic regimes (red
regions of Fig. 1). Here the dimensionless conductance
G ≈ 2K, where K is the number of ballistic channels of
a wire with finite length L, and the factor of 2 comes
from the spin degeneracy. Estimates of K can be found
in Sec. V. Within the diffusive regime (pink regions of
Fig. 1) G = (h/e)ηµ/L, where the mobility is given
in Tab. II. Finally, in the insulating regions electrons
are localized at temperature T = 0. At finite T wires
conduct via phonon assisted hopping. Calculations of
the hopping conductivity are relatively straightforward,
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but are beyond the scope of this paper.
The plan of this paper is as follows. In Secs. II and

III we study the roughness limited mobility of quantum
wells as a function of their width L and two-dimensional
concentration of electrons n arriving at the “phase
diagram” for µ(L, n) with nine different regions. In Sec.
IV we use the quantum well “phase diagram” to construct
the “phase diagram” µ(R, η) for quantum wires with
surface roughness described by Eq. (3). In Sec. V we
use our results for the Drude mobility to estimate the
wire conductance in the ballistic and diffusive regions.
In Sec. VI we discuss quantum wires within the Variable
Radius Model (VRM). In Sec. VII we dwell upon some
experimental implications, namely the peak mobility and
the value of radius Rc(L) in which the metallic window
opens. We conclude with Sec. VIII.

II. ROUGHNESS LIMITED MOBILITY
RESULTS FOR QUANTUM WELLS

To understand the roughness limited mobility of
quantum wires, it is convenient to first make clear of that
in quantum wells. We start from a quantum well confined
by two high potential barriers at z = 0, L. It has the
two-dimensional (2D) electron concentration n created
either by two positive donor layers located symmetrically
on both sides of the well or by two symmetric metallic
gates. In both cases, at z = 0, L there is an electric field
pointing into the well with |E| = 2πne, where e is the
electron charge. Interplay of effects of the electric field
and barrier confinement creates 5 different types of wells
shown in Fig. 3 in regions I - IX. In a narrow well the
electric field E plays a minor role in level quantization
compared to confining barriers so that we assume that
all subbands are geometrically confined in the small L
regions VI, VII, VIII, and IX in Fig. 3. When the
concentration is relatively small, electrons occupy only
the first subband. At larger n electrons populate many
subbands (see the level schematics in regions VI and VII
in Fig. 3). In wider wells shown in regions I, II, III, IV
and V the electric field becomes important compared to
the surface barriers. In turn this leads to the splitting of
the electron density in two peaks. With growing L, in the
beginning (regions IV and V) this splitting is moderate
and affects only the lowest subbands. In regions II and III
the splitting results in two separate accumulation layers
in response to the electric field each side of the well.
Finally at large L and small n we again reach the single
subband limit, however the confinement is electrostatic
rather than geometric (region I in Fig. 3).

The roughness limited mobility of a single-subband
electron gas of a quantum well (regions I, VIII and IX)
was thoroughly studied in Refs. 25–28 more than 30
years ago. On the other hand, the roughness limited
mobility of accumulation layers was calculated recently
in Ref. 32, results of which are directly applicable to
regions II and III. However, no work has been done in the

intermediate regions where many subbands are occupied
but the electric field is weak so that some or all of the
subbands are confined geometrically (regions IV, V, VI,
and VII). In this paper we fill this gap. Below, because of
the complexity of the problem, we first present the final
results in this section and then give their derivations in
next section.

The complete results at d � aB are shown in Fig.
3 and Table I. The single subband results I, VIII, and
IX are taken from Refs. 25–28 and accumulation layer
results II and III are from Ref. 32. For the intermediate
regions IV, V, VI, and VII, we obtain their results in this
paper.

Let us first look at the physical meaning and
corresponding equations of boundary lines in Fig. 3.
Across the line between Region I and Region II, the
concentration becomes so large that electrons have to
occupy multiple subbands (see level schematics in Fig.
3). With n further increased, kF d becomes larger than
unity in Region III where kF is the three-dimensional
(3D) electron Fermi wavenumber here. Instead of
averaging over different islands, the electron hits only
a single island now. This leads to the change of the
mobility result at the II-III border.

For regions I, II, and III, all subbands are
electrostatically confined. For moderately smaller well
width L, some of the subbands become geometrically
confined. This happens when the well width L becomes
smaller than the characteristic thickness D of the
accumulation layer, where38,39

D ' aB

(na2B)
1/5

. (6)

The criterion L = D then gives the line between II, III
and IV, V. At the line between IV and V, kF d = 1.

TABLE I. Mobility µ in units of (e/~)
(
d4/∆2

)
as a function

of the 2D electron concentration n at d < aB for different
regions.

I II III

a2B/n
2d6 a

8/5
B /n11/5d6 aB/nd

3

IV V VI

a
1/2
B L11/6/n11/6d6 a

1/2
B L5/6/n5/6d3 L10/3/n4/3d6

VII VIII IX

L7/3/n1/3d3 L6/d6 L6n3/2/d3

With further reduction of L, all subbands would be
geometrically confined (see the level schematic in Fig. 3).
This happens when the electrostatically confined distance
of the lowest subband electrons from the surface is equal

to the well width L. This distance is D0 ' a
1/3
B /n1/3
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FIG. 3. The scaling ”phase diagram” of roughness limited
electron mobility of quantum well at different well width
L and 2D electron concentration n for d � aB in the
log-log scale. Different ”phases” or regions are denoted by
Roman numerals. Mobility expressions corresponding to
these regions are given in Table I. Region boundaries are given
by the equations next to them. The schematic self-consistent
electron potential energy profile along the z-axis of wells
and levels (subbands) occupied by electrons are shown for
each region. Small arrows show the direction of mobility
decrease in each region. Apparently the maximum mobility is
achieved in Region I. The dashed line indicates schematically
the border of the metal-insulator transition (MIT) at small
enough n. At large n there is no reentrant MIT in spite of
the decreasing mobility.

(see Refs. 25 and 28) which is the smallest among
all subbands since the lowest subband has the smallest
kinetic energy in the z direction. The condition L = D0

gives the line between IV, V and VI, VII. The border
between VI and VII corresponding to the critical point
of kF d = 1 is a continuation of the line between regions
IV and V. Moving to even smaller L from regions VI
and VII, we cross over to the single subband (see the
level schematic in Fig. 3). This corresponds to the line
kFL = 1 between VI, VII and VIII, IX. The border of
the VIII and IX regions is the line of kF d = 1 where kF is
the 2D electron Fermi wavenumber here. In Fig. 3, one
can see that there is another border line between I and
VIII, which both correspond to a single subband gas.
However, Region I corresponds to two electrostatically
split electron subbands near the two well interfaces, while
Region VIII represents the case that the electron subband
is spatially restricted by the well width L (see the level
schematic in Fig. 3). Their crossover happens at the
point that both electrostatic and geometric confinements
give the same thickness of the electron gas. Remember
that the electrostatically confined thickness of the first
subband is D0. Then the condition L = D0 gives

the border. So this line between I and VIII is just an
extension of the line between IV, V and VI, VII.

One should note that here in Table I, all results are
shown without numerical coefficients, i.e., we present
only the scaling behavior. Previous works have already
found the exact coefficients in the single subband regions
I, VIII, and IX25,26. Results of many subband regions
II, IV, and VI with kF d � 1 can also be obtained
with the approximate coefficients as seen later in Sec.
III. We cannot get coefficients analytically in remaining
regions III, V, and VII. Thus we focus only on the scaling
behaviors in all tables and derivations.

In Fig. 3 the metal-insulator transtition (MIT) is
shown schematically by the dashed lines. Let us dwell
on the meaning of these lines. The lower line is related
to the localization physics of a non-interacting electron
gas. Strictly speaking all states are localized in 2D
infinite samples, however at kF l � 1 the localization
length grows exponentially as ζ = l exp(kF l), where
l is the mean free path. In finite square samples of
area A we have in mind that ζ quickly becomes larger
than the sample size A1/2. This allows one to discuss
the metallic conductivity and expect the insulator-metal
transition near σ = (e2/~) ln(A1/2/l). Ignoring the
logarithm and using the expressions of mobility µ for
VIII and IX in Table I as well as σ = neµ, one
gets that the low L MIT border of Region VIII obeys
L = ∆1/3d1/3n−1/6. We also find the MIT border of
Region IX is L = ∆1/3d−1/6n−5/12. We have used

∆/d = (d/aB)
8/5

in order to draw these lines. The
vertical line na2B = C � 1 reflects the role of the
Coulomb interaction between electrons in a degenerate
electron gas. At na2B � 1 strong Coulomb repulsion
leads to Wigner crystallization. The Wigner crystal is
pinned by relatively small disorder and electrons become
localized.

III. ROUGHNESS LIMITED MOBILITY
DERIVATIONS FOR QUANTUM WELLS

In the previous section, we have presented the physical
picture of all 9 regions and their border lines and
summarized the mobility results. In this section, we
derive the new expressions of mobility for regions IV,
V, VI, and VII. First, let us derive µ for Region VI.
According to Fermi’s golden rule and the Boltzmann
equation, the relaxation time τN of a particular state
with the wavefunction ξ(z, ~r) and with in-plane velocity
~vk in theN -th (counted from the bottom lowest subband)
subband is

1

τN
=

2π

~
∑
N ′

∫
d2k′

(2π)2
|V (q)|2

ε(q)2
δ(ε−εF )

(
1− ~vk′ · ~E

~vk · ~E
τ ′N
τN

)
,

(7)
where τN , τ

′
N denote the relaxation time for N, N ′-th

subbands, ~vk′ is the in-plane velocity for the final state
with the wavefunction ξ′ in the N ′-subband with in-plane
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momentum ~k′, ε is the energy of the final state ξ′ and
εF is the Fermi energy, q is the transferred momentum
in the x − y plane between ξ and ξ′. Here V is the
scattering matrix element arising from the scattering
potential. Due to the electronic screening, the Fourier
transform of the scattering potential V (q) is reduced
by the dielectric function ε(q)25. One should note that
here the last term inside the parenthesis of Eq. (7)
does not reduce to cos θ, where θ is the angle between
initial and final total momenta. This is because, due
to the 2D nature of the surface roughness and thus
of the scattering potential, the multisubband electron
gas experiences anisotropic scattering, i.e., different
subbands have different relaxation times40. As a result
cos θ in Eq. (7) is replaced by the ratio of the
out-of-equilibrium part of distribution function of the

states ξ′ and ξ represented by
(
~vk′ · ~E/ ~vk · ~E

)
(τ ′N/τN )

(see Ref. 41). For brevity, we refer to this term as the
distribution function ratio (DFR) from now on.

It is known that the roughness-caused scattering
potential V (~r) and corresponding scattering matrix
element V (q) satisfy the equation25,32

V (r) =
~2

m∗
∆(~r)

∂ξ

∂z

∂ξ′

∂z

∣∣∣∣
z=0,L

,

< |V (q)|2 >'
(

~2

m∗

)2
k2z
Z

k′2z
Z ′
W (q),

(8)

where kz ' N/Z, k′z ' N ′/Z ′ are the z-direction
momenta of ξ and ξ′, Z and Z ′ are the z-direction widths
of the N -th and N ′-th subbands, which are determined
by the confinement. For example, when the subband N is
electrostatically confined, Z = εz/eE ' ~2k2z/m∗e2n '
aBk

2
z/n (εz is the kinetic energy in z-direction), while

when geometrically confined, Z = L. For Region VI, all
subbands are geometrically confined. So

< |V (q)|2 >'
(

~2

m∗

)2
N2

L3

N ′2

L3
W (q). (9)

Since in Region VI kF d � 1, W (q) ' ∆2d2 is
independent of q according to Eq. (3). The scattering is
isotropic for a given subband N ′ with respect to different
directions of ~vk′ . The scattering rate is then reduced to

1

τN
=

2π

~
∑
N ′

∫
d2k′

(2π)2

(
~2

m∗

)2
N2N ′2∆2d2

L6ε(q)2
δ(ε− εF ).

(10)
The (2D) screening radius is aB/kFL where kFL is the
total number of subbands in Region VI. Since L� aB in
this region, this screening radius is much larger than the
Fermi wavelength 1/kF . So ε(q) ≈ 1 and the screening
can be ignored for the scattering between N -th subband
and the typical subbands with k′z ' kF and thus q ∼ kF .

Eq. (10) then yields

1

τN
' ~
m∗

N2∆2d2

L6

∑
N ′

N ′2 ' ~
m∗

N2∆2d2

L6
(kFL)

3

' ~
m∗

N2∆2d2k3F
L3

,

(11)

where the 3D wavenumber kF = (n/L)
1/3

, and the
scattering rate is mainly determined by scattering
between the N -th subband and typical subbands with
large N ′. The absence of screening in the scattering rate
calculation is then self-consistently justified. Also, from
Eq. (11), one can easily see that τN ∝ 1/N2 so the
lowest subband with N = 1 has the largest relaxation
time while for typical subbands with kz ' kF and, thus,
N ' kFL, the corresponding relaxation time is (kFL)

2

times smaller. Since there are ∼ kFL subbands in total
with each subband having a 2D concentration n/kFL
and the number of typical subbands is close to the total
number kFL, the final conductivity is dominated by the
lowest subband as

σ =
n

kFL

e2

~
L3

∆2d2k3F
= ne

e

~
L2

∆2d2k4F
, (12)

and the effective mobility is

µ =
σ

ne
=
e

~
L2

∆2d2k4F
=
e

~

(
d4

∆2

)
L10/3

d6n4/3
. (13)

This is the result shown in Table I in Sec. II.
Now let us move to Region IV. This region is

a crossover between completely geometrically confined
Region VI to completely electrostatically confined Region
II. The lowest M subbands are electrostatically confined
due to their relatively small distances to the surface
while the kFL − M higher subbands are geometrically
confined. So for the lowest M subbands, k2z/Z ∼ n/aB
is a constant independent of the subband index N
determined only by the surface electric field E or the
2D electron concentration n. As a result, the lowest
M subbands have comparable relaxation times. The
rest kFL −M subbands are geometrically confined and
their contribution to the conductivity is dominated by
the lowest subband of the group, i.e., by the (M + 1)-th
subband. Here the index M is obtained by the condition
that its electrostatically confined width is equal to the
well width L

aBk
2
z

n
= L, kz '

M

L
. (14)

As a result, M =
(
nL3/aB

)1/2
. Now Eq. (11) is modified

for subbands from 1 to M as

1

τ1−M
' ~
m∗

n∆2d2

aB

 ∑
N ′=1,...,M

n

aB
+

∑
N ′=M+1,...,kFL

N ′2

L3


' ~
m∗

n∆2d2

aB

∑
N ′=M+1,...,kFL

N ′2

L3
' ~
m∗

n∆2d2k3F
aB

,

(15)
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where N ′2/L3 � n/aB for N ′ > M and the total
number of subbands is still kFL � M in Region IV.
Therefore the scattering rate of each subband is always
determined by its scattering into the typical subbands
which are geometrically confined to a width L and have
the momentum kz = kF in the z-direction. One can

easily check that in Region IV, i.e., at L < n−1/5a
3/5
B ,

the conductivity is determined by the lowest M subbands
and the effective mobility

µ =
σ

ne
=

(
M × n

kFL

e2

m∗
m∗

~
aB

n∆2d2k3F

)
1

ne

=
e

~

(
d4

∆2

)
a
1/2
B L11/6

n11/6d6

(16)

is obtained in a way similar to that of Region VI discussed
before. This is the result given in Table I.

Now let us talk about the kF d � 1 case for regions
V and VII. In this case, W (q) is no longer a constant
but can be much smaller than ∆2d2 for some values of q.
The scattering is no longer isotropic in the x − y plane

and one cannot ignore the DFR term ~vk′ · ~Eτ ′N/ ~vk · ~EτN
in Eq. (7). As we show in Appendix B, the scattering
is dominated by events with q ' kF instead of small
q . 1/d. It can be easily seen quasi-classically that only
when an electron hits the sharp edge of an island can
the non-specular reflection happen. This is an event on a
length scale k−1F � d so that the scattering is dominated
by q ' kF .

For the dominant large angle scattering, though the

term (1− ~vk′ · ~Eτ ′N/ ~vk · ~EτN ) after averaging over different
φ is not exactly unity like in the kF d � 1 case, it
is still of order unity. Thus in the scaling sense, the
difference brought by kF d � 1 is only in the (kF d)3

times reduction of W (q). (One should note that for
the large angle scattering, the rate is dominated by
scattering into typical subbands of k′z ' kF similarly to
the kF d� 1 case discussed before. The screening here is
again ignored since the large angle scattering has q ' kF
and the screening radius aB/kFL is much larger than the
electron Fermi wavelength k−1F , similarly to the case in
regions IV and VI.) As a result, from Region IV to V,
the scattering rate decreases by (kF d)3 for each subband
and the effective mobility increases by (kF d)3. A similar
increase by a factor (kF d)3 happens across the border
from Region VI to Region VII. So far we have derived all
the new results in Fig. 3 and Table I.

One can see from Fig. 3 and Table I that the results
of mobility in different regions match each other at all
borders between the regions. Actually, using the derived
result Eq. (13) for Region VI together with the results
for regions II, III, and IX, which are already known, one
can uniquely identify the mobility expressions in regions
IV, V, and VII by matching them with the neighboring
mobilities on the borders.

So far, we have been focused on the d� aB case, which
is generic for large aB semiconductors such as InAs and
InSb. Now we would like to briefly discuss the d � aB

case, which may take place, say, in silicon. Let us start
from the case when d = aB . In this case, the phase
diagram Fig. 3 is dramatically simplified as the middle
regions II, IV, and VI vanish and the border line kF d = 1
merges with the vertical axis na2B = 1. Let us now move
to the case d � aB . Since at na2B � 1, the electron gas
is two-dimensional for all values of L, there is only one
line nd2 = 1 for the critical border kF d = 1. We assume
that this line is located already in the insulator regime,
so that in the whole metallic region kF d� 1. This leads
to an additional factor (kF d)3 to the mobility result in
Region I and gives µ = (e/~)

(
d4/∆2

) (
a2B/n

1/2d3
)

(see
Ref. 32). Mobility results for the extended regions III,
V, VII, and IX remain the same as in Table I.

IV. ROUGHNESS LIMITED MOBILITY IN
QUANTUM WIRES

In the previous sections, we described the roughness
limited mobility in a quantum well as a function of the 2D
electron concentration n and the well width L. Here we
would like to generalize these results to that of a nanowire
with linear electron concentration η and radius R. We
assume that an electric field E = 2eη/R applied radially
inward at surface of the wire. Such a system can be
realized by a metallic gate surrounding the nanowire, or a
planar gate located a distance larger than the wire radius
R.

Our results are summarized in Fig. 1 as a “phase
diagram” in the plane (η, R), where each “phase” or
region marked by a capital letter denotes a different
dependence of the mobility on R and η as shown in Table
II. Just as for quantum wells, many different regions
appear due to the interplay between the electrostatic
and geometric confinements. The electronic structure of
each region is illustrated with a radial level (subband)
schematic similar to those in Fig. 3. One can divide
all regions into three groups. In regions D and G the
electron gas is strictly one-dimensional (1DEG), i.e. it
occupies a single subband in the wire cross-section. In
Region A electrons occupy a single radial subband and
many azimuthal subbands (2DEG). Finally, in regions
B, C, E, F, H, and I, electrons occupy many subbands
in both the radial and azimuthal directions and the
gas is three-dimensional (3DEG). In order to clarify
the meaning of the level schematics, Fig. 4 provides
an illustration of the electronic structure in the 3DEG
regions. Each top image shows the electron density
(shaded regions) in a cross section of the wire while its
bottom image shows the corresponding level schematic
along the wire diameter.

Let us first concentrate on the 2DEG and 3DEG
regions, where the circumference 2πR is much larger than
the typical electron wavelength k−1F . This means that
we can generalize our results of the quantum well by
treating the wire along the x axis as a stripe-like quantum
well whose y-direction size is 2πR and 2D concentration
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n = η/2πR. As a result each of the regions I-VII of
Fig. 3 has an analogous region in Fig. 1 in which the
electronic structure near the surface and the mobility are
the same upon substituting n = η/2πR and L ' R
everywhere. For example, in Region B electrons are
confined electrostatically near the wire surface and form
an accumulation layer (see Fig. 4(a)) whose thickness is
given by Eq. (6) with n = η/2πR, similar to region II for
the quantum well. By using the correspondence between
regions A, C, E, F, H, and I of Fig. 1 with regions I, III,
IV, V, VI, and VII of Fig. 3 we find the wire mobility
values for each of these regions as listed in Table II.

So far we have shown that in the 2DEG and 3DEG
limits of the nanowire, there is a corresponding region
in Fig. 3 from which the mobility of the wire may be
obtained upon substituting n = η/R. In regions D and
G however, the electron gas in the wire forms a 1DEG for
which there is no corresponding region in the quantum
well. Let us first concentrate on Region G, where the gas
is geometrically confined to a single subband in the plane
of its cross-section (y, z) with energy ER = ~2/2m∗R2

and its wavelength along the wire axis is k−1F = η−1. Here
y is the azimuthal direction along the wire circumference
and z is the radial direction. Due to the roughness,
the radius of the wire varies along the wire surface in
the x and azimuthal directions by an amount δR =
∆(k−1F R/d2)−1/2, where k−1F R/d2 is the typical number
of islands over which the electron averages the roughness.
These variations lead to a change in the confinement
energy that acts as a random scattering potential given
by V = ER(δR/R). Using ~/τ ≈ V 2/(~2k2F /2m∗) to
estimate the scattering rate, we find the mobility in
Region G to be

µ =
e

~
ηR7

∆2d2
. (17)

If we increase R so that we enter Region D, the electron
gas will instead be confined electrostatically to a single
subband of width D0 = (aBR/η)1/3. This change
amounts to replacing R by D0 in the confinement energy
ER. The mobility can thus be obtained by replacing the
R6 factor in Eq. (17) by D6

0 = a2BR
2/η2 and so the

mobility in Region D is given by

µ =
e

~
a2BR

2

η2∆2d2
(ηR) =

e

~
a2BR

3

η∆2d2
. (18)

The factor ηR is unchanged as this came from averaging
over an area k−1F R on the surface and was independent
of the confinement in the radial direction. The mobility
values given in Eqs. (17) and (18) are shown in Tab. II.

We can make the previous discussion more rigorous by
considering the scattering rate using Fermi’s golden rule.
In the 1DEG limit there is only one radial or azimuthal
subband occupied so that the scattering rate given by

TABLE II. Mobility µ in units of (e/~)
(
d4/∆2

)
as a function

of the linear electron concentration η at d < aB for different
regions.

A B C

a2BR
2/η2d6 a

8/5
B R11/5/d6η11/5 aBR/ηd

3

D E F

a2BR
3/ηd6 a

1/2
B R11/3/η11/6d6 a

1/2
B R5/3/η5/6d3

G H I

R7η/d6 R14/3/η4/3d6 R8/3/η1/3d3

(a) (b) (c)

FIG. 4. Electron concentration within the nanowire (top)
and the corresponding level schematic along the diameter
(bottom). Regions of higher concentration correspond to
darker shading. a) Regions B and C of the scaling
“phase diagram” Fig. 1, where all subbands are confined
electrostatically forming an accumulation layer of thickness
D near the surface. b) Regions E and F, where the
lowest subbands are confined electrostatically, while the top
subbands are confined geometrically. c) Regions H and I,
where all the subbands are confined geometrically.

Eq. (7) then simplifies to

1

τ
=

2π

~
1

R

∑
k′
y

∫
dk′x
2π

< |V (q)|2 > δ(εF − ε′)

=
2π

~
1

R

∫
dk′x
2π

< |V (q)|2 > δ(εF − ε′).

(19)

Here the marginal one-dimensional screening is ignored
and < |V (q)|2 > is defined to be

< |V (q)|2 >'
(

~2

m∗Z3

)2

W (q) (20)

for the gas confined to the lowest radial subband where
W (q) = ∆2d2 at kF d � 1. Setting Z = R in region
G and Z = D0 in Region D, we arrive at the mobilities
given by Eqs. (17) and (18).
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We see in Fig. 1 that Region G is located at small R
and small η, and extends until the line R = d. Beyond
this point, the characteristic size of the islands d becomes
larger than the radius of the wire R and the model
of isotropically distributed islands on the wire surface
breaks down.

So far we have dealt with the mobility of quantum
wires that are cylindrically symmetric. A stripe-like
wire along the x-axis can be made out of a narrow
single subband GaAs/AlGaAs quantum well by the
etching or split-gate techniques42. The mobility of such
a modulation-doped stripe of 2DEG was calculated22

for kF d � 1 under the assumption that all scattering
happens on the one-dimensional rough y = 0, R edges
of the stripe and that the stripe has many y-direction
subbands filled. Although our undoped wires studied
in regions H and I are different from wires of Ref. 22,
they share an important feature with them, i.e., the
conduction is determined by the lowest subband. This
can be easily understood quasiclassically, as the lowest
subband electrons have most of its kinetic energy in the
x-direction and run approximately parallel to the surfaces
or edges, and thus get rarely scattered.

V. BALLISTIC-DIFFUSIVE BOUNDARY AND
THE CONDUCTANCE OF A WIRE WITH

LENGTH L

In the Introduction we explained that due to the 1D
nature of the wire the transport properties differ greatly
across the different regions of Fig. 1. Specifically, in the
multisubband regions the wire of characteristic size R
undergoes a transition between a ballistic conductor and
a diffusive metal as a function of concentration. We will
now explain why such a transition occurs, and calculate
the conductance G within these regions.

TABLE III. Metal-insulator border RMI(η),
ballistic-diffusive border RBD(η), and the total number
of subbands Kmax for regions G, H, E, and B of Fig. 1

Region RMI(η) RBD(η) Kmax

G η−2/7Rc(L)5/7 - 1

H η1/14Rc(L)15/14 η2/13Rc(L)15/13 (ηR)2/3

E a
−3/22
B η5/22Rc(L)15/11 a

−3/7
B η5/7Rc(L)15/7 (ηR)2/3

B a
−8/11
B η6/11Rc(L)25/11 a

−7/9
B ηRc(L)25/9 η3/5R2/5a

1/5
B

Let us first review what we know about the Drude
conductance and show where it fails. In Tab. II we give
the Drude mobility for the various regions of Fig. 1.
Using these formulas one can calculate the dimensionless

Drude conductance GD = (h/e)ηµ/L per spin for a
wire with length L and linear concentration η. One
can then define the metal-insulator transition by the
condition GD = 1. For example, in region H we find that
GD = R14/3/(η1/3Rc(L)5), where Rc(L) = (∆2d2L)1/5

is defined in the Introduction. Using the requirement
GD = 1, we find the MIT border within Region H to
be RMI(η) = η1/14Rc(L)15/14. Similar calculations for
regions G, E, and B lead to the RMI(η) in Tab. III.

The dimensionless Drude conductance is valid in all
regions where GD > 1, but the mean free path l < L. In
Region G where there is a single subband occupied, GD =
1 and l = L are the same as long as ηaB > 0.5 where we
can safely ignore electron-electron interactions. However
in the multisubband regions B, H, and E the conditions
are different. This can be understood by realizing that
the condition GD = 1 is equivalent to ζ = L, where ζ
is the localization length. When multiple subbands are
occupied, ζ grows larger than l, so in the multisubband
region we can satisfy the conditions l � L � ζ required
for diffusive transport.

Let us begin with the simplest Region B where all
subbands have the same l. We define the mean free
path as l = vF τ , where τ is the relaxation time and
vF = ~kF /m∗ is the Fermi velocity. The relaxation time
τ can be calculated from the mobility in Tab. II and we
find that in Region B

l =
a
7/5
B R9/5

∆2d2η9/5
, (21)

The border equation is defined by the condition l = L
and is found to be

RBD(η) =
ηRc(L)25/9

a
7/9
B

(22)

as shown in Tab. III.
In regions E and H there are radial subbands which

are geometrically confined. As we showed in Sec.
III, subbands that are geometrically confined will have
different relaxation times, with higher subbands having
smaller relaxation times. As a result GD in these regions
is determined by the lowest radial subbands where τ
and l are largest. In Region E the bottom M radial
subbands are confined electrostatically, while the higher
subbands are confined geometrically. Similar to Region
B the subbands that are electrostatically confined have
the same mean free path

l1−M =
aBR

7/3

∆2d2η5/3
. (23)

These are the lowest subbands that determine GD and
thus setting l1−M = L leads to RBD(η) in Tab. III.

Finally, in Region H all radial subbands are
geometrically confined and therefore have different mean
free paths. The mean free path of the Nth subband lN
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is given by

lN =
R13/3

∆2d2η2/3N2
. (24)

We see that lN ∝ N−2 and the conductance is
determined by the lowest radial subband where N = 1.
We can define the diffusive border by the condition that
l1 = L, leading to the border equation in Tab. III.

Let us now use these results to determine the number
K of ballistic subbands at the border. Recall that in
the ballistic regions, the dimensionless conductance of
the wire is GB = K. At the border GB = GD, and so
using our results of the Drude conductance we can self
consistently find the number of ballistic subbands. In
Region H, we find K = kFR, in Region E we find that
K = MkFR, and in Region B we find that K = k2FRD,
where D is given by Eq. (6) with n = η/R. These results
can be easily understood. For each radial subband there
are kFR azimuthal subbands that contribute equally to
the conductance. Then we can generically set K =
(kFR)Kr where Kr will be the number of ballistic radial
subbands at the border. In Region H only one radial
subband is ballistic, in Region E there are M ballistic
radial subbands, and finally in Region B there are kFD
radial subbands which are ballistic. Beyond the border
Kr increases as (l1/L)1/2 until K reaches the total
number of subbands given in Tab. III, where l1 is given
by Eq. (24) for N = 1. The condition Kr = kFR defines
a final border

R(η) = η4/11Rc(L)15/11 (25)

in regions H and E, beyond which all subbands are
ballistic.

VI. VARIABLE RADIUS MODEL OF A
NANOWIRE

Previously, we have considered a model of the surface
roughness as flat islands of size d � R and height ∆
randomly distributed over the surface of the crystal.
For the case of the nanowire however, one can imagine
another model of roughness in which the radius of the
wire varies along its length, but is independent of the
azimuthal direction. We may consider these variations
as ring like steps of typical length d and thickness ∆.
The step-like nature of the roughness means that we can
describe this new model from our old one by restricting
the spatial correlator given in Eq. (3) to variations in the
x-direction. The corresponding Fourier transform of the
correlator is then given by

W (qx, qy) = 2
√

2π∆2d(1 + q2xd
2/2)−1δ(qy) (26)

where qx is the momentum along the wire’s length and
qy is the momentum in the azimuthal direction. We call
this model the Variable Radius Model (VRM).

The new phase diagram for the VRM is shown in Fig.
5. It should not be surprising that most of the regions and
borders are identical to those in Fig. 1, as these are set
either by the number of subbands occupied, the type of
confinement, or comparison between the island size d and
the wavelength k−1F . As none of these properties depend
on the details of the correlator, the regions and borders
remain the same as Fig. 5. However, there is a new region
J ′ that emerges in Fig. 5 that did not appear in Fig. 1.
This region is the geometrically confined 1DEG under
the condition kF d � 1. We see that this region occurs
in the limit R� d, which was forbidden for the previous
model of roughness. No such restriction is necessary for
the VRM, and so the new region emerges.

The mobility of these regions are given in Tab. IV.
We notice immediately that the mobility expressions in
regions C′, F′, and I′ are identical to the same lettered
regions in Fig. 1. The reason is that in these regions,
kF d � 1, and the scattering is dominated by large
angle scattering at the edge of a single island, rather
than an effect averaged over many islands. The lack
of averaging eliminates the differences between the two
models in this region, and so the mobility expressions
are the same. When kF d � 1, the electrons feel instead
an averaged effect, and so we see differences emerge
between the two models. The effect of averaging results
in a reduction of the scattering rate by the number of
scattering centers which are typically seen. In the model
considered previously, the variations are two-dimensional
and so the electrons average along both the x-direction
and the azimuthal direction. This leads to an average
number of islands that contribute to scattering given by
the factor 1/(kF d)2 in the 2DEG and 3DEG regions, and
R/(kF d

2) in the 1DEG limit. In the VRM the variations
only occur in the x-direction and so we do not average
in the azimuthal direction. This reduces the number
of islands averaged over to be 1/(kF d) in all regions.
Knowing this, we may easily obtain the new mobilities of
most regions by multiplying the expressions in Tab. 2 by
the ratio of the new number of islands to the old number
of islands. This ratio is kF d in the 2DEG and 3DEG and
d/R in the 1DEG. The results are shown in Tab. IV.

While we can understand the changes in mobility in
the VRM as due to a difference in averaging, we may
also derive these changes from the correlator in Eq.
(26). All the differences between the two models occur
in the regions where kF d � 1, where the correlator is
simply

√
2∆2dδ(qy). We see that the major difference

from Eq. (3) is that d2 → d δ(qy), and so it must be
true that this difference is what is responsible for the
change in the mobility between the two models. Indeed,
when calculating the scattering rate, we integrate the
correlator over the possible final states k′, so that it
appears in the scattering rate as a factor

∫
d2k′W (q). In

our previous model this provided to the scattering rate
an overall factor of k2F ∆2d2 for the 2DEG and 3DEG
regions, and kF ∆2d2/R in the 1DEG. In the VRM the
presence of a delta-function for the azimuthal momentum
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FIG. 5. The scaling ”phase diagram” of roughness limited
electron mobility of a quantum wire for the Variable Radius
Model (VRM) plotted as a function of radius R and linear
electron concentration η for d < aB in the log-log scale.
Different ”phases” or regions are denoted by capital letters.
Mobility expressions corresponding to these regions are given
in Table IV. Region boundaries are given by the equations
next to them. The schematic self-consistent electron potential
energy profile along the the wire diameter and subbands
occupied by electrons are shown for each region. Small
arrows show the direction of mobility decrease in each region.
All regions and the borders have the same definitions as
Fig. 1, with the exception of a new region J′ that was
previously forbidden. The dark red, light red, and pink
regions correspond to the single-subband ballistic conductor,
many-subband ballistic conductor, and diffusive metal defined
by the same conditions as the isotropic model for L =

a
7/2
B ∆−2d−1/2. We see that for the same L, the metallic

window in the VRM is much smaller than the isotropic model.
Electrons are localized in all colorless regions at T = 0.

means that these factors change to kF ∆2d in all regions.
From here it is clear that the change in the correlator
leads to a difference in the mobility between the two
models by a factor of kF d in 2DEG and 3DEG regions
and d/R in the 1DEG regions as we described above.

We have shown that all regions in Fig. 5 can be
obtained from Fig. 1 except for the region J′. In this
region kF d� 1, where the scattering rate is determined
by large angle scattering. As was discussed in Sec. III,
the large angle scattering reduces the correlator, and
thus the scattering rate, by a factor of (kF d)3 in the
denominator. This allowed us to obtain the mobility for
kF d � 1 from the corresponding region with kF d � 1
by multiplying the expression by the factor (kF d)3. The
same logic may be applied in the VRM, but with a small
change. The correlator for the VRM has a different power

TABLE IV. Mobility µ in units of (e/~)
(
d4/∆2

)
as a function

of the linear electron concentration η at d < aB for different
regions of Fig. 5.

A′ B′ C′

a2BR
3/2/η3/2d5 a

7/5
B R9/5/d5η9/5 aBR/ηd

3

D′ E′ F′

a2BR
2/ηd5 a

1/2
B R3/η3/2d5 a

1/2
B R5/3/η5/6d3

G′ H′ I′

R6η/d5 R4/ηd5 R8/3/η1/3d3

— — J′

— — η3R6/d3

in the denominator than the previous model. The large
angle scattering then reduces the correlator by a factor
of (kF d)2 in the denominator, rather than (kF d)3. This
means that we may obtain the mobility of J′ from that
of G′ by multiplying by the factor (kF d)2 = (ηd)2, and
this value is shown in Tab. IV.

The results presented in Sec. V about the conductance
and ballistic-diffusive border can easily be generalized to
the VRM model. As the results are quite similar, we do
not repeat the discussion here.

VII. DISCUSSION

Here we would like to estimate the critical value Rc(L)
in which the metallic window opens for InAs and InSb
nanowires. In order to obtain an accurate estimate of
Rc(L), we first need the proper numerical coefficient
beyond the scaling approach. Fortunately, the simple
single subband structure of regions G and G′ allows
this number to be determined analytically if we ignore
electron-electron interactions. We have calculated these
coefficients for a cylindrical wire in Appendix A and
found that the mobility in Region G of the isotropic
model is

µ = 0.047
e

~
ηR7

∆2d2
, (27)

while for Region G′ of the VRM we find the mobility to
be

µ = 0.017
e

~
ηR6

∆2d
. (28)

Rc(L) is defined to be the radius in which the
dimensionless conductance G = 1. Using Eqs. (27) and
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(28), and assuming we are on the border ηR = 1 between
regions G and H (or G′ and H′), we find the value of
Rc(L) in the isotropic roughness model to be

Rc(L) = 1.8(∆2d2L)1/5, (29)

while for the VRM we find

Rc(L) = 2.8(∆2dL)1/4. (30)

Now let us see what our theory predicts for a wire with
L = 1 µm. If we assume that ∆ = 1 nm and d = 10 nm,
then using Eq. (29) we find that Rc(L) = 18 nm for the
isotropic model, while using Eq. (30) for the VRM we
find Rc(L) = 28 nm. We see that Rc(L) < aB in both
InAs (aB ≈ 34 nm)18 and in InSb (aB = 64 nm)43, so
that the ballistic single subband region exists. Recent
experiments7 have demonstrated ballistic transport in
InSb nanowires with L ≤ 1 µm and R in the range of
40− 50 nm. These R satisfy the condition Rc(L) < R <
aB from our estimates, and thus our theory is consistent
with their observation of ballistic transport.

In the above estimate we used the condition G = 1 so
that the conductance per spin was e2/h. One could use a
different condition in which Rc(L) is defined to be the R
such that l = L. This different definition alters Rc(L) by
a factor 1.1 in the isotropic model and 1.2 in the VRM,
and so our prediction for Rc(L) is only slightly different
between the two definitions.

VIII. CONCLUSION

In this paper, we have studied the surface-roughness
limited mobility in quantum wells and wires for
single-subband and multisubband cases. In these
systems, electrons are either electrostatically confined
by the surface electric field E or geometrically confined
by the surface barriers. The mobility is found to be a
function of the electron concentration and well width L
or wire radius R. Both quantum wells and wires are
studied for the exponential model of roughness. For the
wires, another model of variable radius (VRM) where
there is exponential roughness only in the direction of
the wire axis is also discussed. We have presented “phase
diagrams” summarizing the rich collection of mobility
scaling regions and found that in quantum wires there
exists a critical size Rc(L) so that wires with R >
Rc(L) have a window of concentrations where the wire is
metallic, while for R < Rc(L) electrons are localized at
T = 0.

So far we have ignored the spin-orbit coupling of
electrons. In InAs and InSb nanowires studied for the
purpose of quantum computations5,6,11,12, the spin-orbit
interaction is quite strong. However, the experimentally
relevant Rashba spin-orbit interaction44 just shifts two
electron bands of opposite spin polarizations away from
each other in the Brillouin zone. Therefore, electrons in
each spin polarized band move independently of the other

band and the mobility is the same as the case without
the spin-orbit coupling.
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Appendix A: Coefficients of Mobility for
Geometrically Confined 1DEG in Cylindrical

Nanowires in Region G and G′

In the Discussion, we have used the coefficient of
the mobility and thus the mean free path of electrons
in narrow nanowires of cylindrical cross-sections at low
electron concentrations (Region G of Fig. 1 and G′ of
Fig. 5). In this appendix, we derive this coefficient.

For a narrow nanowire at low electron concentrations,
electrons occupy only the first subband in the wire
cross-section forming a 1DEG which is geometrically
confined. If we ignore correlation effects, the
wavefunction of the lowest subband in a cylindrical
nanowire of radius R is

ξ(r, φ, x) =
J0(ν0r/R)eikx√

πRJ1(ν0)
(A1)

where x is directed along the wire axis, r is the distance
from the wire center, φ is the azimuthal angle in the
cross section of the wire, J0 and J1 are the zeroth and
first order Bessel functions of the first kind, and ν0 ≈ 2.4
is the first zero of J0.

It can be easily derived that for a 1DEG, the scattering
rate is

1

τ
=

2π

~
|V |2ρ(1− cos θ) (A2)

where |V | is the scattering matrix element due to
roughness, θ = π is the angle between initial and final
electron momenta, ρ = m∗/2π~2kF is the density of
states into which the backscattering can happen, and kF
is the Fermi wavenumber of the 1DEG. For 1D scattering,
only backscattering can cause momentum relaxation, and
so the angle between the initial and final momenta is π.

Similar to Eq. 8, according to Ref. 25, one can obtain
the scattering potential in the cylindrical geometry to be

V (φ, z) =
~2

2m∗
∆(φ, z)

∂ξ

∂r

∂ξ′

∂r

∣∣∣∣
r=R

(A3)

and the scattering matrix element for R� d is

< |V (q)|2 >=
ν0
2π

~4

m∗2R7
W (q) (A4)

where q = 2kF is the transferred momentum along the
wire axis for backscattering of electrons at the Fermi
level.
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If we combine Eqs. (A2) and (A4), set kF = (π/2)η
for a 1D gas, and use kF d� 1 for the correlator given in
Eq. (3), we find the mobility µ = eτ/m∗ to be

µ =
π

2ν40

e

~
ηR7

∆2d2
. (A5)

If instead we consider the VRM model described in
Sec. VI, then we use the correlator given in Eq. (26)
instead. As a result, the mobility in Region G′ in the
VRM is

µ =
π

4
√

2ν40

e

~
ηR6

∆2d
. (A6)

Appendix B: large angle scattering dominance in
scattering rate for quantum well

Here by using Eq. (7) we prove that the scattering
rate in kF d � 1 regions V and VII is dominated by
the large angle scattering, i.e, scattering events with
large q ' kF . One might expect that because the
correlator W (q) ∼ ∆2d/(kF d)3 for large angle scattering
with q ∼ kF is much smaller than that for scattering
into small angles with q ∼ 1/d by a factor of (kF d)3

in the denominator, that the scattering is dominated
by the small angle regime. However as we show below,
the limited number of final subbands that electrons can
scatter into for q ≤ 1/d, the small value of the angular

integral
∫
dφ
(

1− ~vk′ · ~EτN ′/ ~vk · ~EτN
)

, and in certain

cases the smaller z-direction momentum of final states
k′z � kF act to suppress the small angle scattering rate
so that the scattering is determined by the large angle
scattering. We show this below for three cases: L < d (in
some part of regions V and VII); L > d and M/L < 1/d
(for the rest of Region V and some part of Region VII);
L > d and M/L > 1/d (for the rest of Region VII).

First let us consider the case when L < d. From energy
conservation, the total magnitude of the momentum is
fixed, and so any difference in magnitude of the in-plane
momenta follows from the difference |kz − kz′ | ∼ 1/L of
their z-momentum. When L < d, q ≤ 1/d � 1/L and
the scattering happens only within the same subband.

This means that the DFR term ~vk′ · ~Eτ ′N/ ~vk · ~EτN reduces
to the usual cosφ for 2D scattering, where φ is the angle
between ~vk′ , ~vk. The final angular integral for the small
angle scattering is

∫
(1 − cosφ)dφ ∼ φ3 ∼ (kF d)−3,

while it is of order unity for the large angle one. This
cancels the advantage of larger W (q) in the small angle
scattering. Moreover, the small angle scattering has only
one final subband to scatter into while the large angle
scattering covers all kFL subbands. This combined with
the small angular integral means that the small angle
scattering rate is kFL� 1 times smaller than that of the
large angle when L < d.

Now let us look at the second case where L > d and
M/L < 1/d. For simplicity, we focus on the lowest

subbands with kz < M/L � kF as these dominate the
conductivity in regions V and VII. In the limit L > d and
M/L < 1/d, there will always exist L/d > M subbands
with k′z < 1/d so that the scattering now involves
intersubband scattering. As a result the DFR term is not

reduced to cosφ and the term
(

1− ~vk′ · ~EτN ′/ ~vk · ~EτN
)

is of order unity instead of being infinitesimal for small q
and thus small φ. The angular integral of this term would
just give 1/(kF d) from the small angle

∫
dφ ' 1/dkF

and does not compensate the (kF d)3 reduction of the
correlator. However, we must consider the importance
of k′z in the scattering matrix element according to Eq.
(8). For the small angle scattering k′z < 1/d, while for
the large angle regime k′z ∼ kF . This gives an extra
factor 1/(kF d)2 to |V (q)|2 in small angle regime relative
to the large angle scattering. This additional factor
combined with the small angular integral compensates
the 1/(kF d)3 reduction of the correlator. Considering
also the accessible number of final subbands L/d in the
small angle limit is kF d times smaller the kFL available
subbands for large angle scattering, we find that the small
angle scattering rate is kF d times smaller than that of the
large angle.

Finally we must consider the intermediate case when
L > d and M/L > 1/d. For small angle scattering the
number of subbands L/d that may be scattered into is
small, and so we expect that the DFR term is near the
2D limit cosφ. Expanding around this value, we find
that the DFR term is approximately

~vk′ · ~Eτ ′N
~vk · ~EτN

= cosφ(1− δvk
vk
− δτN

τN
), (B1)

where δvk = |vk − v′k| and δτN − |τN − τ ′N |. Let us
examine these correction terms, beginning with δvk/vk.
The allowed difference in k and k′ is 1/d for the small
angle scattering. Since k ' kF for lowest subbands,
the velocity difference ratio |vk′ − vk|/vk = |k′ − k|/k
is then 1/kF d. In considering the other correction
term δτN/τN , let us assume that the scattering rate
of each subband is always determined by their large
angle scattering into typical subbands and show that
this assumption self-consistent. With this assumption
the difference in relaxation times δτN is solely caused by
the different z-direction momenta and subband widths
as seen from Eq. (8). Again we focus on the the lowest
M subbands as these determine the conductivity. For
the bottommost subbands, all subbands within q ∼ 1/d
are electrostatically confined and δτN = 0 as k′2z /Z

′ =
k2z/Z = n/aB (see Eq. (8)) For the higher subbands
with kz ∼ M/L, there are bands within q ∼ 1/d which
are instead geometrically confined and the correction is
non-vanishing. Indeed, we find that δτN ∼ τNδkz/kz
and so the correction is given by (1/d)/(M/L). We find
then that the leading contribution to the DFR term in
Eq. (B1) in the small angle regime is approximately
1 − (1/d)/(M/L), where we have used the fact that
1/(kF d)� L/Md in the limits being considered.
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Using the DFR term above, the angular integral now
gives a factor (1/kF d)(1/d)/(M/L) to the scattering rate,
while the integral is of order unity for the large angle
limit. Combined with the fact that the final state in
the small angle regime has k′2z /Z

′ ' (M/L)2/L, we find
that these terms give an extra factor (Md/L)/(kF d)3

compared to the same terms for the large angle limit.

We see then that there is a factor of 1/(kF d)3 term
that compensates the suppression of the correlator in the
large angle limit. Adding the fact that the small angle
scattering can only scatter into L/d� kFL, we find that
the ratio of scattering rates in the small and large angle
regimes is M/(kFL)� 1 and indeed the large angle limit
dominates.
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