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The link between chemical orbitals described by local degrees of freedom and band theory, which
is defined in momentum space, was proposed by Zak several decades ago for spinless systems with
and without time-reversal in his theory of “elementary” band representations. In a recent paper
[Bradlyn et al., Nature 547, 298-305 (2017)], we introduced the generalization of this theory to
the experimentally relevant situation of spin-orbit coupled systems with time-reversal symmetry
and proved that all bands that do not transform as band representations are topological. Here, we
give the full details of this construction. We prove that elementary band representations are either
connected as bands in the Brillouin zone and are described by localized Wannier orbitals respecting
the symmetries of the lattice (including time-reversal when applicable), or, if disconnected, describe
topological insulators. We then show how to generate a band representation from a particular
Wyckoff position and determine which Wyckoff positions generate elementary band representations
for all space groups. This theory applies to spinful and spinless systems, in all dimensions, with
and without time reversal. We introduce a homotopic notion of equivalence and show that it
results in a finer classification of topological phases than approaches based only on the symmetry of
wavefunctions at special points in the Brillouin zone. Utilizing a mapping of the band connectivity
into a graph theory problem, we show in companion papers which Wyckoff positions can generate
disconnected elementary band representations, furnishing a natural avenue for a systematic materials

search.
I. INTRODUCTION

Stoichometric crystalline materials in nature consist of
ordered arrays of atoms at lattice sites, with electrons in
local orbitals that hybridize and largely determine many
physical properties of the material. Because of the non-
vanishing overlap of orbitals, the real-space Hamiltonian
of a crystal contains terms coupling different lattice sites.
Hence, while being local, a crystal Hamiltonian is not
diagonal in real space. Though the chemical description
and many physical properties are local, physicists have
chosen to understand crystals using band theory because
the Hamiltonian and its associated Schrodinger equation
are diagonal in momentum space. The momentum space
picture, while extremely useful, also obfuscates the local
physics present in crystals.

To remedy this disconnect, Zak™ introduced the con-
cept of a band representation (BR) for spinless systems,
with and without time-reversal symmetry. These band
representations are, roughly, mathematical vehicles that
relate the orbital representation of the electrons on sites

in real (direct) space to the momentum space description
of the electron bands in the Brillouin zone. Zak real-
ized that band representations can be decomposed into
what he called “elementary building bricks,”¥ which are
themselves band representations, but which cannot be
further subdivided while preserving the symmetry op-
erations of the system. Twenty years later, in a series
of papers, Zak and Michel examined the connectivity of
these Elementary Band Representations (EBRs) for spin-
less systems3*® Physically, the EBR connectivity repre-
sents the number of energy bands that are connected to-
gether in the Brillouin Zone (BZ), and which cannot be
disconnected without breaking the space-group symme-
try of the crystal.

While Zak and Michel sought to prove that EBRs were
connected, in this manuscript we show that disconnected
EBRs do exist. A disconnected EBR consists of dis-
connected bands that together form the EBR. We have
previously introduced these concepts as part of a much
broader paper®. In that paper, we argued that several
ingredients, one of them being the EBRs, can be used



to define a new field, Topological Quantum Chemistry,
which offers an unprecedented understanding and pre-
dictive power about topological materials. In the current
paper we extend and fill in all the necessary proofs in the
theory of band representations. Our main result is that
topological bands are exactly bands that do not form
band representations. Among these, a particularly im-
portant set of topological bands are those that form one
connected component (subpart) of a disconnected EBR.
These bands must always be topological. Such connected
groups of bands that cannot result from a localized set
of atomic orbitals that obey the crystal symmetry — i.e.,
which lack an “atomic limit” — were studied in a related
context in Refs [7 and [8l

The study of systems with spin-dependent terms in
the Hamiltonian require double space groups and their
single-and double-valued irreps ¥ In this manuscript,
when we refer to space groups, we are implicitly refer-
ring to double space groups, unless specified otherwise.
We generalize Zak’s theory to double-valued group rep-
resentations with and without time-reversal (TR) sym-
metry. We also derive necessary and sufficient conditions
for band representations to be elementary, and highlight
certain “exceptional cases.” We tabulate these excep-
tions for spinful systems with and without TR and fill
in some cases missed in the original table of exceptions
provided by Michel and Zak for spinless systems. With
this information, we can find the minimum set of Wyckoff
positions necessary to generate all EBRs, for single and
double groups, with and without TR, an enormous task
that we tabulate in related manuscripts "2, When the
EBRs are connected, we show that they are related to
exponentially localized Wannier orbitals that respect the
symmetries of the crystal (plus, when applicable, time-
reversal). When they are fractionally filled, connected
EBRs represent protected (semi-)metals. Our theory,
along with the tables presented in Ref 12 gives a full
analysis of the possible fillings of protected metals that
exist in nature. By charge transfer, fillings such as 1/16,
1/8, and 1/24 exist, the last being the lowest possible fill-
ing. When a connected EBR is fully filled, it represents
a group of topologically trivial bands, which describe an
atomic limit. As a corollary, we show there exist differ-
ent atomic limits, not adiabatically continuable to each
other, but all described by symmetric, exponentially lo-
calized Wannier states; they can be differentiated by the
value of their Berry phasest® % (Wilson loops™*“Y) or
Berry phases of Berry phases,?! etc. When an EBR is
disconnected, i.e. when it is formed by bands separated
from each other by an energy gap, then we show that at
least one of those groups of bands must be topological.

Our theory provides a crucial first step in an informed
search for topological materials: namely, searching for
materials whose orbitals, especially at the Fermi level,
induce disconnected EBRs. To this end, in a series of
related works we have defined, categorized and given the
representation data for all the possible EBRs in all space
groups: single- and double-valued representations (which

describe systems with and without spin-orbit coupling
(SOQ)) and with and without TR symmetry.02-152 We
find that there are 10,403 of these different EBRs (3,383
single-valued and 2,263 double-valued without TR and
3,141 single-valued and 1,616 double-valued with TR im-
posed). The EBRs and their irreps at high-symmetry
points are freely available on the Bilbao Crystallographic
Server.”

We now describe the connection to previous works
classifying topological crystalline materials.  Starting
with the inversion eigenvalue characterization of topo-
logical insulators#, eigenvalues of crystal symmetry op-
erations have been used to characterize Zs topological
insulators?® and to compute the Chern number of a
set of bands2425 It was later shown that crystal sym-
metries can enhance the Altland-Zirnbauer classification
of topological insulators##46-42 and protect semimetallic
phases 344307 Most recently, groups of bands have been
classified by their irreducible representations (irreps) at
all high-symmetry points in the Brillouin zone 8% As
noted in Ref [60, irreps are a sufficient, but not neces-
sary, condition to diagnose topological phases. We ex-
plore the relationship between this type of classification
and our classification in Appendix [C3] using the Kane-
Mele model of graphene as an example.

Our approach goes beyond existing works by introduc-
ing a homotopic definition of equivalence; i.e., two sets of
bands are topologically equivalent not only if they have
the same irreps at all high-symmetry points, but also
if and only if they can be smoothly deformed into each
other without breaking any symmetries. The latter re-
quirement preserves all Wilson loop invariants?? Clas-
sifications of topological crystalline materials can also
be obtained using K-theory 3061162 While our method
shares some phenomenological similarities to the K-
theory approach, we emphasize that we have very differ-
ent goals: instead of attempting to enumerate the topo-
logical classes mathematically permitted with a given set
of symmetries, we instead derive how topological phases
arise from atomic orbitals in physical systems.

Our paper is organized as follows: in Sec [[I] we review
the terminology of crystal lattices and derive how the
symmetry of local orbitals determines the symmetry of
the entire group of bands originating from those orbitals.
In Sec we introduce the elementary band representa-
tion (EBR) and derive the conditions under which bands
originating from a set of orbitals are elementary. We then
prove in Sec [[V] that disconnected elementary band rep-
resentations are topological. Last, in Sec[V] we introduce
time reversal symmetry and derive the conditions under
which bands originating from local orbitals are both el-
ementary and time reversal symmetric. In a companion
paper®® we develop several applications of these results
to find topological materials.



II. FROM ATOMIC ORBITALS TO BAND
REPRESENTATIONS

To begin, we review the concepts necessary to define a
band representation, as was introduced by Zak in Ref[Il
Here, we start by following the canonical reference on
space groups, Refl66, and then follow the derivation of a
band representation from Refl67. In order to adopt a con-
structive, chemistry-friendly approach to the problem, we
organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k - p description
at every point in momentum space.

A. Wyckoff positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g € G that acts in real space by r — Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,

{9dlg € G}.

Definition 1. The set of symmetry operations, g € G,
that leave the site q fized is called the stabilizer group
or site-symmetry group of q, and is denoted Gq =

{9lga=q} CG.

The site-symmetry group, Gq, can include elements
{R|v} with v # 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C5]0},{C>|0}, {m,7|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig Now
consider the site q = (e; — e2)/2. The mirror op-
eration {m11]/0}, which is a reflection across the line
perpendicular to the e; + e; axis, (i.e., {m11]|0} sends
e; + ex — —(e; + e2)) leaves q invariant, as does a 7
rotation about the origin followed by a translation by
e; —eo. Hence, G is generated by {m11|0} and {C>|11}
and is isomorphic to the point group Ca,,.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups
are conjugate are said to lie in the same Wyckoff posi-
tion. Given a site in the Wyckoff position, the number
of sites in its orbit that lie in a single unit cell defines
the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wyckoff po-
sitions of p6mm are shown in Fig|[l}

(a)

FIG. 1. Lattice basis vectors (a) and Wyckoff positions (b)
of the hexagonal lattice. The (maximal) la, 2b and 3¢ Wyck-
off positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group Cs, (6mm). The
general position 12f, corresponding to the orbit of a generic
point, is not explicitly indicated.

Given a site, q, that is part a Wyckoff position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by qn, where « = 1,...,n
and q; = q. For each a > 1 there exists an element
9o ¢ Gq, which is not a pure lattice translation, such
that goq = qo. The stabilizer group of q, is given by

Gq. = {gahgs'h € Gq} (1)

The g, furnish the following coset decomposition of G:

n

G = | 9a(Gqx Z%), (2)

a=1

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The x denotes the semidirect
product: G4 x Z?* is the symmorphic space group which
contains the elements of G4 and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e; —
e3)/2 as an example. Since {Cs|0} ¢ Gq = Ca, the
other two sites in the orbit of q in the unit cell are given
by q2 = {Cs|0}q and q3 = {C;|0}'q; the red stars
in Fig indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
differs from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, G, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H # Gg, such that G4 C
H C G. A site-symmetry group that is not non-mazximal
is maximal. A Wyckoff position containing q is mazi-
mal if the stabilizer group Gq is mazimal.

A word of caution: if Gq = P and Gq = P’, where P
and P’ are abstract point groups, it is possible for P C P’



even though G4 ¢ Go . For example, in P6mm, taking
q = (e1 — 82)/2, Gq = Cgv, while Go = C6v- Even
though G4 ¢ Go (because, for example, {C3]11} € Gq
and {02‘11} ¢ G()), Cyy C Coo.

We can quickly find the maximal Wyckoff positions of
pbmm by using a sufficient, although not necessary, con-
dition for a site-symmetry group, G4, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gy, i.e., there does
not exist a second point, q' # q, which is also fixed by
each element of Gq, then G4 is maximal (we derive this
condition in Appendix ) Since in two dimensions, ro-
tations about the axis perpendicular to the plane keep
only a single point fixed, any site-symmetry group which
contains a rotation about an axis perpendicular to the
plane is a maximal site-symmetry group. The Wyckoff
positions of p6mm are shown in Fig Since the 1la,
2b and 3c¢ positions are invariant under 6-, 3-, and 2-fold
rotations about the Z axis, respectively, these three posi-
tions are maximal. The non-maximal positions, 6d and
6e, lie on mirror planes; they are non-maximal because
their site-symmetry group is contained in those of the
two maximal positions that lie on the same mirror plane
(la and 3c or la and 2b).

B. Induction

Suppose ny orbitals reside on the site q, which belongs
to a Wyckoff position of multiplicity n. The wavefunc-
tions of these orbitals transform under an n4-dimensional
representation, p, of the site-symmetry group, G4. If the
wavefunctions represent spinless electrons then p will be
a single-valued representation of Gy; if the the wavefunc-
tions are spinful, then p will be a double-valued repre-
sentation (s = 1/2), such that a 27 rotation results in
a phase of €?™ = —1. For now, p may be reducible
or irreducible; we later show that we only need concern
ourselves with irreducible representations. On an equiv-
alent site, qu, the orbitals transform under the conju-
gate representation defined by p.(h) = p(g;'hgs) for
each h € Gq,; Eq[l] shows that h € Gq, implies that
lehga € G'q for goq = qa-

The n, orbitals on site q can be described by a set of
Wannier functions, Wi1(r), i = 1,...,ng, localized on q.
For each g € Gy, the functions transform as

gWir(r) = [p(g)];; Wir(r) 3)

Without loss of generality, choose the sites q,, to be in the
same unit cell as q. Then the Wannier functions localized
on q, are defined by Wi, (r) = gaWii(r) = Wii(g; 1),
where a = 1, ..., n and n is the multiplicity of the Wyckoff
position. The Wannier functions on other unit cells are
defined by {E|t,}Wia(r) = Wia(r — t,), where t, is
a Bravais lattice vector. As shown in Appendix [B] the
n X ng x N functions Wi, (r —t,), where N — oo is the
number of unit cells in the system, are closed under the
symmetries of the full space group G.

C. Local to global

We define the Fourier transformed Wannier functions:

tia(k,T) =Y MU Wio(r - t,,) (4)

This exchanges our infinite n X ny x N-dimensional basis
for a finite n x n, basis for each of the N k’s in the first
Brillouin zone, corresponding to n x n, energy bands.
The induced representation in momentum space is de-
fined as follows!; we derive it from the action of the space
group elements on the real space Wannier functions in

Appendix

Definition 4. The band representation pg, induced
from the ng-dimensional representation, p, of the site-
symmetry group, G, of a particular point, q, whose orbit
contains the sites {qo = gad} in the unit cell, is defined
by the action

(PG (h)a)ia(k, 1) = e~ /(7R aa
quzlpi/i(g,(;l{E‘ - tBa}hga)ai’B(Rkv r), (5)

for each h = {R|v} € G, where for each choice of « the
index B is determined by the unique coset of G in Eq @)
that contains hge:

hgo = {Eltsa}tgsg (6)

for some g € Gq, coset representative gg, and Bravais
lattice vector tgq.

The choice of coset representatives, g,, must be kept
fixed throughout the construction. The translation tg,
is found as follows: by moving g, to the right-hand-side
of Eq @, it is evident that hq, = {E|tsa 95995 'Aa =
{Eltsatgsga = {Eltsa}tgsa = {Eltsatas (the second
and fourth equalities follow from the definition of qq g3
and the third equality follows from g € G), which yields

tgo = hda — gp. (7)

The matrix form of pg(h) consists of infinitely many
(n - ng) X (n - ng) blocks. Each block is labelled by a
pair (k/, k), where k’ is a row index and k is a column
index, and corresponds to a mapping between Fourier
transformed Wannier functions labelled by these k,k’.
For each h = {R|v} € G and each set of columns corre-
sponding to k, there is exactly one non-zero block, which
corresponds to k' = Rk. We denote this block by pk (h),
whose matrix elements are given by,

PE(h)jp.ia = € o (g Bl — tgathga)  (8)
The full set of matrices p§ (h), for each k in the first BZ,

contain all of the non-zero elements of pi(h) and thus
completely determine the band representation.



D. Global tok-p

For each k in the first BZ, the little group of k, Gk, is
defined by Gx = {h = {R|v}|Rk = k, h € G}, where the
equivalence relation Rk = k is defined by equality up to a
reciprocal lattice vector. Gy is infinite because if h € G,
the operation of h followed by any Bravais lattice trans-
lation is also in Gx. The set {p&(h)|h € Gy} furnishes
an (n-ng) X (n-ng) representation of Gi, whose matrix
elements are given by Eq . We denote this represen-
tation by pa | Gy; this is a subduction of pg onto Gy,
projected onto the Wannier functions at k. Although the
little group G is infinite, the representation of two space
group operations, {R|v} and {R|v + t1}, which differ by
a full lattice translation, t;, will differ only by an overall
phase e #(K)t1 — o—ikt1 iy o | Gy Hence, pg | Gy is
a “small representation.” 10

The characters of pg | Gk are given by, for h € Gy,

XG(h) =) e " tee g [p(g {E| = taathga)], (9)

%f g€ Gq (10)
0 if g ¢ Gq
and x[p(g)] denotes the character of the matrix represen-
tative of g in the representation p.
We would like to know how many times each irrep, U%(,
of Gy appears in pg | Gk, i.e., we would like to find the
coefficients, m¥, which satisfy

(p1G) | G = Pmiok, (11)

where we have used = to denote the equivalence of rep-
resentations and introduced the shorthand

mio;, =0, Do; - Do . (12)

myq

The multiplicities, mg-‘, are determined by the linear in-
dependence and completeness of the characters: they are

the unique solution to the set of equations,

X&(h) = mixk (h), ¥ h € Gy, (13)

where x¥ (h) denotes the characters of 0.

This general formalism explains how energy bands in
momentum space inherit their properties from the real-
space orbitals on Wyckoff positions in the unit cell. An
example of how to compute the characters & (h) is given

in Appendix

E. Example: induction from la

We now show how to induce a band representation
from the site g = (0,0) in the 1a Wyckoff position in

p6bmm. All operations in p6mm of the form {R|0} leave
this position invariant; thus, the site-symmetry group,
Gq, is generated by {C3]|0},{C2|0} and {m;7|0}; Gq is
isomorphic to Cg,. The character table for the irreps of
Cgy is shown in Table ¥

Rep E C3z CQZ Cez m ngm E
/1 1 1 1 1 1 1
./t 1 1 1 -1 -1 1
'sf1 1 -1 -1 -1 1 1
/1 1 -1 -1 1 -1 1
I's|2 -1 2 -1 0 0 2
I'gl2 -1 2 1 0 0 2
-2 2 0 0 0 0 -2
I's|2 1 0 /30 0 -2
Iv|2 1 0 V30 0 -2

TABLE I. The character table for the group Cg,. (In this
table and hereafter each of the conjugacy classes is rep-
resented by a symmetry operation belonging to the class;
conjugacy classes whose members are obtained from those
listed combined with E are not shown, e.g. Cs, = Cs.E
and Cs, = Cs,FE are not shown.) The irreps I'1-T's are
all single valued, while T'7,T's, and Ty are double valued.
['7 is the |S = 3/2,m. = £3/2) representation, T's is the
|S = 5/2,m. = £5/2) representation and I'¢ is the spin-3
representation.

For each irrep, T'; (or T;) in Table [, we can induce
a band representation according to Eq . Since the
Wyckoff position has multiplicity one, the index « in
Eq is trivial, and we omit it. Consequently, in Eq @,
since there is only one coset, go = gg = E (E is the iden-
tity operator) and for each h = {R|t} € G, Eq @ simpli-
fies to h = {E|t}{R|0}, using the fact that {R|0} € G4
and tog = t. Then Eq (5] yields the band representation:

(pc.;({R[t})a), (k,r) = e N " [05(R)),,; aw (Rk, ),
l/

(14)
where the indices 4,7’ = 1,...,n, = |I';| and the repre-
sentation dimension |I';| is exactly equal to the charac-
ter of E in Table [l Eq shows that each element,
{R|t}, in the space group is represented in the band rep-
resentation by an infinite matrix, due to the fact that
k takes N — oo values, where N is the number of unit
cells. That infinite matrix transforms the Fourier trans-
formed Wannier function at k to one at Rk, transforms
the orbital ¢ to i’ with the coefficient [I';(R)],,;, and gives
an overall phase e *(®)t Tt i evident that the infi-
nite dimensional representation can be reduced into fi-
nite dimensional space group representations that act on
the finite set of Fourier transformed Wannier functions
{a;(Rk,r)|i = 1,...,|T;|,{R[t} € G} for fixed kK.

This procedure generalizes to Wyckoff positions with
multiplicity greater than one by including the index « in
Eq (5)). The only additional difficulty is that g, and gg in
Eq (6) are non-trivial: « is determined by the left-hand-
side of Eq (da = gaq) and S must be found from the
coset decomposition in Eq (2)); t,s is then obtained from



Eq @ An example is shown in Appendix

III. ELEMENTARY BAND REPRESENTATIONS

We would like to determine when a band representa-
tion can be decomposed into smaller, unique, band rep-
resentations. To this end, it is necessary to define an
equivalence relation of band representations, which we
first introduced in Ref [6:

Definition 5. Two band representations pg and o are
equivalent iff there exists a unitary matriz-valued func-
tion S(k,t,g) smooth in k and continuous in t such that
forallge G

1. S(k,t,g) defines a band representation according to
Eq (@ for all t € ]0,1],

2. 5(k,0,9) = pg(g), and
3. S(k,1,9) = o&(9)

This definition implies that p¥ and oX restrict to the
same little group representations at all points in the BZ.
However, it is necessary to have a stronger definition of
equivalence because it is possible for two EBRs to have
the same representations at all points in the BZ but be
physically distinguishable by a Berry phase 0:L8H1568 e
work out examples in Appendix [D]and Appendix[C3] In
these cases, even though S(k, 0, g) and S(k, 1, g) restrict
to the same little group representations at all points in
the Brillouin zone, any mapping, S(k, ¢, g), between them
will not be a band representation — it will either break a
crystal symmetry or break time reversal locally — and in
this case S(k, 0, g) and S(k, 1, ¢g) will be inequivalent.

Def [5| preserves any quantized Wilson loop?? invariant,
which is understood as follows: since S is continuous in
t, any property of a band representation evolves continu-
ously under the equivalence S. In particular, the Wilson
loop matrices computed from the bands in the represen-
tation plé evolve continuously into the Wilson loop ma-
trices computed in the representation 01(‘;. As such, two
equivalent band representations cannot be distinguished
by any quantized Wilson loop invariant. This includes
the recent case of invariants formed from Wilson loops of
Wilson loops 2t

We now explain how to construct the homotopy uti-
lized in Def [5| given two distinct sites, q and q’, with
respective site-symmetry groups, G4 and G4/, that have
intersection Gy = Ggq N Go, where G is itself a stabi-
lizer group of some site, qo%? Then qg has a free pa-
rameter that interpolates between q and q’; for example,
if q,q’ are high-symmetry points, then qg describes a
line that connects them. Given any representation, o, of
Gy, we can induce a band representation in two different
ways, either (0 T Gq) T G or (0 T Gg) T G, which are
equivalent. Then, the free parameter in qq is exactly the
parameter ¢ in Def [f] that continuously tunes the band
representation between q and q’. This establishes a suf-
ficient condition for equivalence:

Proposition 1. Given two sites, q # q’, and represen-
tations p and p’ of Gq and Gq, respectively, the band
representations p T G and p' 1 G are equivalent if there
exists a site qo and representation o of Gg, such that
Gqo C (GqNGy), p=01Gq and p' =0 T Gy .

Sufficient and necessary conditions for equivalence are es-
tablished by combining Prop [1| with the fact that equiv-
alence is transitive (which follows from Def[5])

Using Definition [5] and following Ref[6], we define:

Definition 6. A band representation is called compos-
ite if it is equivalent to the direct sum of other band rep-
resentations. A band representation that is not composite
is called elementary.

We will now identify all the elementary band represen-
tations associated to a given space group. We first derive
two necessary but not sufficient conditions for a band
representation to be elementary when time-reversal sym-
metry is ignored. We then add time-reversal symmetry,
and discuss its effects on the theory of band representa-
tions. By construction, all band representations admit
a description in terms of localized Wannier functions, as
they are induced from the representation of some site-
symmetry group G4 (associated to the space group G)
under which the wavefunctions of local orbitals trans-
form.

First, because induction commutes with direct sums,
ie.

(P @®p2) T G=(p1 1G)@(p21G) (15)
we deduce that

1. reducible representations of Gq induce composite band
representations.

From this we conclude that we need only examine the
irreps of the stabilizer groups in order to enumerate all
EBRs. Second, induction is transitive: given groups K C
H C G, and a representation p of K, it follows that

(ptH)TG=p1G. (16)
From this it follows that

2. all elementary band representations can be induced
from irreducible representations of the maximal site sym-
metry groups.

This reduces the search for EBRs to bands induced from
the maximal Wyckoff positions (c.f. Def .

A. Exceptions

However, there are cases where an irrep of the site-
symmetry group of a maximal Wyckoff position induces
a composite band representation. This can happen be-
cause the decomposition of an infinite dimensional rep-
resentation into elementary representations is not neces-
sarily unique.®” Given a maximal Wyckoff position {q},



and an irrep, p, of G4, pe will be equivalent to a compos-
ite band representation induced from a different maximal
Wyckoff position {q’} if there exists

1. a path, I, which connects q and ', such that the
site-symmetry group of each point in [ is equal to
Go=GqNGy, and

2. a representation, o, of Gg such that p =0 T Gq is
irreducible, while o 1 G is reducible.

Then pg is equivalent to the composite band represen-
tation (0 1 Gg) T G. The equivalence is furnished by
inducing the band representations from each point in [,
using the irrep, o. Since every point in the line [ has the
same site-symmetry group, this indeed gives an equiv-
alence as per Def. We give an example of such an
equivalence in Sec [F] We will refer to the irreps of max-
imal site symmetry groups that do not induce EBRs as
exceptions. Band representations induced from irreps of
maximal site symmetry groups that are equivalent to ex-
ceptions are also exceptions.

We now describe how to determine which irreps of
maximal site symmetry groups induce exceptions. This is
a crucial step towards our goal of enumerating all EBRs,
because such irreps do not induce EBRs, even though
they satisfy the necessary (but not sufficient) Condition
below Eq . To do this, we first note that all single-
valued point group representations have dimension 1,2
or 3, while all double-valued representations have dimen-
sion 1,2 or 4 (only the single and double cubic point
groups have irreps of dimension 3 and 4, corresponding
to the (single-valued) vector spin-1 and (double-valued)
spin-3/2 irrep respectively). Next, given a representa-
tion, o, of some Gy = G4 N G, the induced representa-
tion p = 0 T Gq will have dimension

dim(p) = dim(0)[Gq : Go] € dim(0)Z, (17)

where [Gq : G| denotes the index of Gy as a subgroup of
G, which, by Lagrange’s theorem, is always a positive
integer greater than one, if Gy # G4. In order for p both
to be an irrep of G4 and to be equivalent to an induc-
tion of a representation o 1 Gg, it must have dimension
larger than 1. Hence, dim(p) = 2 or 3 for single valued
representations, or dim(p) = 2,4 for double valued rep-
resentations. We now focus on the double-valued group
representations; the single-valued exceptions were consid-
ered in Refs[5l and [69. Since dim (o) must divide dim(p),
we deduce that either dim(c) = 1,dim(p) = 2 or 4 or
dim(o) = 2,dim(p) = 4. We show in Appendix [E| that
in the groups where G4 has a four-dimensional irrep and
an index two subgroup Gy, that there is no site qg which
has G as its site-symmetry group. Thus, exceptions can
only occur when dim(o) = 1. After enumerating all point
group triplets Gg, Gq/, Gy, where Gg, Gy are maximal
subgroups of G; Gy = Gq N Gy; and [Gq : Go] = 2 or 4,
we have found all 1D irreps of Gy which induce irreps of
Gg, and reducible reps of G and matched these cases to

site-symmetry groups of maximal Wyckoff positions for
the 230 space groups.®

For the classical space groups (those that permit only
single-valued representations), the list of all Wyckoff po-
sitions for which these exceptions occur are tabulated in
Ref. |5 and [69], which we repeat for convenience in Table
[T} we have computed the analogous list for the double
space groups, shown in Table[[V] which we first presented
in Refl6. We have thus established:

Proposition 2. A band representation, pg, is elemen-
tary if and only if it can be induced from an irreducible
representation p of a mazimal site-symmetry group Gg,
and if it is not listed in Tables[IT] or [TV}

Thus, an  algorithmic listing of all band
representations 2 does not mneed to include the
irreps in Tables [[T]] or [[V] Band representations induced
from the site-symmetry groups Gq listed in these tables
are composite. They reduce into a sum of elementary
band representations induced from G¢/, listed in the
second column of Table [[TT] or [V] We give an example of
such a band representation in Appendix [F] Prop [2] and
Tables [ITI] and [TV] accomplish our goal of identifying all
the EBRs associate with a given SG.

IV. BAND CONNECTIVITY AND
TOPOLOGICAL SYSTEMS

We have so far established the conditions under which
a band representation induced from an irrep of the site-
symmetry group of a maximal Wyckoff position is el-
ementary. In this section, we establish the connection
between EBRs and topological bands, which we define as
follows:

Definition 7. A set of bands are in the atomic limit of
a space group if they can be induced from localized Wan-
nier functions consistent with the crystalline symmetry
of that space group. Otherwise, they are topological.

Band representations, by their construction, describe
a system in the atomic limitS” Thus, topological bands
must be groups of bands that satisfy the crystal symme-
try in momentum space, but nevertheless do not trans-
form as a band representation. In other words, they can-
not be induced from localized Wannier orbitals that obey
the crystal symmetryt®

A. Compatibility relations and quasi band
representations

A set of Bloch wavefunctions that obey the crystal
symmetry will, at each point in the BZ, transform as
a sum of irreps of the little group at that point. How-
ever, the irreps at each point in the BZ cannot be
chosen independently @112 In particular, given a high-
symmetry line emanating from a high-symmetry point,



the little group of the line is a subgroup of the little
group of a point. It follows that each irrep that appears
in the band decomposition at the point can be subduced
to a sum of irreps that appear on the line; in this way,
the irreps along the line are completely determined by
the irreps that appear at the point. This decomposition
is referred to as a “compatibility relation” between the
high-symmetry point and line!? Compatibility relations
also exist for planes and volumes emanating from lines
and planes, respectively.

Every band representation yields a solution to the com-
patibility relations by construction. On the other hand,
there exist solutions to the compatibility relations that
are not band representations. Following Bacry*# and
Ref [6, where we also explored some of these ideas, we
define

Definition 8. A quasi band representation (qBR)
is any solution to the compatibility relations.

As we mentioned above, band representations describe
the atomic limit. The reverse is also true: any set of
atomic orbitals induces a band representation. We are
thus motivated to define:

Definition 9. A ¢BR that is not a (composite or elemen-
tary) band representation is a topological quasi band
representation (tgBR).

Because they are not band representations, tqBRs
cannot describe bands with localized, crystal-symmetric
Wannier functions: if they existed, such Wannier func-
tions would reside on some Wyckoff position and trans-
form under a representation of the site-symmetry group
of that position, thereby inducing a band representation.
This is the natural extension to crystal-symmetric sys-
tems of the results by Soluyanov and Vanderbiltt®V,
which showed that Zs topological insulators lack time-
reversal symmetric Wannier functions.

B. Connectivity of EBRs

Now let us consider a Hamiltonian, H, constructed
from localized orbitals whose eigenstates transform in an
elementary band representation pg associated to a space
group G; G may be a classical, double, or even magnetic
space group in any number of dimensions. Next, assume
that the energy bands corresponding to the representa-
tion pg can be divided into two disconnected compo-
nents, which are separated by an energy gap, A, which
can vary as a function of k, but which is always finite.
Let P;(P2) be the projector onto the disconnected group
of bands with lower(higher) energy. Then P;(P;) com-
mutes with all the symmetry generators g in G. Thus,
the projected Hamiltonian H; = PyHP; commutes with
all the symmetries of G. Now suppose that the non-zero
eigenstates of P; and P, transform according to band

representations, pg) and pg), respectively, induced from

a set of orbitals that transform into each other under the
symmetries of G. This implies pg = pG1 & pg), which
contradicts the hypothesis that pg is elementary. Thus,
there are two possibilities: either the bands that corre-
spond to pg are connected or the non-zero eigenstates
of Py or P, do not both transform like a band represen-
tation of G and hence cannot be derived from a set of
orbitals that transform into each other under the crystal
symmetries, i.e., they do not correspond to a symmetry-
preserving atomic limit. We consider the latter case to
be topological. We conclude,

Proposition 3. All elementary band representations are
either connected (as an energy graph), or (if discon-
nected) yield at least one group of bands that is a (weak,
strong, or crystalline) topological insulator.

Ref. [71] provides an example of a Hamiltonian where
an EBR splits into two groups of bands separated by
an energy gap such that one of the two groups of bands
allows for symmetric, localized Wannier functions, while
the irreps that appear in the other group of bands forbid
their existence. This possibility was overlooked in Ref. [6]
although it is contained in our theory of elementary band
representations. It follows from Proposition [3] that

Corollary 1. Any isolated set of bands that is not equiv-
alent to a band representation (composite or elementary)
gives a strong, weak, or crystalline topological insulator.

We conclude from Corollary [1] that when tqBRs occur
in the spectrum of a Hamiltonian, that Hamiltonian is in
a topological phase. This is a band property, indepen-
dent of where the Fermi level sits in a particular system.
In addition, Corollary [Iis much more powerful than the
existing ad hoc approach to computing topological crys-
talline invariants: even without knowledge of a particular
invariant, it determines whether a set of isolated bands is
topological. Furthermore, a list of distinct tqBRs would
themselves define a topological index.

It also follows from Proposition [3] that tqBRs arise fol-
lowing a topological metal-to-insulator phase transition,
where single connected elementary band representation
becomes disconnected into two or more tqBRs. Similarly,
tqBRs can occur in a phase transition between a topolog-
ically trivial and topologically nontrivial insulator when
a gap closes in a composite band representation made up
of two (without loss of generality) elementary band rep-
resentations and re-opens it to give rise to two tqBRs.
This possibility, where two elementary band representa-
tion combine and give rise to two tqBRs, is not followed
further: although our theory identifies and characterizes
those situations as topological, additional quantitative
information is necessary to predict them — those topolog-
ical situations occur if the spin-orbit coupling is stronger
than some critical value and are hence quantitative by
nature. In contrast, the disconnected EBRs where two
tqBRs form one EBR, is much stronger: the tqBRs are
topological irrespective of the quantitative parameters of
the model.



The preceding logic leads us to one of the most impor-
tant consequences of this work: we can identify candidate
topological crystalline insulator (TCI) phases by forming
all possible solutions to the compatibility relations? and
then looking for disconnected energy graphs that are not
EBRs. We develop this search further in forthcoming
work BUITIT2

C. Obstructed atomic limit

We remarked (below Def E[) that tqBRs do not have
crystal-symmetric Wannier functions. Yet, “topolog-
ical insulators” in one dimension present no obstruc-
tion to the formation of symmetric localized Wannier
functions™@ %3, Similarly, the subclass of weak topolog-
ical phases in two and three dimensions that inherit
their topology from one-dimensional systems also allow
for a Wannier-description®. These cases are considered
“topological” because they display a quantized polariza-
tion invariant. Similarly, the quadrupole insulators pro-
posed in Ref21lin higher dimensions, even though not de-
composable into one-dimensional wires, also have crystal
symmetric Wannier states, despite being different from
the trivial atomic limit (in that they exhibit a quantized
quadrupole moment). In the nontrivial state, symmetric,
localized Wannier functions exist, but do not reside on
the atomic sites and, further, cannot be continued back
to the atomic sites without either closing the gap to other
bands or breaking a symmetry.

Since these phases possess symmetric, localized Wan-
nier functions, they can be continuously deformed to an
atomic limit; however, this limit does not describe the
position of the ions. Hence, these phases describe hy-
bridization transitions. This is very different from the
tqBRs we defined in Def[0] which cannot be continuously
deformed to any atomic limit. In Ref[6l we proposed the
following definition to distinguish these two cases:

Definition 10. A set of bands is in the obstructed
atomic limit when they possess symmetric, localized
Wannier functions that reside on a Wyckoff position dis-
tinct from the Wyckoff position of the underlying ions and
which cannot be smoothly deformed to the ionic position.

A specific example of this situation was discussed in
Sec V of Refl6l

D. How to determine whether a set of bands is a
band representation

From Corollary we know that an isolated set of
bands is topological if it is not equivalent to a band repre-
sentation. We now seek to answer the following question
on a practical level: given an isolated set of bands, how
does one determine whether they are equivalent to a band
representation?

As explained below Def [5] the notion of equivalence
preserves the set of irreps that appear at each high-
symmetry point in the BZ and any quantized Wilson
loop invariant. While the latter are difficult to compute
— a full list of all Wilson loop invariants is not enumer-
ated anywhere in the literature — the former is straight-
forward.

Thus, a practical route to determining whether a set of
bands, B, is not a band representation is as follows: first,
enumerate all EBRs for the particular space group and
list the irreps that appear in each EBR at each high-
symmetry point®? Next, compute the irreps at each
high-symmetry point for the bands in B. If the set of
irreps that have been computed for the bands in B can-
not be obtained from a linear combination of the EBRs
in the space group, then the bands in B do not comprise a
band representation and, by Corollary |1} are topological.

If the irreps that appear in B can be obtained from
a linear combination of the EBRs of the space group,
then one must compute symmetric and localized Wan-
nier functions for the bands in B to confirm that they
are equivalent to the atomic limit defined by the linear
combination of EBRs or compute a Berry phase that will
distinguish the two. This is because, as shown in Appen-
dices and |§| (motivated by examples in Refs [I3H15),
it is possible for two distinct groups of bands to have
the exact same irreps at all high-symmetry points, but
different Berry phases (recall, this is exactly why we re-
quire the homotopic notion of equivalence, as in Def )
If the orbitals and atoms that contribute to B are known,
this information can be sufficient to exclude the existence
of a homotopy between the band representation induced
from the orbitals that contribute to B and the linear com-
bination of EBRs if there does not exist a symmetry-
preserving path along which their corresponding atomic
orbitals can be continuously deformed into each other;
i.e., an equivalence between the band representations is
forbidden according to Prop. [l An example is discussed
at the end of Appendix D]

We note, as shown in Appendix [C3] that it is possible
that the irreps that appear at high-symmetry points in
the valence bands can be obtained from a linear combina-
tion of EBRs while those in the conduction bands cannot;
in this case, the conduction bands must be topological by

Corollary

V. TIME REVERSAL SYMMETRY

In a time reversal invariant system, the Wannier func-
tions must respect time-reversal symmetry in real space.
For spinless systems this means the Wannier functions
must either be real or come in complex-conjugate pairs.
For spinful systems, the Wannier functions must always
come in spin up and spin down pairs. We now character-
ize band representations in the presence of time reversal
symmetry. We will see that imposing time reversal sym-
metry affects the properties of band representations in



both real space and momentum space.

A. Physically irreducible representations

Mathematically, the Wannier functions at a site q will
obey local time-reversal symmetry precisely when they
transform according to a time-reversal invariant repre-
sentation of the site-symmetry group, Ggq. Let p de-
note an irrep of the site-symmetry group. To determine
whether p is time-reversal invariant requires computing
the Frobenius-Schur indicator (reviewed in Appendix,
which labels p as real, quaternionic or complex. If p is
real and single-valued or quaternionic and double-valued,
then there exists an anti-unitary time reversal operator
that squares to +1 or —1, respectively. In any other case,
p is not time-reversal symmetric. Then, to restore time
reversal symmetry in real space, p must be paired with
its complex conjugate, p*.

Representations that cannot be decomposed as a sum
of other time reversal-preserving representations are com-
monly referred to as physically irreducible™ Thus, if p is
an irrep of G4 which is real and single-valued or quater-
nionic and double-valued, then it is physically irreducible.
Otherwise, p @ p* is physically irreducible: even though
p @ p* is a reducible representation of G4 (without TR),
it cannot be decomposed into irreps that respect time
reversal symmetry.

We will later want to know which point group irreps
are time reversal invariant; to this end, we have com-
puted the Frobenius-Schur indicator (Eq. (G1))) for all
representations of all 32 point groups (as tabulated in
Ref. [10) and found the following:

1. All point group irreps with dimension greater than
one are either real and single-valued or quaternionic
and double-valued, except for six complex irreps
(two of the three double-valued irreps of T' and four
of the six double-valued irreps of T},).

2. The one-dimensional double-valued irreps are ei-
ther real or complex (consequently, they are never
time reversal invariant, which constitutes Kramers
theorem.)

3. The one-dimensional single-valued irreps are either
real or complex.

B. Time reversal symmetric band representations

Band representations induced from a time-reversal in-
variant representation of the site-symmetry group will be
endowed with a time-reversal symmetry operator, which
can be found by generalizing the induction procedure in
Eq , as follows: let p(T") denote the anti-unitary repre-
sentative of the time reversal operator; p(7T') is the prod-
uct of a unitary matrix and the complex conjugation op-
erator, K. Since time reversal commutes with all space
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group operations, it is does not mix Wannier functions
on different sites, i.e., in Eq @, o = 3 and tg, = 0; con-
sequently, Eq yields the band representation of the
time reversal operator:

(pc(T)a)ia(k,r) = > piri(T)aia(-k,r) (18)

/=1

We will refine our definition (Def. [6]) of an EBR in the
presence of time reversal symmetry. Following the logic
of Sec. [[IT} we first define

Definition 11. Two band representations plé and Ulc‘,
are physically equivalent if they are equivalent (in the
sense of Def.[5), and if, for all't, the homotopy S(k,t,g)
between them (c.f. Def. @ is a band representation in-
duced from a sum of some time-reversal invariant site-
symmetry group representations.

In other words, physically equivalent band representa-
tions are related by a homotopy that preserves real-space
time reversal symmetry. Generalizing Def. [6] for elemen-
tary band representations, we then define®

Definition 12. A band representation is physically el-
ementary iff it is induced from a (locally) time-reversal
invariant representation of a site-symmetry group, and
if it is mot physically equivalent to a direct sum of other
band representations. Otherwise, a band representation
induced from a locally time-reversal invariant representa-
tion of a site-symmetry group is physically composite.

In other words, physically elementary band represen-
tations (pEBRs) are the building blocks for band struc-
tures which respect time-reversal symmetry in momen-
tum space, and whose Wannier functions respect time-
reversal symmetry locally in real space.

C. Exceptions

According to Def physically elementary band rep-
resentations are induced from time reversal invariant rep-
resentations of maximal site-symmetry groups. Because
Condition [1] also applies in the presence of time reversal
symmetry, we further deduce that pEBRs are induced
from physically irreducible representations of maximal
site-symmetry groups. However, a physically irreducible
representation of a maximal site symmetry group does
not always induce a physically elementary band repre-
sentation (the induced band representation will always
be time-reversal symmetric, per Eq , but it might
be composite.) This phenomenon was discussed without
time reversal symmetry in Sec [[ITA] and resulted in Ta-
bles [[TIl and [Vl We now consider the conditions under
which physically irreducible site-symmetry group repre-
sentations induce pEBRs.

If p is a time reversal symmetric irrep of a site-
symmetry group and p T G is an EBR, then p T G will



also be a pEBR by definition (for, suppose not: then
p 1 G would be physically equivalent to a direct sum of
other band representations, which violates the assump-
tion that it is an EBR). Thus, real and single-valued or
quaternionic and double-valued irreps (i.e., irreps that
are time reversal symmetric) that induce EBRs will also
induce pEBRs.

Consequently, there are two situations in which a
physically irreducible representation of a maximal site-
symmetry group, Gg, may induce a composite physical
band representation: first, if the physically irreducible
representation of Gg, p, is also an irrep of G4 and p 1 G
is a composite band representation, i.e., an exception.
This is exactly the mechanism described in Sec|[[ITA] and
the cases where this can occur are listed in Tables[III] and
[[V} we describe how these lists change with time reversal
symmetry in Sec The second is when the physi-
cally irreducible representation is not an irrep of Gg, in
which case the physically irreducible representation is of
the form p @ p*, where p is an irrep of G4. This is a
generalization of the mechanism in Sec [[ITA] which we
detail in Sec

1. When an irrep of a mazimal site-symmetry group is
time reversal invariant, but induces a physically composite
band representation

Here we consider the case where an irrep, p, of a max-
imal site-symmetry group, Gg, is time reversal symmet-
ric. We proved in the previous section that p 1 G can
only fail to be a pEBR if it fails to be an EBR, which
can only happen for the irreps listed in Table [[TI] or [V}
The exceptional band representations appearing in Ta-
bles [[T]] and [[V] are precisely those band representations
induced from irreps of G4 that are equivalent to compos-
ite band representations induced from the site-symmetry
group Go. In all cases, the equivalence S(k,t) is via
band representations induced from one-dimensional rep-
resentations of the lower-symmetry group Gq, (we proved
this in Sec. ) Thus, the homotopy between an ex-
ceptional band representation at position {q} and a com-
posite band representation at position {q’'} has Wannier
functions localized on a line with site-symmetry group
G and transforming in a one-dimensional representa-
tion. To determine whether that one-dimensional rep-
resentation respects time reversal symmetry, we distin-
guish between the single-valued (spinless) and double-
valued (spinful) group representations. As explained in
Sec [VA] one-dimensional double-valued site-symmetry
representations necessarily break time reversal symmetry
in real space; thus, this homotopy violates time rever-
sal symmetry in real space for the double-valued groups.
Consequently, none of the spinful exceptions listed in Ta-
ble [[V] are physically equivalent to composite representa-
tions. We conclude that if p is a double-valued irrep of
Gq and p is time reversal symmetric, then p 1 G is always
a pEBR.
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Unlike the spinful case, a one-dimensional spinless rep-
resentation can be time reversal invariant if it is real. We
have checked that this is the case for those exceptions
with Gy = Cy,, which appear below the double-line in
Table [[IT] For all other exceptions in Table [[TI] the rele-
vant representation py of Gg, is complex and hence not
time reversal invariant (specifically, in Cs, I's3 1 D3 =
Fg; in 067 F5,6 T D6 = F5, while ].—‘273 T D6 = Fg; and
in Cy, I's4 T Dy = I'5%%) Thus, the homotopy between
p T G and the composite band representation induced
from a representation of G breaks time reversal and is
not a physical equivalence when Gy # Cs,. We conclude
that if p is a single-valued irrep of G4 and p is time re-
versal symmetric, then p T G is a pEBR unless it appears
below the double-line in Table [IIl

2. When an irrep of a maximal site-symmetry group is not
time reversal invariant

We now consider a new class of exceptions with spinless
systems with time-reversal symmetry that do not appear
in Table (at the end of this section, we address why
they do not occur in the spinful case): it may be the case
that there exist sites q,q’ and qo with Gq NGy = Gq,,
such that a real irrep, py of G¢,, induces a representa-
tion p @ p* of Gq, which is physically irreducible (but
reducible without TR), and that the induced representa-
tion po T G is physically reducible. Then the induced
band representation (p @ p*) 1 G is an exception in the
presence of TR because it is physically equivalent to the
composite band representation, (po T Gq/) T G. This sit-
uation would not be an exception without TR because,
without TR, p @ p* is a reducible representation of G4
and, hence, induces a composite band representation per
Eq .

We have listed the exceptions where pg 1 Gq = p @ p*
is physically irreducible but py T Gg is physically re-
ducible in Table [[Il We now explain how to find the en-
tries in this table: as noted above Eq , all single-
valued (spinless) point group representations, p, are 1,2

Reducing group (Gq/) SGs
Con 84,87,135,136
Do 112,116,120, 121, 126, 130,
133,138,142, 218,230
Dy 222
Dag 217
T 219,228

TABLE II. Additional exceptional band representations with
time-reversal. In all cases, the exceptional representation is
the physically irreducible two-dimensional representation of
Gq = S4. For the space groups listed in this table, this band
representation decomposes through Gq, = C3 into a com-
posite band representation induced from the reducing group
Gy. The first column gives the reducing group, while the sec-
ond column gives the associated space groups for which the
exception occurs.



or 3 dimensional. However, we explained in Sec [V A]that
all 2D and 3D representations are real, and hence time
reversal invariant. Thus, if p ® p* is a physically irre-
ducible representation of G, then dim(p) = 1 and, con-
sequently, dim(p@®p*) = 2. Since Gy is a proper subgroup
of G, dim(p @ p* = po T Gq) > dim(py); consequently,
dim(pp) = 1 (this dimension counting explains why we
do not need to consider yet another type of exception
where p® p* is induced from a physically irreducible rep-
resentation of the form py @ pg, where pg is an irrep of
Go: because dim(pg @ pfj) > 2 and Gy is a proper sub-
group of Gq, po @ p§ could not induce a representation
of Gq of dimension 2.) For p @ p* to be physically ir-
reducible, p must be a complex irrep of G4 (recall from
Sec that there are no quaternionic 1D irreps). The
only point groups with single-valued complex 1D irreps
are Cy,Cyp, Sy, C3,C34, Cs, Cei, Cop, T and Tj,; we now
consider these cases:

Gq =2 Cs,Cs4,Cs, Csi, Con, T or Ty: In these cases, Gq
contains a three-fold rotation, C3. Since G, is an
index-two subgroup of Gg, Gg, must also contain
Cs. Since are interested in a real representation,
po, of Ggy, X*°(C3) = 1, where x7?(g) denotes the
character of g in the representation o. Since Gg,
is an index-two subgroup of Gq, there must exist
an element h € G,h ¢ Gq, such that h? € Gq,.
We now deduce the character of C3 in the in-
duced representation, XPUTG(C’g), using the Frobe-
nius formula, which says that if hC3h™! ¢ Gg,
then x?°1¢(C3) = x*°(Cs), while if hC3h™1 € G,
then x?°T¢(C3) = " (C3) + x?°(hCsh~!). In the
first case, x?°T9(C3) = 1. In the second case,
(hC3h™1)? = E implies [X”O(thh_l)]3 =1 and
since po is a real representation, x*°(hCsh™1) = 1.
Consequently, in the second case, x*°T¢(C3) = 2.
However, we deduced above that p is a complex 1D
representation; this means that y?(Cj) = e=27/3
and, consequently, x*®*"(C3) = —1. Thus, if Gq
contains a three-fold rotation, the representation
induced from py will not be of the form p & p*
where p is a complex 1D irrep of G; hence, it does
not contribute to an exception in Table [[I}

Gq = Cy or Cyp: Cypy is an index two subgroup of
Cyny- However, we have checked on the Bilbao
Crystallographic Server™ that there is no Wyckoff
position, ¢’, distinct from q such that Gq N G¢ =
Cony- Thus, if Gq = Cyp), it does not contribute
to an exception in TableiT_ﬁ

Gq = S4: We see that all entries in Table [[I] come from
the case Gq = S;. The only index-two sub-
group of Sy is C3. One can easily check that the
one-dimension real representation p_ of Cy with
Xx?~(C2,) = —1 induces a two-dimensional physi-
cally irreducible representation p @ p* of Sy, with
X?(IC4,) =i. To complete Table [II, one must find
all space groups with distinct sites, q, q’ and qq
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such that Gq = Sy and Gqg NGy = Gg, = Cs.
If, for the representation p_ of Gg,, p— T Gy is
physically reducible then the space group is listed
in Table [l

We now address why this type of exception cannot oc-
cur for spinful systems with double-valued representa-
tions: as described in Sec [VA] the only double-valued
representations p@® p* that are physically irreducible rep-
resentations (but reducible when TR is not present) of a
site-symmetry group Gq occur when either Gq = T or
T}, or when dim(p) = 1. In the former case, we consid-
ered every index-two subgroup, Gq,, of T" and T}, and
checked that an irrep of Gg, never induces a representa-
tion p @ p* of T or T}, where p is complex. In the latter
case, if dim(p) = 1, then dim(p @ p*) = 2. Thus, if there
existed an irrep, pg, of Gg,, such that G, is an index-two
subgroup of Gq and py 1 G = p @ p*, then dim(py) = 1.
However, as discussed in Sec IE one-dimensional, spin-
ful, irreps cannot be time reversal invariant; hence, no
such pg exists.

To summarize, we have the following general result:

Proposition 4. A spinless (single-valued) band repre-
sentation, pg, is physically elementary if and only if it
can be induced from a physically irreducible representa-
tion, p, of a mazimal site-symmetry group Gq, unless
either (1) p appears below the double line in Table|II] or
(2) p is the two dimensional physically irreducible repre-
sentation of Gq = Sy in a SG listed in Table [I],

A spinful (i.e. double-valued) band representation pg
is physically elementary if and only if it can be induced
from a physically irreducible representation p of a mai-
mal site-symmetry group Gg.

D. Connectivity of band structures: physical
topological quasi band representations

In order to discuss time-reversal invariant topological
phases, we define, in analogy with Def.

Definition 13. A physical quasi band representa-
tion (pgBR) is any solution to the compatibility rela-
tions, which also respects time-reversal symmetry in mo-
mentum space.

and

Definition 14. A pgBR that is not equivalent to any
sum of physically elementary band representations is a
physical topological quasi band representation
(ptaBR).

In analogy to the discussion below Def[9] ptqBRs can-
not have both time reversal and crystal-symmetric Wan-
nier functions: if they existed, such Wannier functions
would reside on some Wyckoff position and transform un-
der a representation of the site-symmetry group of that
position, thereby inducing a band representation.

It is straight-forward to generalize Proposition [3| and
Corollary



Proposition 5. All physically elementary band repre-
sentations are either connected or, if disconnected, yield
(weak, strong, or crystalline) topological bands

and

Corollary 2. Any isolated set of bands that is not phys-
tcally equivalent to a physical band representation is a
strong, weak, or crystalline topological insulator.

It follows that when ptqBRs occur in the spectrum of a
Hamiltonian, that Hamiltonian is in a topological phase.

We now briefly comment on one route to find ptqBRs
by utilizing the exceptional band representations in Ta-
ble[[V] Those band representations in Table[[V]without a
sharp (#) can be realized in momentum space with discon-
nected components, while still respecting the compatibil-
ity relations (see Sec and time reversal symmetry
in momentum space (by respecting time reversal symme-
try in momentum space, we mean that for each irrep of
the little group Gy that appears at k, its complex conju-
gate representation appears at G_x). Note, importantly,
that this does not imply that time-reversal symmetry is
respected in real space and has a matrix representation
in the sense of Eq. . However, we also know from the
discussion following Def [T1] that these ptqBRs are not
physical band representations: each disconnected com-
ponent is distinguishable from any physically elementary
band representation. Hence, the exceptional band rep-
resentations in Table [[V] are ptgBRs. Thus, Table [[V]
serves as a list of space groups (and particular Wyckoff
positions) to search for candidate TCI materials.

Physical topological quasi band representations can
also be found if p @ p* is physically irreducible (and
not listed as an exception in Table , but p 1+ G (and
thus also p* 1 G) is time reversal invariant in momentum
space. In this case, there will generically be an energy
gap between bands induced from the band representation
p T G and those induced from p* T G. Thus, p T G and
p* 1 G describe two sets of connected bands that do not
admit crystal and time-reversal symmetric Wannier func-
tions, since the band representations p T G and p* 1 G
do not respect time-reversal symmetry in real space and
so are not separately physical band representations. It
follows from Corollary [2] that the gap between these two
band groups is (crystalline) topological 2303 Note, how-
ever, that it is not always the case that p T G is time
reversal invariant in momentum space: the other possi-
bility is that p T G and p* 1T G transform into one another
under time reversal symmetry; in this case, the two band
reps are forced to be degenerate at the TRIM points in
the BZ, and together form a connected physically ele-
mentary band representation.

VI. ACCIDENTAL DEGENERACIES

The band structure of a particular Hamiltonian might
include bands transforming under different elementary
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band representations that overlap in energy. Taking in-
spiration from Herring™, we refer to these bands as acci-
dentally connected because symmetry does not require
them to be connected. It follows from the preceding argu-
ments that we can remove the accidental connections by
adding to the Hamiltonian a (potentially large) pertur-
bation which respects all crystal symmetries. However,
one should not use this as an excuse to dismiss the im-
portance of accidental connections: the non-uniqueness
of the decomposition of composite band representations
means that accidental connections may be physically in-
teresting. For instance, when the stabilizer group G4 of a
non-maximal Wyckoff position is a subgroup of two dif-
ferent maximal stabilizers G- and Gg~, the composite
band representations induced from Gg can be reduced
in two equivalent ways: either into EBRs induced from
Gg or from Gg~. The connectivities of the band repre-
sentations in these reductions can be different, and per-
turbing the Hamiltonian can drive a transition between
different band connectivities. The transition region (if
it represents a phase rather than a critical point) will
be dominated by an accidental connection of these band
representations. In real space, this process can be visu-
alized as moving the centers of the Wannier orbitals of
the crystal from Wyckoff position {q'} to Wyckoff po-
sition {q"”}, along a line with stabilizer group G4. We
have worked an example for a one-dimensional chain of
s and p orbitals with inversion symmetry — i.e., the Su-
Schrieffer-Heeger™ or Rice-Mele¢™ model — in Ref[6l

VII. CONCLUSIONS

In this work, we provided the theoretical framework of
our re-introduction! of EBRs as a natural way to deter-
mine the topological properties of bands. The main idea,
presented in Refl6] is that, because EBRs unify the real
and momentum space descriptions of a crystalline solid,
they can describe both trivial and topological behavior.
In particular, we showed that disconnected EBRs yield
bands that lack a local real space description that pre-
serves crystal (and/or time reversal) symmetry and hence
are topological.

The connection to real space will also be useful to find
topological materials: namely, by searching for materi-
als whose orbitals at the Fermi level induce disconnected
EBRs. Similarly, semi-metal can be found by searching
for materials whose connected EBRs at the Fermi level
will be partially filled.

In addition, we have shown that all of the EBRs in
a particular space group can be generated by induction
from irreps of maximal site-symmetry groups. This sig-
nificantly reduces the amount of work necessary to enu-
merate all EBRs in the space group, a task that we take
on in the related Refs. [12] and 11l This result makes
possible a systematic search for topological materials 6>
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75862-P and FI1S2013-48286-C2-1-P national projects of VIII. TABLES
the Spanish MINECO. The work of LE and MIA was
Irrep  Site symm. grp. Reducing grp. Intersection grp. Rep dim. SGs
(o) (Ga) (o) (Go)
T3(E) Ds Csi s 2 163,165,167, 228,230
Th Cs 2 223
0] Cs 2 211
T Cs 2 208, 210, 228
Csp, Cs 2 188,190, 192,193
Ts6(F21) Ds Con Ce 2 192
Ts(E) Da 0 Cu 2 207, 211, 222
Cun Cy 2 124, 140
Ts(E) Daa Dan, Cav 2 229
Ty Cay 2 226
T Che 2 215,217,224
Don Che 2 131,132,139, 140,223

TABLE III. Single-valued irreps of maximal site-symmetry groups that yield composite band representations and thus do
not need to be considered in a search for EBRs; computed by Bacry, Michel, and Zak™? Point group symbols are given
in Schoenflies notation™ Irreps are listed in the notation of Ref [I0] and, parenthetically, the notation of Ref 80. The first
column gives the irrep of the maximal site-symmetry group, Gg, listed in the second column. This irrep induces a composite
band representation. The third column gives the site-symmetry group, G/, into whose band representations this composite

representation can be reduced. The fourth column gives the intersection group, Go = Gq N Gy -

The fifth column gives the

dimension of the irrep of G4 which induces the composite band rep. The sixth column indicates the space groups for which this
occurs by their sequential numbers. Groups that appear below the double line are also physically equivalent to a composite
band rep, while those above the double line are not; see Proposition [d] and surrounding text.
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Irrep  Site symm. grp. Reducing grp. Intersection grp. Rep dim. SGs

_(n) (Ga) (Gq) (Go)

Ts(F) Ty Dsq Cs, 4 224,227
O Csy 4 225

Ts(E1) Ds T, Cs 2 223
10) Cs 2 211
T Cs 2 208,210, 228
Csn Cs 2 188%,190%, 192, 193
Cs; Cs 2 163%,165F, 167%, 228* 230¢

I'7(Es) D3y, Dsq Csy, 2 193¢, 194"

Lo(E1) Ds Cen Cs 2 192°

To.7(E21) Dy 1) Cy 2 207,211,222

Cun Cy 2 124% 140"

I's(E) Cas Cév Cs 2 183
Csy Cs 2 183
Con C, 2 51%, 63%, 677, 74%, 138F
Ci Cs 2 99,107
Daq Cs 2 115,137

[e(E) Dy T Cs 2 195,197, 201, 208, 209, 218
Ds Ca 2 177,192
Ds Cs 2 177,192, 208, 211, 214, 230
Sy Cy 2 112%,116%,120%, 121, 126, 130%, 133%, 138%, 142¢, 218, 230
Do Cs 2 111,121,132, 134, 224
Con Cy 2 49% 66%,67%, 69, 72%, 124,128,132, 134, 135%, 138*,192
Dy Cs 2 89,97,124,126, 211
Dsq Ca 2 224
10) Ca 2 209

TABLE IV. Double-valued irreps of maximal site-symmetry groups that yield composite band representations. Irreps are listed
in the notation of Ref [I0] and, parenthetically, the notation of Ref 80l The first column gives the irrep, p, of the maximal
site-symmetry group, Ggq, listed in the second column. This irrep induces a composite band representation. Point groups
symbols are given using Schoenflies notation*?; for example C, is the point group generated by a single mirror. The third
column gives the site-symmetry group, Gg/, into whose band representations this composite representation can be reduced.
The fourth column gives the intersection group, Go = Gq NGy . The fifth column gives the dimension of the irrep of G4 which
induces the composite band rep. The sixth column indicates the space groups for which this occurs by their sequential number.
A sharp (f) indicates that while the band representation is disconnected in momentum space when time reversal symmetry is
ignored, i‘c1 21% 1forced to be connected when time reversal symmetry is included (note the refinement with respect to the asterisks
in Ref. [6)>=.



Appendix A: Proof that a site-symmetry group with
exactly one fixed point is maximal

In this appendix we prove that a sufficient condition for
a site-symmetry group, Gy, to be maximal, as defined in
Def 3] is that q is the only site which is left invariant un-
der all of the symmetry operations in the site-symmetry
group. We call a point which is left invariant under all
of the symmetry operations a fixed point. Note that if
q: and qo are part of the same Wyckoff position, then
their site-symmetry groups are isomorphic; thus, if q;
is the only fixed point of G, , then q3 is the only fixed
point of G4,. Consequently, if any one site in the Wyck-
off position has a maximal site-symmetry group, then the
site-symmetry group of any point in the Wyckoff position
is maximal.

We first prove that a finite group acting on a vector
space always has at least one fixed point: consider a fi-
nite group, K = {ki,...,k,}. Then, for any ¢ = 1,...,n,
{kik1,...,kik,} = K (this is evident because k;k; € K
by group closure and for any k; € K, k; = k;(k; 'k;),
where, again by group closure, k; 1kj € K.) It then fol-
lows that, for an arbitrary vector x, the sum ) . k;x is
invariant under all elements of K; thus, >, k;x is a fixed
point of K. This completes the proof that a finite group
always has at least one fixed point. It also implies the
following useful corollary:

Corollary 3. A group which has no fixed point is infi-
nite.

(It follows that any group containing a translation, screw,
or glide symmetry is infinite.)

We can now prove that a site-symmetry group with
exactly one fixed point is maximal. Let G4 be the site-
symmetry group of q and suppose that G4 has only q as
a fixed point. Now consider g € G,g ¢ Gq and define
Gil to be the group generated by g and the generators of
Gg. Then G; does not have any fixed points: because
g ¢ Gq, q is not a fixed point (else g would be in Gq),
but because G4 has no fixed points besides q, no other
point can be fixed. Thus, Gy has no fixed points and,
hence, using Corollary 3} G is infinite. It follows that
there is no finite group, H # Gq such that Gq C H C G.
Hence, according to Def[3] G4 is maximal.

It follows that a non-maximal site-symmetry group
leaves at least two points fixed. Notice that if the group
leaves two points fixed, then it also leaves the path con-
taining those points fixed (i.e., if Gqq1,2 = q1,2 then
Gqla1q1 + a2q2] = a1q1 + a2q2). Similarly, if the group
leaves three non-collinear points fixed, then it leaves the
plane containing those points fixed. Consequently, any
non-maximal site-symmetry group leaves either a line or
a plane fixed (or, in the trivial case where Gq only con-
tains the identity, it leaves all of space fixed.)

We remark that it is not necessary for G4 to have a
single fixed point in order to be maximal: for example,
consider SG P6mm, which is generated by the wallpaper
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group pbmm and by a unit translation in the Z direc-
tion. Each Wyckoff position in P6mm has the same site-
symmetry group as its projection onto the z — y plane.
Thus, if G4 leaves a single point invariant in 2D, it leaves
an entire line invariant in 3D: for example, G, = Cg,
leaves only the origin invariant in 2D, but leaves the 2-
axis invariant in 3D. This is a general feature of 3D SGs
generated by a wallpaper group and translations in the
Z direction.

Appendix B: Transformations of Wannier functions

Following Ref [67, we derive how a Wannier func-
tion Wi, (r — t,,) transforms under an arbitrary element
h = {R|t} € G in the band representation pg(h) induced
from a representation p of Gy, for some site q:

pc(h)Wia(r —t,) = h{E[t,} Wi (r)
= {E|Rt, }hWia(r)
= {EIRtu}{E|tBa}gﬁgg<;1Wi (r)
= {E|Rt), + tsa}gsgWir(r)
= {E|Rt, +tsatys [p(9)];; Wir(r)
= {E[Rt, +tga} [p(g)]ji Wis(r)

= [p(g)}ji Wijg(r — Rty — tga), (B1)

where we have used the decomposition of Eq @; hga =
{E|tga}gpyg, for some g € G4 and coset representative
gs; and tg, = hqo — qg a Bravais lattice vector.

We now derive the action of h on the Fourier-
transformed functions a;, (k, r), defined in Eq :

pc(h)a;n(k,r) = pg(h) Z R Win(r —t,)

o
= Z etu [p(g)]ji Wjﬁ(r - Rt;t - tBoz)
m
— o—i(RK)tsa [o(g)];; %
Y Rt g (e — Rty — tpa)
m

= e [o(g)]aya(Rk,x),  (B2)

where we have used the fact that R is orthogonal.

Eq (B2) is exactly Eq (5), remembering that g is de-
termined by Eq @

Appendix C: Graphene p, orbitals without
inversion: example of a disconnected EBR

We choose the lattice vectors of the honeycomb lattice:
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€y =

[\ [\
[SelS
N = N



which are shown in Fig Following the notation of
Ref 6l we choose the group generators:

Cs:(e1,e3) = (—eq, €1 —€3) (C2)
CQ 1(61,62) — (—817 —62) (C?))
myi :(e1, €2) = (e, €1); (C4)

the subscript 11 denotes that the mirror line has normal
vector e; —eg =y.

We consider spinful p, orbitals on the corners of the
honeycombs (the 2b position in Fig , as in graphene.
We define the sites q = q; = (3, %) and q2 = (—3, —3).
The site symmetry group G4 is generated by {C3]|01} and
{m,1]00}; the group is isomorphic to C3,. We choose the

matrix representation:

p({Cs:]01}) = e F 5
p({my1]0}) = is,,

where s, 4, are the Pauli matrices. This choice for the
representative of myi differs by a unitary transformation
from the basis where m, is represented by e!™sv/2 = sy
(which is the natural basis for a 7 spin rotation about the
e; —ey = ¥ axis); we choose it here to be consistent with
Ref |6l and ? . Comparing the characters with Table
shows that the representation in Eq is the spin-3
representation, T'g.

(C5)

TABLE V. Character table for the double-valued representa-
tions of C’3U.9 The one-dimensional representations 4 and T
are complex conjugates of each other. The two dimensional
Ts representation is the spin—% representation, while the one-
dimensional I'4 and I's representations act in the space of spin
IS =3/2,m, =3/2) £i|S =3/2,m, = —3/2) respectively.

1. Characters of EBRs at high-symmetry points

We want to compute the characters at high-symmetry
points, k, of the band representation induced from p, or-
bitals on the 2b Wyckoff position. For pedagogical pur-
poses, we explicitly construct the matrix representatives
here using Eq (b)), instead of skipping to the character
formula in Eq (9). The matrix representatives were com-
puted in Ref [0l (see Eqs (S21)-(525)) using an intuitive
constructive that differs by a unitary transformation from
Eq in this paper.

We first choose the coset representatives: g¢1 =
{E|0}, g2 = {C2]0}, which satisfy goq = q,. The next
step is to evaluate Eq @, which we rewrite here for con-
venience:

hge = {Eltsa}gsg (©)
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We can then compute the band representation matrices
using Eq (B]). Given h and go € {g1,92} on the left-hand
side of Eq @, we need find the lattice translation tga,
93 € {91,92} and g € Gq that satisfy Eq @ We now do
that for each generator, h, of the honeycomb lattice:

h = {C3]0}: In this case, Eq (6) is written as:

{C3]0}g1 = {E|01}g1{C5]01}
{C3|0} g2 = {E]01}g2{C3[01}

Because {C3|0} does not mix the two sites in the
Wyckoff position (instead, it shifts q; 2 by lattice
vectors), a = 3 in both lines of Eq (C6); this will
be true for any h which differs from an element of
Gq by a lattice translation.

To find (p T G) | Gx when {C5]|0} € Gy (recall, Gy
consists of all space group operations which leave
k unchanged up to a reciprocal lattice vector), we

apply Eq to Eq (C6]), which yields:

(C6)

k eike? 0 img
pG({C3|0}) = 0 efik-eg ®es (07)
h = {m;1|0}: In this case, Eq (6) yields
{m1110}g1 = {E]0}g1{m,1|0}
{mi1|0}g2 = {E]0}g2{m,1|0}, (C8)

where the m,7 denotes the combined operation m;z
followed by a 27 spin rotation; notice that the 27
rotation is the product of two consecutive opera-
tions of {m41|0}, which makes it an element of Gg.
It is nontrivial because it imparts an overall minus
sign in our double-valued (spinful) representation.

Thus,
E(mylo)) = (0 0 V—owis (C9)
Pc 11 - 0 *’Z:Sm —Uz T
when {m,7]|0} € Gx.
h = {C5|0}: In this case, Eq (6) yields:
{C2|0}g1 = {E|0}g2{E|0}
{C2|0}g> = {E|0}g:{E|0}, (C10)

which yields the subduced representation when
{C2|0} is in the little group of k:

p&({C2]0}) = (ﬁ H) = —ioy ® oo, (C11)

where we have again used the fact that p({E£]0}) =
—p({£]0}) =L

We will now compute the characters of the matrix rep-

resentations in Egs (C7), (C9) and (C11) at the high-
symmetry points I' = (0,0), K = (%, ), M = (1,0), de-
fined with respect to the reciprocal lattice vectors shown
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FIG. 2. Reciprocal lattice basis vectors and high-symmetry
points of the hexagonal lattice.

k Irreps

r Fs @ Ty

K Ki® K5 ® K
M Ms® Ms

TABLE VI. Irreps of the little groups that appear at high-
symmetry points — Iy K and M — in graphene, labelled by
the irreps of the corresponding little co-groups, which are iso-
morphic to Cs,, C3, and Ca,, respectively. The character
tables for these groups are given in Tables IE m and m
While all irreps of the abstract point groups are denoted by

I',,, we label the irreps at K and M by K, or M,.

in Fig 2] We compare to the characters in Tables [l [V]
and [VII|to determine the multiplicity of each little group
irrep in the appropriate subduced representation; this
method corresponds to Eq in the main text. The
results are shown in Table [V

The little co-group at I" is isomorphic to Cg,. We know
VE({E]0}) = 4 and \& ({C5]0}) = 2 (per Eq (C7)). Since
{Cs]0} ¢ G, we also know that x5 ({Cs|0}) = 0. Com-
parison to Table [l shows that pl, = I's ® Iy (I'sg are
both 2D irreps.)

The little co-group at K is generated by C'3 and Com 7.
We know x& ({E]0}) = 4. Per Eq (CT7), x& ({C5/0}) =
—1. Further, since {Cam 1|0} ¢ G4 (which follows from
{mi1]0} € Gq, {Col0} ¢ Gq), Y& ({Comyr]0}) = O.
Comparison to Table [V|shows that pg =Ki8 Ks® Kg
(notice that in character tables we use the notation 1:‘4,5’6
to refer to the irreps of an abstract group — in this case
Cs, — but the notation Ky 5 ¢ to refer to the irreps of the
little group at K.)

Finally, since the little co-group of M is isomorphic to
Cs,, which has only one double-valued irrep, as shown in
Table the fact that p is four-dimensional is enough
to tell that pX = 2Mj5 (again, we use ['s to refer to the
irrep of the abstract group Cy,, but the notation Ms to
refer to the irrep of the little group at M.)

While we omit it here for brevity, we can repeat the
induction procedure for any irrep of the site-symmetry
group of any Wyckoff position and then subduce to the
little groups of the high-symmetry points in the Brillouin
zone. The results for the double-valued irreps of the other
maximal Wyckoff positions of the honeycomb lattice are
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Rep‘ECngEmE
)2 00 0 -2

TABLE VII. Character table for the double-valued irrep of

C2, 2 Ty, is the two-dimensional spin-% representation. In

terms of the Pauli matrices, it is given concretely as I's(C2) =
105, I's(m) = ioy.

shown in Table [VII1l

WP |p r K M |d
1G(Cev) r7 Iz K, @ Ks Ms |2
fs fs f{e M5 2

fg fg R}; ]\7[5 2

26(C3y) T4 Iy Ks Ms |2
fs f? f(ﬁ M5 2

Tg| Tsoly |Ki®Ksa Ke |2Ms|4
3¢(Coy) |T5 |Tr @ Ts @ Tg | Ky ® K5 ® 2K |3Ms| 6

TABLE VIII. EBRs induced from double-valued irreps? of
the maximal site-symmetry groups in p6mm. As explained
in Appendix E the band representation induced from the 3c
position is composite — it furnishes an exception — unless time
reversal symmetry is present. The first column lists a maxi-
mal Wyckoff position and the point group isomorphic to its
site-symmetry group. The second column gives the irrep of
the maximal site-symmetry group, Gq, from which the band
representation is induced. The third column gives the little
group representations which appear in the induced EBR at
the I' point, as defined in Table [[] The fourth column gives
the little group irreps that appear at the K point, as defined
in Table m The fifth column gives the little group irreps that
appear at the M point, as defined in Table [VI] The last
column gives the dimension of the EBR, which is also the
connectivity of the elementary band rep.

2. Connectivity of the EBRs

TABLE IX. Character table for the double-valued irreps of
c.2

We want to know whether the EBR induced from p,
orbitals on the honeycomb lattice (derived in the pre-
vious section) is connected. To this end, we derive the
compatibility relations introduced in Sec [VA] At each
high-symmetry point (T', K, M), we will decompose the
little group irreps that appear at that point into a sum of
irreps of the little group of each high-symmetry line em-
anating from that point. There are three high-symmetry
lines:®%: ' — K, I — M and K — M. Although the little
group of each line is distinct, all three groups are iso-
morphic to Cy x Z2, generated by a single mirror and



two primitive lattice translations. Table [[X] provides the
character table of Cs. By comparing to the character ta-
bles of Cg,, C3, and Cy,,, we see that the two-dimensional
irreps of Cgy,C3, and Cy, always subduce to I's @ Ty,
while the one-dimensional irreps, I' 4,5, of C3,, subduce to
the one-dimensional irreps I's 4, respectively, of Cs.

We now consider the band representations in Ta-
ble the last column of the table gives the dimension
of the band representation. Since Mj is two-dimensional
(c.f. Table [VII), any band representation that is two-
dimensional must be connected, since its bands at least
connect at Ms. Hence, the first five EBRs listed in Ta-
ble [VIIT] are connected.

However, as we now show, the compatibility relations
allow for the band representation induced from T's on
the 2b position (as well as from ['s on the 3¢ position) to
be disconnected B2 Tp this case, the bands can split
into two disconnected components, the first consisting of
Ts, K4, K5, and M5 and the second conslstlng of Ty, K
and Mj5. The situation is depicted in Fig.|3al According
to Proposition [3] at least one of the groups of bands that
comprise the disconnected EBR is topological.

The topological bands are protected by Cy symmetry,
which can be deduced by checking on the BCS server 281
The space group R3m (SG 160), generated by Cs, and
mq1, which is a subgroup of the space group P6mm (SG
183) that describes layers of graphene, does not have
any disconnected EBRs without time reversal symmetry.
Thus, if Co, symmetry is removed, then the bands are
topologically trivial. One can also check that the topo-
logical protection is independent of the mirror symmetry,
since the band representation induced in space group P6
(SG 168), generated by Cs, and Co,, from the 2b posi-
tion also yields a disconnected EBR identical to that in
P6mm.

It is also possible for the bands to be connected, as
depicted in Fig BB Whether the bands are connected
or disconnected depends on energetics and the strength
of the different spin orbit coupling terms present in the
sample. A similar situation is true for the band repre-
sentation induced from I's on the 3¢ position.

3. Comparison to eigenvalue classification

We now specify to the Kane-Mele model of graphene®2
with sublattice symmetry, time-reversal symmetry, and
inversion symmetry-breaking Rashba SOC:

H=t Z czcj—l—i)\go Z Vijcjszcj—&—i)\R Z cj(sxélij)zc
(i5) ((ig)) (i5)

(C12)

Since this model is derived from p, orbitals on the 2b

position, its bands are described by the EBR T's 1 G.

The band structure is shown in Fig[3a]in the Z, nontrivial
phase.

It is immediately evident that the two connected upper

bands (which contain the irreps I's, K4, K5, and Ms) are
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(b)

FIG. 3. Two possible connectivities for the EBR induced
from the 2b position, T'¢ 1 G with little group irreps labelled.
In (a) the bands are disconnected and thus the band struc-
ture contains a group of topological bands, while in (b), they
are connected. Energetics determine which phase occurs in a
particular system.

topological because they cannot be decomposed into any
of the EBRs in P6mm, given in Table [VIII] In contrast,
the irreps that appear in the lower bands (Fg,Kg and
M3) are identical to the irreps that appear in the EBR
induced from the la position, I'y 1 G, as can also be
seen in Table [VIIIl Both sets of bands have a nontrivial
Zs invariant, even though the irreps that appear in the
lower bands match those in T'g 1+ G. This example was
also given in Ref[6l as an example of a disconnected EBR
that yields topological bands, although it was not directly
stated in that paper that we were referring to the Kane-
Mele model. (It is also possible to construct a different
Hamiltonian where the bands exhibit the same irreps,
but have a trivial Zy index.™)

Recent works®™5Y have classified noninteracting
fermionic phases by using a vector, v, to describe a group
of bands, where each component of the vector indicates
the number of times a particular irrep of a particular
high-symmetry point appears in that group of bands. For
example, the number of times the I'; irrep appears in the
subduction of the band representation at I' would be de-
noted by vr ;. The compatibility relations restrict the
set of allowed vectors. Heuristically, these classification
schemes consider the set of vectors that satisfy the com-
patibility relations for a particular space group modulo
a set of “trivial” vectors, where a trivial vector is one
which can be obtained from an atomic limit. Notice that
this classification scheme is contained within our theory
of elementary band representations, since the elementary
band representations define the irreps that appear at each
high-symmetry point in the Brillouin zone.



Such a classification will assign the lower bands in
Fig. [3a] a trivial index, even though the bands are topo-
logical, because their irreps match those of Ty 1 G. In
addition, the upper bands will also be assigned a trivial
index because their irreps can be obtained from a sub-
traction of the irreps in T'g T G from the irreps in T's 1 G,
even though the irreps in the upper bands cannot be
decomposed into any of the EBRs in P6mm, given in
Table [VIIII This is consistent with the discussion and
observation in Ref. [60.

Appendix D: Example of two EBRs that share the
same irreps at each k point but are not equivalent

In this section we explicitly work out an example of
two EBRs that at each point, k, decompose into the same
irreps of Gk, but which differ by a Berry phase; this ex-
ample has been examined in Refs [I3HI5, but we write
it here in modern notation. This example motivates the
need for a stronger definition of equivalence than com-
paring the irreps of Gx. Def [f] ensures that equivalent
EBRs share all the same Wilson loop invariants.

We consider the space group F222 (SG 22), which de-
scribes a face-centered cubic lattice whose symmetries
are generated by {Ca.|0},{Cs,|0},{C2.|0}. We define
the primitive unit cell lattice vectors, e;, and reciprocal
lattice vectors, g;, by:

1
€ = 5(17 170)a g1 = 271—(1’ 15 71)
1
€y = 5(17071)3 g2:2ﬂ-(137171)
1
es = 5(0, 1,1), g3 =2m(—1,1,1) (D1)

We consider the sites q = (0,0,0) and g’ = (0,0, 1/2),
which are described by the 4a and 4b Wyckoff posi-
tions, respectively. Each Wyckoff position contains four
sites in the conventional unit cell, depicted in Fig [{a]
and one site in the primitive unit cell. Their site-
symmetry groups are Gq = {{C2,]0}, {C2,|0},{C2.|0}}
and Gg = {{Caz|t.}, {Coylt.}, {C2.]0}}, where t, indi-
cates a translation by —e; + es +e3 = (0,0, 1). The two
site-symmetry groups are isomorphic to each other.

We take p to be the trivial representation of G4 and
p' the trivial representation of Gg. This corresponds
physically to, for example, spinless s orbitals on the rel-
evant Wyckoff position. Inducing the band representa-
tions pg, pg; according to Eq is simplified by the fact
that the indices ¢ and « are trivial (i is trivial because
there is one orbital on the site and o because there is one
site in the Wyckoff position). Thus, given h = {R|ts},
an arbitrary element in SG F'222, Eq simplifies to

P (h) = e~ iR, (D2)
where we have used the decomposition in Eq @ with
a = B = 1, which simplifies to h = {E|t; }{R|0}, since
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FIG. 4. (a) Conventional unit cell for F'222 (SG 22). The solid
blue atoms sit at the 4a position, (0,0,0), and the solid red
atoms at the 4b position, (0,0,1/2). (b) Examining the 2 axis
shows that it is impossible to move the blue atoms to the posi-
tions of the red atoms while continuously preserving Ca, sym-
metry because the symmetry requires them to move in pairs
(depicted by the blue dashed circles) that transform into each
other under C2,. However, there are not enough atoms for
this symmetry-preserving process to occur (or, equivalently,
the dimensionality of the site-symmetry group irrep is not big
enough).

all rotations {Coz 2y,2-|0} are in Gg. Similarly,

(P)E (h) = e7 1 (D3)
where
t;L _ th lfRisz (D4)
th — tz if R= ng,gy

Eq follows from the decomposition in Eq @ with
a = B = 1; explicitly, if R = Cs, then {Co,|t,} =
{E[th}{C2.]0} (notice {C5.]0} € Gg) and if R =
CQLQy then {021’2y|th} = {E|th — tz}{021,2y|tz} (HO—
tice {02z72y|tz} S Gq/).

We now prove that the characters defined in Eq @[),

—ikth ifhe@
k € 1 k
h) = D5
X6 (h) {O e (D5)
and
—ik-t’ .
Nk (& h if h S Gk
h) = D6
(V) {O e (D6)

are equal for all k and h. We have used the fact that since
R € G and t;, is a lattice vector, e #(FK)th — o—ikts,
the same holds for t}. Egs and show that
X% (h) = (X)%(h) when either R = Cy, (in which case
t, = t},) and/or R ¢ Gk (in which case both characters
are zero.)

It remains to show that x¥(h) = (x')%(h) when R =
Coz2y and R € Gx. Lets take R = Cy,; an analogous
proof applies when R = C5,,. The condition R € Gy im-
plies Co,k = k modulo a reciprocal lattice vector. Utiliz-

ing Eq (D1)), C2,81,2 = 82,1 and Ca,83 = —(81+82+83).



Thus, writing k = k;g;, where k; 2 3 are defined mod Z,
the condition h € Gk requires

ki =ko — k3, ko =k1 — ks (D7)
ThUS, k- tz = kl(gz . tz) = 27T(—]€1 + kg + kg) =0
mod 27, where the last equality follows from Eq .
Consequently, when R = Cb,, e ith = ¢=ikth gpng
X () = ()5 (h).

We have shown that for all h and k, x%(h) = (X')%(h).
It follows that the band representations pg and pj, share
the decomposition into irreps of the little group Gy at all
points k in the BZ (even though they are distinct EBRs).

Zak showed in Ref 83| that because pe and py; are in-
duced from distinct Wyckoff positions, they have distinct
Berry phases. Namely, the holonomy of the Bloch wave
function along a particular direction in momentum space
gives the center of the Wannier function in the corre-
sponding direction in real space /8

Thus, the band representations pe and pg; are physi-
cally distinguishable, which motivates the need for Def
a definition of equivalence that distinguishes them. Phys-
ically, the reason these band representations are distin-
guishable is because there is no way to continuously move
a single s orbital from the 4a position at (0,0,0) to
the 4b position at (0,0,1/2) while preserving the crys-
tal symmetry because all of the non-maximal Wyckoff
positions with sites immediately adjacent to the 4a po-
sition have a multiplicity greater than one; for example,
a generic point on the £ axis with coordinates (0,0, z),
where z # 0, 3, belongs to a Wyckoff position with mul-
tiplicity two, which also contains (0,0, —z), as depicted
in Fig[@bl Thus, these two EBRs are not equivalent per
our Def. Bl

Appendix E: Four-dimensional irreps of maximal
site-symmetry groups

In this section, we prove that if p is a four-dimensional
irrep of a maximal site-symmetry group, G4, then there
does not exist a point, qg, whose site-symmetry group is
an index two subgroup of Gg.

There are only three point groups that have four-
dimensional irreps: O, Ty and Op. O and T, have one
subgroup of index two, T, while O} has three subgroups
of index two, Ty, O and Tp. All of the index two sub-
groups we have listed (7', T, O and T}) have a single fixed
point, that is, given one of these subgroups, there is only
one point which is left invariant by all of the operations in
the subgroup. We proved in Sec [A] that a site-symmetry
group with a single fixed point must be maximal. It fol-
lows that if there exists a point, qg, which has T, Ty, O
or T} as its site-symmetry group, then these groups are
a maximal subgroup of the space group.

Now consider a space group, G, such that there exists a
site, q, whose site-symmetry group, G4, is isomorphic to
O,T,; or Oy. Further suppose that there exists a point,
qo, whose site-symmetry group is given by one of the
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index two subgroups of Gg; call this subgroup Go. We
explained in the previous paragraph that Gg must be
a maximal subgroup of the space group. However, this
directly contradicts the definition of maximal (Def. ,
since Gy C Gq C G and Gy # G4. Thus, by contradic-
tion, we have shown that if there exists a point q, whose
site-symmetry group, Gg is isomorphic to O, Ty or O,
then there does not exist a point qp whose site-symmetry
group is an index-two subgroup of G4. Since these are
the only point groups with four-dimensional irreps, this
completes the proof.

Appendix F: Example of an exception in the
honeycomb lattice

Consider a band representation induced from the site
q = (e1 — e3)/2, which belongs to the Wyckoff position
3¢ of the honeycomb lattice, shown in Fig Utiliz-
ing the symmetry actions in Eq 7 the site-symmetry
group, Gq, is generated by {C3|11} and {m,1|11} and
is isomorphic to Cs,, which has only one double-valued
irrep, T's.

Since Gq is maximal (c.f. Def, an irrep of Gg will
induce an EBR, consisting of six bands, unless it is an
exception, in the sense of Sec [[ITA] All exceptions for
double-valued representations of three-dimensional space
groups are listed in Table[[V} since the honeycomb lattice
is two-dimensional, we consider its layered counterpart,
P6mm (SG 183), which does appear in Table Hence,
according to Table [[V] the band representation induced
from the I'5 irrep on q is equivalent (in the sense of Def
to a composite band representation induced from either
the la or 2b position, whose site-symmetry groups are
isomorphic to Cg, and Cj,,, respectively.

We now prove explicitly that the band representation
induced from q in the absence of TR is equivalent to
a composite band representation induced from the q' =
(0,0) position by constructing the homotopy described
in Sec [ITAL

The site-symmetry group, G¢/, of @' contains all sym-
metry operators that leave the origin invariant. The only
non-trivial element that leaves the origin invariant in G4
is {m11|0} (the product of {C|11} and {m,1|11}). Thus,
the intersection of the two site-symmetry groups is given
by, Go = GqNGq = {{E|0},{m11|0}}, which is isomor-
phic to Cs. Gy is the site-symmetry group of the line
connecting q and q’. The character tables for Cg,,, Co,
and Cy are shown in Tables [, [VII and Per the con-
struction in Sec [[ITA] we show that the representation
of G4 induced from an irrep of Cj, Iy =141 Gq, is
irreducible, while the representation of G/ induced from
an irrep of Cy, I'y 1 Gq, is reducible (we could also have
induced representations from I's and found the same re-
sult.) First, since C, is an order 2 subgroup of Cy,, ['y
will induce a two-dimensional representation of Cs,,; since
there is only one two-dimensional representation of Coy,,
which is the irrep I's, we conclude that T4 1T Co = Ts.



Since Cy is an order 6 subgroup of Cg,, I'y will in-
duce a six-dimensional representation of Cg,, which is
clearly reducible, as there is no 6D irrep of Cg,; how-
ever, this is not enough to uniquely determine the ir-
reps into which it decomposes. Instead, we compute
the character of C3 and Cg in the induced representa-
tion I'y 1 Cg,, both of which are equal to zero using the
Frobenius character formula®. Specifically, we choose
C#,n =0,...,5, to be the coset representatives of Cs, /Cs,
and since Cg "C5 sC§ = Cs.6 ¢ C, for all n, the character
of U5 in the induced representation is zero. Knowing
that T'y 1 Cg, is six-dimensional, this is enough to deduce
from Tablethat [y 1 Csy =T7®Ts®Ty (in particular,
I's and T'y must appear equally in the decomposition be-
cause the character of Cp is zero and I'; must also appear
the same number of times as I's ® I'y because the char-
acter of Cj is zero). Thus, we have shown that Tyt Cop
is an irreducible representation of Cs, while T'y 1 Cg, is
a reducible representation of Cy,,.

We now notice that the line segment, aq, with 0 < a <
1, has Gy as its site-symmetry group and, further, that
the end points of the line are (0,0) and q. Thus, the band
representations induced from points on this line furnish a
homotopy that smoothly connects the band representa-
tions induced from I's on the 3¢ position and T7®Ts@® Ty
on the la position. Since the latter representation is
composite (by Condition , the former is also compos-
ite. This explicitly shows why I's 1 G induced from the
3c position is composite, even though the 3¢ position is
maximal. However, if time reversal symmetry is imposed,
['s 1 G is a pEBR because the 1D homotopy does not
obey time reversal symmetry in real space, as discussed
in Sec[VC] Thus, in a time reversal symmetric system, if
the bands induced from the 3c position are gapped, then
the gap is topological.
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Appendix G: Frobenius-Schur indicator: time
reversal symmetry in real space

The reality of an irreducible representation, p, of a
group, G, is determined by computing the Frobenius-

Schur indicator:

1 if p is real

B(p) = ﬁ S x(g?) = {0

geG —1

if p is complex ,

if p is quaternionic
(G1)

where the sum is over all elements in G, including the

identity.

If p is real, then there exists an antiunitary time-
reversal operator, 7'y, that commutes with all unitary
symmetry operations and satisfies TJQr =1 Ifpisa
single-valued group representation, this means it is time-
reversal invariant. On the other hand, if p is a double-
valued representation, this precludes the possibility of
finding a T_ satisfying T2 = —1 (this follows from
Schur’s Lemma, c. f. Ref. B6); in order to have a time-
reversal invariant system we must double the representa-
tion to p @ p. We can then define T_ =T, ® (ioy).

The situation is reversed for ®(p) = —1. In this case, p
comes equipped with an antiunitary time-reversal opera-
tor T_ satisfying T2 = —1. Thus, if p is a double-valued
group representation, it is time-reversal invariant. But, if
p is a single-valued group representation, we must double
it to p @ p in order to define T} = T_ ® (io,) satisfying
T2 = 1.

Lastly, no time-reversal operation can be defined for
complex representations, which satisfy ®(p) = 0. For
either single- or double-valued representations, the pres-
ence of time-reversal requires the representation to dou-
ble to p®p*. This doubled representation is time-reversal
invariant: for single group representations we then take
T = K ® 0., while for double-valued group representa-
tions we take T' = K ® ioy.
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