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We present ab initio calculations of the photoemission spectra of bulk sodium using different
flavors of the cumulant expansion approximation for the Green’s function. In particular, we study
the dispersion and intensity of the plasmon satellites. We show that the satellite spectrum is
much more sensitive to many details than the quasi-particle spectrum, which suggests that the
experimental investigation of satellites could yield additional information beyond the usual studies
of the band structure. In particular, a comparison to the homogeneous electron gas shows that
the satellites are influenced by the crystal environment, although the crystal potential in sodium is
weak. Moreover, the temperature dependence of the lattice constant is reflected in the position of
the satellites. Details of the screening also play an important role; in particular, the contribution
of transitions from 2s and 2p semi-core levels influences the satellites, but not the quasi-particle.
Moreover, inclusion of contributions to the screening beyond the RPA has an effect on the satellites.
Finally, we elucidate the importance of the coupling of electrons and holes by comparing the results
of the time-ordered (TOC) and the retarded (RC) cumulant expansion approximations. Again,
we find small but noticeable differences. Since all the small effects add up, our most advanced
calculation yields a satellite position which is improved with respect to previous calculations by
almost one eV. This stresses the fact that the calculation of satellites is much more delicate than
the calculation of a quasi-particle band structure.
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I. INTRODUCTION

Photoemission spectroscopy has proved increasingly
useful in the elucidation of the electronic properties
of materials, since it provides both quasi-particle band
structures, with information of one-particle-like excita-
tions, and satellite structures that reflect the coupling to
bosonic excitations such as phonons, plasmons, magnons,
etc..1 Accurate descriptions of photoemission spectra
from ab initio calculations have been a challenge for ages.
Currently, the most widely used approach for mod-

erately correlated materials is the GW approximation
(GWA) proposed by L. Hedin in 1965.2 In the GWA, the
one-particle Green’s function is determined by a Dyson
equation G = GH +GHΣxcG, where GH is the Hartree
Green’s function, and Σxc is a complex, non-local, and
frequency dependent self-energy that is approximated as
a convolution of the one-particle Green’s function G and
the dynamically screened Coulomb interaction W , lead-
ing to Σxc = GW . The GWA has become the state-of-
the-art approach to compute quasi-particle band struc-
tures. However, one of its notable shortcomings is the
poor description of the satellite structures in photoemis-
sion spectra.3 Since plasmons are the dominant struc-
tures in the inverse dielectric function ǫ−1 and hence in
W = ǫ−1vc, where vc is the bare Coulomb interaction,
one might suppose that plasmon satellites should be well
described by the GWA. However, this is not the case
in practice. An example is the spurious prediction of a
sharp plasmaron satellite, which has been contradicted

experimentally.4–7 Moreover, the GWA satellites due to
plasmons are generally too far from the quasi-particle
energy compared to the experiment.6–12

Alternatively, the cumulant expansion approximation
(CEA) has been quite promising for giving a better de-
scription of plasmon satellites in photoemission spectra
in a number of systems.6–20 The CEA was inspired by
the exact Green’s function of an electron-boson model
hamiltonian for a core level21 and has been hence exten-
sively used for core-level photoemission (see e.g.22–25),
and also in other contexts, as for the electron-phonon
interaction and the polaron problem (see e.g.26–30), or
for modeling ultrafast electron dynamics (see e.g.31–33).
The CEA extrapolates the exact cumulant average of
the evolution operator34 to obtain an approximate ex-
ponential representation of the Green’s function in the
time-domain G(t) = GH(t)eC(t), the expansion of which
yields a Poisson series of satellites in the spectral func-
tion A(ω) = π−1| ImG(ω)|, consistent with experimental
observations. Moreover, to lowest order in the screened
interaction the cumulant function C(t) can be expressed
in terms of the GW self-energy, and it is therefore com-
putationally no more demanding than the GWA itself.

The number of ab initio CEA calculations to date is
still relatively limited. Therefore, many details remain
to be understood and settled. First, better agreement of
CEA results with experiment is expected in insulators,
semiconductors, or core levels of metals than in metal
valence bands.16 The reason is that the traditional time-
ordered cumulant (TOC) is exact only in the limit of an



2

approximate core-level hamiltonian,21 or for an approxi-
mation that decouples different orbitals.6,16 Both of these
approximations assume that at zero temperature the oc-
cupation numbers are either 0 or 1, which is certainly
not true close to the Fermi level of metals. A number of
efforts have been made in order to go beyond the TOC to
describe systems with partially occupied states. For ex-
ample, the retarded cumulant (RC) approximation was
recently proposed,35,36 where both the Green’s function
and the self-energy appearing in the CEA are replaced by
their retarded counterparts. Consequently, while within
the TOC unoccupied states do not produce satellites be-
low the Fermi level, these additional features, which are a
signature of coupling between occupied and unoccupied
states, have been obtained in the homogeneous electron
gas by using the RC.35 Second, as pointed out above, the
calculations rely on a GWA self-energy, which has been
extensively studied for calculations of quasi-particle band
structures. However, the insight gained from these stud-
ies is not necessarily transferable to the satellites, which
are considerably enhanced by the CEA with respect to
the GWA calculation. Indeed, our work shows that sev-
eral effects influence the satellites, whereas they can be
often overlooked for the quasi-particles. These include
mild changes in the crystal environment and the lattice
constant, the contribution of core levels, and the approx-
imation used for the screening.
We illustrate these points by performing both TOC

and RC calculations for the valence photoemission spec-
trum of bulk sodium. Our most detailed calculation,
which take into account all the aspects mentioned above,
leads to an improvement of the satellite position of al-
most one eV with respect to previous calculations16, as
compared to experiment37.
This paper starts in Sec. II with a brief introduction to

the theoretical framework, where those aspects are high-
lighted that are important for the subsequent analysis.
In Sec. III the results of the time-ordered and the re-
tarded CEA are compared. Sec. IV discusses the effects
of the crystal environment and the semi-core transitions
on the spectra. Sec. V deals with the approximations
used to calculate the screening. In Sec. VI we compare
our result to experiment. Finally, Sec. VII contains the
conclusions. Computational details are relegated to an
appendix.

II. THEORETICAL FRAMEWORK

In this section we summarize the main theoretical in-
gredients. The purpose of the section is to highlight the
ideas behind the existing cumulant approximations, to
explain in which way they constitute an improvement
with respect to the GWA, and what is the difference be-
tween various cumulant flavors. It is a summary section
referring to previous work in the literature.
The subject of interest here are the diagonal elements

of the one-body Green’s function at equilibrium at zero

temperature. It describes electron addition and removal
to a many-body system, expressed in terms of the greater
(>) and lesser (<) components

G>
k (τ) =− i〈N |ck(τ)c

†
k(0)|N〉

G<
k (τ) = + i〈N |c†k(0)ck(τ)|N〉,

(1)

where we have defined the creation and annihilation op-

erators c†k and ck, respectively, for an electron in a state
with quantum number k (note that in a crystal k stands
in general for a band n and k-point), which act on the
ground-state |N〉 of N interacting electrons.
These components can be combined in various ways,

which are equivalent if observables are calculated consis-
tently. In particular, the time-ordered Green’s function
reads

GT
k (τ) = θ(τ)G>

k (τ) + θ(−τ)G<
k (τ) (2)

and the retarded Green’s function is

GR
k (τ) = θ(τ)[G>

k (τ) −G<
k (τ)] (3)

In both cases, the diagonal elements of the spectral func-
tion can be calculated as

Ak(ω) =
i

2π
[G>

k (ω)−G<
k (ω)]

=
1

π
|ImGT

k (ω)| = −
1

π
ImGR

k (ω).

(4)

For a not too strongly correlated material Ak(ω) contains
in general a quasi-particle (QP) peak, which is a broad-
ened and shifted reminder of the single-particle peak
in the non-interacting spectrum, and satellites, which
are additional structures to which weight is transferred
from the quasi-particle peak. The latter has therefore
less weight than in the non-interacting case. The quasi-
particles constitute the band structure in a solid.
Often, the Green’s function is calculated from the

Dyson equation, which is an integral equation whose ker-
nel is the self-energy. Today the state-of-the-art approach
for band structure calculations is the GW approxima-
tion for the self-energy. However, it has been known for
a long time that satellites in the spectral function are
less well described by the GWA than quasi-particle en-
ergies. This emerges most clearly when one considers
simple models, such as a hamiltonian consisting of a sin-
gle fermionic level coupled to bosons. In our case, the
boson represents a dominant excitation in the dynami-
cally screened Coulomb interaction W . The model has
been solved exactly by Langreth in 197021. He found
that the exact spectral function consists of one QP peak
followed by a Poisson series of boson replica. The cor-
responding Green’s function G(τ) can be written as the
non-interacting Green’s function G0(τ) multiplied by an
exponential eC(τ), where C is the cumulant that contains
the bosons. The GWA, on the other side, yields a good
description of the QP energy but a poor satellite spec-
trum. Indeed, the GWA corresponds in the model to a
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second-order expansion of the self-energy in the coupling
constant g. As a consequence, quantities such as the QP
renormalization are correct to first order in g2, but just
one satellite appears, which can be interpreted as an av-
erage representing the whole satellite series of the exact
spectrum38.
The simple model of a single fermion level is reason-

able to represent deep core states and, indeed, core-level
photoemission spectra are often well described by a spec-
tral function of the exponential (cumulant) form. When
one goes beyond isolated levels, the picture of indepen-
dent quasi-particles coupled to bosons remains often rea-
sonable. Also for a two-level model a cumulant Green’s
function is a much better approximation to the exact so-
lution than the GWA39, in a wide parameter range. For
the general case and real materials, approximate cumu-
lant Green’s functions have been derived in various ways,
based for example on diagrammatic arguments30,39–42,
on the equation of motion for the one-body Green’s
function43, on the Kadanoff-Baym equations6, or start-
ing from the Dyson equation and imposing a cumulant
form on the Green’s function8. In all cumulant approx-
imations, greater and lesser components of the Green’s
function are of the form

G<>
k (τ) ∝ e−iεkτeC

<>
k

(τ) , (5)

where εk is a non-interacting or mean-field energy for a
state k. The rationale underlying this exponential ansatz
for diagonal Green’s function is that it becomes exact if
the vertices of quasi-particle interaction with the heat-
bath excitations (i.e. with other quasi-particles) are con-
strained to the propagation interval (0, τ), likewise in
the core hole problem21,40. The cumulant Ck contains a
quasi-particle correction, the quasi-particle renormaliza-
tion and the seed for the satellites that appear when the
exponential is expanded. The difference between various
cumulant flavors appears in the details of the ingredients.
Since beyond the model of an isolated level approxima-
tions have to be made, these differences are linked to the
coupling between levels, and in particular, to the coupling
between occupied and empty states, which is treated dif-
ferently in different derivations.
The easiest way to illustrate this is to follow the deriva-

tions of8 and the subsequent35: These derivations are
based on the ansatz (5), and the cumulant is found by
imposing that the Green’s function should be exact to
first order in W . The differences appear in the details of
the ansatz.
In the case of Ref. 8, for an occupied state k the

Green’s function reads

Gtoc
k (τ) = iθ(−τ)e−iεkτeCk(τ) . (6)

In this ansatz only occupied single-particle states con-
tribute to the electron removal spectrum; similarly, the
electron addition spectrum is built with unoccupied
states only. In other words, G>

k = 0 when k < kF .
In Ref. 35 the cumulant form was postulated for the

retarded Green’s function, namely

Grc
k (τ) = −iθ(τ)e−iεkτeC

R
k (τ) . (7)

In this case, occupied and empty states k can contribute
to both electron addition and removal.
In both cases, the unknown Ck(τ) is found by con-

straining the Green’s function to the ansatz and by de-
termining the unknown cumulant function to first order
in W from the Dyson equation. The main ingredient
that appears in the resulting expressions is the GW self-
energy, since it is of first order in W . This leads to the
fact that in all cases a GW quasi-particle correction re-
sults, and the method is in general referred to as the
GW+C method. In the case of Ref. 8 the Dyson equa-
tion in its time-ordered version was used, whereas the
Dyson equation for the retarded Green’s function ap-
pears in Ref. 35. At zero temperature both versions are
of course in principle exact and fully equivalent, but the
different approximations in the ansatz lead to a different
final result.
In the time-ordered case the occupied and empty

spaces are decoupled. There are minor variations due
to different points where this decoupling is done; here we
concentrate on the TOC of Ref. 6,16 where the cumulant
for an occupied state is

Ck(τ) =
1

π

∫ µ−εk

−∞

dω|ImΣk,xc(ω + εk)|
e−iωτ − 1

ω2
, (8)

which is to be used in (6). The analogous TOC for an
unoccupied state can be found in13,14. The self-energy
Σk,xc is calculated in a G0W0 scheme18, where W0 is
obtained using Kohn-Sham ingredients and G0 is a quasi-
particle (mean-field) choice that is optimized38,44,45 in
an energy-self-consistent scheme in such a way that the
quasi-particle energy εk is equal to εk,H + ReΣk,xc(εk),
with εk,H the Hartree part. Note that for hole states εk
is smaller than the Fermi energy µ.
The cumulant (8) creates satellites in the spectral func-

tion for an occupied state k only on the removal side,
ω < εk. Similarly, satellites for an unoccupied state are
found only in the addition sector. This is perfectly jus-
tified for the deep core levels that are indeed decoupled
from the high lying empty states, but it is questionable
when one approaches the Fermi surface.
Indeed, near the Fermi surface the spectral function

should be more and more symmetric, which means that
for k ≈ kF satellites of similar weight should be found
both in the addition and in the removal sectors. This
can by definition not be achieved by the ansatz (6). The
RC ansatz (7), instead, treats occupied and empty states
on the same footing. Therefore the symmetry is restored
and one may expect that the RC ansatz is more suitable
close to the Fermi surface.
By requiring that the first-order expansion of the re-

tarded Dyson equation and of the RC ansatz be the same,
the RC cumulant becomes35

CR
k (τ) =

1

π

∫ ∞

−∞

dω
∣

∣ImΣR
k,xc(ω + εk)

∣

∣

e−iωτ − 1

ω2
. (9)



4

Comparison with Eq. (8) shows that the difference
in the cumulant functions is the frequency integration
range: the TOC only integrates the hole part of the self-
energy (i.e., corresponding to ω < µ), whereas the RC
integrates both hole and electron parts.
Both the TOC and the RC are exact in the case of

an isolated level coupled to bosons. Beyond this, both
are approximations, based on (i) a linear response ap-
proximation which identifies the boson with the screened
Coulomb interaction W ; (ii) an ansatz, or the choice of
diagrams of lowest order in W for the cumulant21 such
that the Green’s function is of the form (5); (iii) the hy-
pothesis that one can concentrate on diagonal elements
only, and in particular, that the GW self-energy is di-
agonal in the basis of single-particle states. The justifi-
cation for these approximations is a combination of rig-
orous mathematical derivations, physical intuition (such
as a choice of diagrams, or the electron-boson picture
itself) and experience (which supports for example the
diagonal approximation of the self-energy). However, it
is notoriously difficult to treat the coupling of addition
and removal spaces beyond the GWA in a systematic and
physically meaningful way (see e.g.18,39,46), and the ap-
proximations have still to be judged by their results, both
for models and real materials.
In order to illustrate the physical meaning of the dif-

ferent terms in the cumulant function (8), we consider a
simple electron-boson model time-ordered self-energy:39

Σmd(ω) =
g21/2

ω − ε1 + ωp − iη
+

g22/2

ω − ε2 − ωp + iη
, (10)

where g1 and g2 denote the electron-plasmon coupling
constant at each orbital, ωp is a non-dispersing plasmon
energy, ε1 < µ and ε2 > µ are the energies of two elec-
tronic orbitals representing hole and electron state, re-
spectively, and η → 0+ is an infinitesimal positive num-
ber. The imaginary part ImΣmd = (π/2)[g21δ(ω − ε1 +
ωp)−g22δ(ω−ε2−ωp)] contains one δ-peak at ω = ε1−ωp

with weight g21/2 and another one at ω = ε2 + ωp with
weight g22/2.
Using this model self-energy for the TOC cumulant

function (8), we have

C(τ) =
g21
2ω2

p

eiωpτ −
g21
2ω2

p

. (11)

The physical meaning of each term in C(τ) becomes clear
in Eq. (6): the first term generates a series of plas-
mon satellites at energies ωp away from the quasi-particle
energy εtoc. The second term gives the quasi-particle
renormalization factor Ztoc = exp

{

−g21/(2ω
2
p)
}

, which
measures the spectral weight corresponding to the quasi-
particle excitation, whereas (1 − Ztoc) goes into the rest
of the spectral function, including satellites.
When Σmd is instead used in the CR (9), we have for

the matrix element of G in the hole state with energy ε1:

CR(τ) =
g21
2ω2

p

eiωpτ +
g22
2ω̃2

p

e−iω̃pτ −
g21
2ω2

p

−
g22
2ω̃2

p

, (12)

where ω̃p = ωp + ∆, and ∆ = ε2 − ε1 the quasi-particle
energy difference between the two orbitals.
Two more terms appear in CR with respect to the

time-ordered C due to the electron part of Σmd. The
first new term generates a series of plasmon satellites at
energies equal ω̃p away from the quasi-particle energy ε1.
Due to the minus sign in the exponential, these satellites
are placed on the high energy side of ε1. Therefore, the
RC has satellite on both sides of the quasi-particle peak in
the spectral function. The second new term modifies the
quasi-particle renormalization factor, such that Zrc =
exp

{

−g21/(2ω
2
p)− g22/(2ω̃

2
p)
}

.
Analogously, the RC spectral function of the electron

state (i.e., orbital with quasi-particle energy ε2) also con-
tains satellites with energy below the Fermi energy. As
a consequence, in order to have the complete RC elec-
tron removal spectrum, one also has to sum the spectral
functions of the partially occupied electron states.
For the two-level electron-boson coupling model39 the

TOC and RC results can be compared to the exact ones.
As shown in47, the RC is clearly superior in the parame-
ter range of interest here. Of course, the model is a very
rough simplification with respect to the real materials,
where we have one or more dispersing bands.
The GW self-energy of a real system can still be written

in the form of electron-boson coupling, but more poles
appear.48 For each state ℓ, its diagonal matrix element
contains the sum of all valence and conduction states j
coupled with many different bosonic excitations s, and
the time-ordered self-energy reads

Σℓℓ
xc(ω) =

∑

j,s6=0

|V s
ℓj |

2

ω − εj + (ωs − iη)sgn(µ− εj)
. (13)

Here εj are the quasi-particle energies, ωs = E(N, s) −
E(N, 0) are the neutral excitation energies that corre-
spond to the energy differences between the N -particle
excited state s and the N -particle ground state, and
V s
ℓj are the fluctuation potentials, which determine the

strength of the electron-boson coupling. Often, the sum
over excitations s can be approximated by a small num-
ber of dominant excitations, such as plasmons. In the
following, we will disentangle the different contributions
by examining separately the various ingredients entering
Eq. (13), and hence the cumulant expansions for G in
Eqs. (8)-(9).
In a solid, it is convenient to analyze the loss func-

tion L(q, ω), which can be directly measured by inelas-
tic x-ray scattering (IXS) or electron-energy-loss spectro-
scopies (EELS):49

L(q, ω) = − Im ǫ−1
M (q, ω) =

ǫ2(q, ω)

ǫ21(q, ω) + ǫ22(q, ω)
, (14)

where ǫM = ǫ1+iǫ2 is the complex macroscopic dielectric
function. The peaks of the loss function, which generally
depend on the wavevector q (i.e., the experimental mo-
mentum transfer), correspond to the neutral excitations
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ωs in (13). In particular, the plasmon energies ωpl(q)
correspond to the peaks in the loss function for which
ǫ1(q, ωpl(q)) = 0.
Eq. (13) shows that the self-energy is an average over

the couplings of the single-particle states ℓ with the plas-
mons (and other electron-hole excitations) at all momen-
tum transfers q. As a consequence, the plasmon en-
ergy ωpl(q = 0) is in general different from the plasmon
satellite energies ωps in the spectral function, which for
each state are defined as the energy distance between the
quasi-particle and first plasmon satellite.
In the GWA the inverse dielectric function ǫ−1 and

the loss function are often calculated within the random-
phase approximation (RPA). However, one may go
beyond the RPA by using time-dependent density-
functional theory (TDDFT)50,51, where the solution of
the Dyson equation for the polarizability χ = χ0+χ0(vc+
fxc)χ yields ǫ−1 = 1 + vcχ. While the RPA corresponds
to setting the exchange-correlation kernel fxc to 0 and
evaluating the independent-particle polarizability χ0 in
some mean-field approximation, the most widely used ap-
proximation in TDDFT is the adiabatic local-density ap-
proximation (ALDA)52,53. In general, the ALDA yields
plasmon spectra in better agreement with EELS and IXS
experiments than the RPA.54,55 Therefore we will investi-
gate whether the ALDA also improves plasmon satellites
in photoemission spectra.

III. TIME-ORDERED VERSUS RETARDED

CUMULANT APPROXIMATION

The RC has been applied to the homogeneous electron
gas,35 but it remains interesting to investigate whether
the RC improves over the TOC for the spectral function
of a real metal like sodium. To this end, we perform ab

initio TOC and RC calculations for bulk sodium, using
the computational ingredients summarized in App. A.
The TOC and RC results are compared in Fig. 1, which
shows the k-resolved spectral functions A(k, ω) along the
ΓN direction for the sodium valence band, crossing the
Fermi level at kF ∼ 0.49 a.u.. At k = Γ, which is at
the bottom of band, and for states close to it, the TOC
and the RC spectral functions are very similar for ω < µ.
In agreement with previous TOC calculations8,16, there
is a prominent quasi-particle peak which has a parabolic
dispersion (see Fig. 2) and two satellites that follow the
quasi-particle dispersion at a distance of ∼ 5.84 eV and
∼ 11.64 eV to the quasi-particle band, respectively. This
similar dispersion is analogous to the situation in sili-
con, which has been investigated in15,17. The satellites
are slightly more intense in the TOC than in the RC,
as the renormalization factors are different in the two
cases. For ω > µ, the RC displays a non-zero spectral
weight, while the TOC is always 0 by definition. This
tail in the RC comes from the integration of the electron
part of ImΣxc, which is present in the RC but not in the
TOC. By approaching kF the differences between TOC
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Figure 1: k-resolved spectral functions A(k, ω) for the sodium
valence band along ΓN using TOC (red solid curve) and RC
(black dotted curve). The Fermi wavevector is kF = 0.49 a.u..
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Figure 2: The dispersion of quasi-particles (red), first (blue)
and second (green) satellites in TOC (solid curves) and RC
(stars). The stars with double size are satellites from states
above the Fermi level µ.

and RC spectral functions become significant: the unoc-
cupied part of the RC spectral function becomes larger,
also showing a pronounced satellite at about 6 eV above
µ. For k ∼ kF the RC is symmetric around µ. Finally for
k > kF [see Fig. 1(d)] we show only the RC, since this
matrix element of the hole TOC is zero. Interestingly,
for k > kF the RC still has a satellite for ω < µ, which
might be measurable by photoemission experiments.

Fig. 2 shows the dispersion of the band and the satel-
lites. While for occupied states the QP and the satel-
lites have the same parabolic dispersion, for unoccupied
states we find that the satellites in the RC spectral func-
tion below the Fermi level, which are denoted by stars
in the figure, do not follow the parabolic dispersion of
the quasi-particle band, becoming more flat and even in-
verting the curvature. This behavior can be understood
using the model equations (7), (9) and (10), by varying
the energy ε2 in order to simulate the dispersion of the
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Figure 3: (Main) The total k-summed spectra for the sodium
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plied by the room temperature Fermi function. (Inset) Zoom
on the first satellite. The two dashed vertical lines mark the
positions of the maximum of each satellite: their distance is
0.11 eV.

empty state.

Fig. 3 shows the valence spectral functions summed
over the first two bands, integrated over all k in the
Brillouin zone, and multiplied by the Fermi function for
T=300 K together with a 0.3 eV Gaussian broadening.
While qualitatively similar, the TOC and RC display
small quantitative differences for both the QP peak at
the Fermi level and the satellites (see the zoom around
the first satellite in the inset of Fig. 3). Notably the
maximum of the first satellite is more intense and closer
to the QP peak in the RC compared to the TOC. The
differences between TOC and RC are due to the different
renormalization factors and to the satellites of the unoc-
cupied states for ω < µ, which are present only in the
RC spectral functions.

The maximum of the RC satellite has a binding energy
that is 0.11 eV smaller than that of the TOC, bringing
it into better agreement with experiment. We conclude
that the RC leads to some small, but visible changes
in the valence photoemission spectra of a metal such as
sodium. Since the RC contains additional physics, one
may expect that this approximation is better than the
TOC. In the following we will present only RC spectral
functions.

IV. ENVIRONMENT EFFECTS ON THE

PLASMON SATELLITES

In this section we will study various contributions that
have a small, but visible influence on the satellites, while
they do not affect the quasi-particles. It should be noted
that all effects discussed here lead to changes of the same
sign, such that they add up and finally have a non-
negligible impact on the spectra.
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Figure 4: (Main) The total k-summed spectra of HEG (in
red) and sodium (in black), multiplied by the Fermi function.
(Inset) Zoom on the first satellite. The two dashed vertical
lines mark the positions of the maximum of each satellite:
their distance is 0.12 eV.
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Figure 5: k-resolved spectral functions A(k, ω) of sodium (red
curve with circles) and the HEG (black curve) at the Γ point
and close to Fermi level (kF ∼ 0.49 a.u.).

A. The lattice potential: comparing sodium and

the homogeneous electron gas

Sodium is the closest realization of the homogeneous
electron gas (HEG) model: the potential due to the ionic
lattice introduces only a very small perturbation of the
ideal HEG, the valence-band dispersion remains close to
parabolic and the Fermi surface close to spherical. The
spectral function of the HEG has been previously cal-
culated using both the TOC56–58 and the RC35,36 that
we employ here. By comparing sodium and the HEG
with the same electron density, here we can addition-
ally establish whether the lattice potential influences the
quasi-particle and satellite properties in the same way.
The integrated spectral functions for Na and the HEG,

which are displayed in Fig. 4, are very similar for the
quasi-particle peak at the chemical potential µ, whereas
their satellites are slightly different (see the zoom in the
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Figure 6: (a): Dispersion of quasi-particles (in red), first (in
blue) and second (in green) satellite of sodium (solid curves)
and of the HEG (stars) along the NΓN direction. (b)-(c) Com-
parison of the quasi-particle (red solid curves), first satellite
(blue dashed curve), and second satellite (green dots) disper-
sions of (b) sodium and (c) the HEG. The satellite energies
have been shifted in order to align all energies at the Γ point.

inset of Fig. 4). In the HEG the satellite has a larger
distance from the quasi-particle than in Na, resulting in
a larger binding energy. This is confirmed by comparing
in Fig. 5 the dispersion of the k-resolved spectra along
ΓN. While the quasi-particle bands overlap entirely in
the two cases, at each k point the distance between the
quasi-particle and the first satellite is larger in the HEG
than in Na. This difference is almost twice as big for
the second satellite [see Fig. 6(a)]. We also note that
the largest differences occur around the Γ point at the
bottom at the band, while around the Fermi level the
satellite positions get closer.
For a better comparison, Fig. 6(b)-(c) shows for both

sodium and the HEG the dispersion of the quasi-particle
band and the plasmon satellites, where the satellite en-
ergies have been shifted such that they coincide with the
quasi-particle at Γ. As already found in sodium (see Fig.
2), also in the HEG at the bottom of the band the satel-
lite band follows the parabolic dispersion of the quasi-
particle. When the state is instead close to Fermi level,
there is an abrupt change, yielding a flat dispersion and
a downwards bending. Since this feature is in common
to the HEG and Na, this property of the satellite disper-
sion must be due to the electronic interaction, while the
differences in the satellite energies between the HEG and
Na are caused by the lattice potential.
In order to understand the origin of these differences,

let us analyze the imaginary part of the self-energy
ImΣxc that enters Eq. (9), shown in Fig. 7. In both
sodium and the HEG, ImΣxc is characterized by a single
peak, which in the HEG is located at larger distances
from the corresponding quasi-particle peak than in Na
(note that the energy scale in the figure is given rela-
tive to the quasi-particle energy). This explains why the
satellites in the spectral functions are at higher binding
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Figure 7: The shifted imaginary part of self-energy of sodium
(red solid lines) and HEG (blue dashed lines) at different k-
points along ΓN in the sodium Brillouin zone. Only the re-
moval part ω < µ is shown. The Fermi wavevector is at
kF = 0.49 a.u..

energies in the HEG.

Approaching the Fermi level, the difference between
sodium and the HEG decreases, while the peak becomes
broader and asymmetric. The shape of ImΣxc can be di-
rectly linked, through Eq. (13), to the parabolic valence
band dispersion in Na and in the HEG. Typically, for a
given bosonic excitations s, the dominant contribution
to the sum over states j is selected by the coupling ma-
trix elements V s

ℓj and stems from states that are close, i.e.

ImΣℓℓ
xc is dominated by contributions with |kj − kℓ| < ∆.

When kℓ is at the bottom of the parabolic band, i.e. close
to Γ where the band is relative flat, neighboring states kj

for which V s
ℓj is significantly different from zero have en-

ergies εj very close each other. As the result, ImΣℓℓ
xc for

such a state ℓ has a sharp peak around εℓ − ωs. Instead,
when kℓ is away from Γ, where the band has a steeper
slope, ImΣℓℓ

xc is different from zero in a wider energy
range. At the same time, it becomes more asymmetric,
developing a long tail on the low-energy side. The reason
for the asymmetry is the availability of energies: close to
the Fermi level, there are fewer occupied state j with en-
ergy εj > εℓ, whereas many states with smaller energies
εj < εℓ contribute to the low-energy tail of the peak. Go-
ing towards the bottom of the valence band, the spectral
weight continuously moves towards the high-energy side
of the peak. At the bottom of the band, however, the
asymmetry is hidden by the fact that the peak is sharp.
Of course, this is a qualitative analysis, since the cou-
pling with bosonic excitations of different character and
energies ωs that are summed up to form the self-energy
complicates the picture.

Finally, in order to understand why the peak position
of ImΣxc in the HEG is always further from the quasi-
particle than in Na, we compare the loss functions, which
are shown in Fig. 8 as a function of momentum transfer q.
For q smaller than the wavevector qc ∼ 0.45 a.u, the peak
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Figure 8: The RPA loss functions of sodium (red curve) and
HEG (blue curve) at different momentum transfers q (in a.u.)

in the loss function corresponds to a plasmon resonance,
for which ǫ1 = 0 [see Eq. (14)]. Above qc the plasmon en-
ters the electron-hole continuum where the loss function
is dominated by ǫ2. In agreement with Ref. 59, the HEG
shows larger plasmon energies than sodium at all momen-
tum transfers. As q increases, the difference becomes
larger and larger: the plasmon in sodium is more and
more affected by band-structure effects and short-range
spatial inhomogeneities in the charge response become
more apparent. These observations suggest that low-
density regions have a stronger influence on the plasmon
energy of an inhomogeneous material than high-density
regions, such that the resulting plasmon energy is smaller
than what one would expect from the average density.
This difference in the plasmon energies explains why

the plasmon satellite has a larger binding energy in the
HEG than in Na. Since the difference in the peak position
of ImΣxc between sodium and the HEG is always smaller
than 0.2 eV (see Fig. 7), we can conclude that the loss
functions at small momentum transfers (i.e. q . 0.3 a.u.,
where the loss functions of the HEG and Na are similar),
are those which contribute mostly to ImΣxc and hence
to the position of the plasmon satellite in the spectral
functions.

B. Thermal expansion

The results above have been obtained with calculations
performed at temperature T = 0, and with a lattice pa-
rameter for sodium of 4.227 Å, which is the experimental
result measured at T = 5K. However, experiments are
often performed at room temperature, T = 293K. There
is no major influence of the electronic temperature, be-
sides the Fermi function in the spectra on this range of
temperatures, but thermal expansion may play an impor-
tant role. Indeed, by increasing the temperature from 5
K to room temperature, the lattice parameter of sodium
changes considerably, from 4.227 Å to 4.29 Å60. Since
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Figure 9: RPA Loss functions of sodium calculated with lat-
tice parameters corresponding to 5 K (red curve) and 293 K
(black curve) at different momentum transfers q (in a.u.).
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Figure 10: k-resolved spectral functions of sodium along the
ΓN direction using lattice parameters corresponding to 5 K
(black curve with dots) and 293 K (red solid curve) at the Γ
point and close to Fermi level (kF = 0.49 a.u.).

the plasmon energy at q = 0 is approximatively propor-
tional to the square root of the electronic density, we
expect that with the decrease of density at higher tem-
perature, the plasmon energy decreases as a consequence
of the lattice thermal expansion. Indeed, in Fig. 9 we
find that for all momentum transfers the plasmon res-
onance is located at lower energies in the loss function
calculated with the room-temperature lattice parameter
than in the 5 K result.

Extrapolating from the comparison between Na and
the HEG in Sec. IVA, one should expect a similar effect
on the spectral functions. Indeed, for all k points, the
plasmon satellites in Figs. 10-11 have smaller binding
energies at room temperature than at 5 K. Again, the
satellites are more affected by the thermal expansion than
the QP peaks, which remain almost unchanged.

This trend is confirmed by a calculation where we have
artificially expanded the lattice parameter to 4.44 Å for
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Figure 12: Comparison between Na with lattice parameter at
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parameter (a0 = 4.44 Å): k-resolved spectral functions (a) at
the Γ point and (b) close to the Fermi level; (c) Band and
satellite dispersions; (d) k-integrated spectral function.

the sake of demonstration. Fig. 12 shows that the satel-
lite band moves much closer to the QP band, which does
change, but to a much lesser extent: while the QP band-
width is reduced by 0.28 eV, the binding energy of the
maximum of the satellite peak decreases by 0.46 eV.

C. Core polarization

Transition from shallow core levels to empty states are
known to affect the loss function also at lower energies,
i.e., in the energy range of valence transitions.61–63 Since
we have found that the satellite in the spectral function is
very sensitive to small changes of the plasmon properties,
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Figure 13: The loss functions − Im ǫ−1 including different
transitions. The yellow filled curve contains all transitions
from 2s, 2p, 3s states. The red dashed and black solid curves
contain transitions from 2p + 3s and 3s only, respectively.
The black diamonds are calculated using a pseudopotential
containing only 3s electrons as valence states.

here we analyze whether those core polarization effects
have an influence also on the valence plasmon satellites
in the spectral function of sodium.
In order to investigate how the 2s and 2p core states

affect the loss function we have used two different pseu-
dopotentials: one that has only 3s as valence electrons
and another where also 2s and 2p are explicitly included
in the calculations.64 First of all, we have to make sure
that the errors inherent in the pseudopotential approach
do not bias our conclusions. To this end, we have ver-
ified that the two pseudopotentials give the same result
when only excitations from 3s states are taken into ac-
count. This is indeed the case, as one can see from the
comparison of the two pseudopotential results (black di-
amonds and black curve) in Fig. 13(a). In the next
step, we add transitions from 2s and 2p core levels to
the calculations. This leads to the yellow shaded curves,
which are redshifted with respect to the black curves for
all momentum transfers [see Fig. 13(a)-(d)]. This effect
is mainly due to the 2p electrons: results with [yellow
shaded curves] or without [red curve in Fig. 13(a)] the
2s are indistinguishable.
To understand the origin of the redshift of the loss

function, the real and imaginary parts of the dielectric
functions at momentum transfers q = 0.11 a.u. and
q = 0.45 a.u. are shown in Figs. 14 and 15, respec-
tively. When the transitions from core levels are included
in the calculation, at smaller energies ǫ2 is unchanged,
but at energies larger than 25 eV, which corresponds to
the core-level binding energies, a new structure appears.
As a consequence, through the Krames-Kronig relation,
ǫ1 is affected on a wider energy range. In particular the
position of its crossing with the zero axis is shifted, which
changes the plasmon peak in the loss function. This effect
is smaller at larger momentum transfers.
The core-polarization effect in the loss functions influ-
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Figure 15: Same as Fig. 14, but for q = 0.45 a.u..

ences the spectral functions for the sodium valence band
(see Fig. 16). As in the previous cases, the QP peak is
affected in a negligible way, while the plasmon satellite
energy in the k-integrated spectral function (see Fig. 17)
is reduced by about 0.23 eV by including the core-level
transitions in the screening calculation.

Altogether, the results presented in this and previous
two sections clearly illustrate that the plasmon satel-
lite is very sensitive to all the changes of the environ-
ment surrounding the quasi-particle excitation. The lat-
tice potential, the change in the lattice parameter, and
the polarization from the core electrons, have a much
stronger influence on the plasmon satellites than on the
quasi-particle peaks. This finding is consistent with other
observations; in particular, the drastic modification of
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Figure 16: k-resolved spectral functions A(k, ω) of sodium
taking into account the core polarization (black curve with
dots) and without core polarization (red curve) (a) at the Γ
point and (b) close to Fermi level (kF = 0.49 a.u.).

−10 −8 −6 −4 −2 0

ω−µ (eV)

0.00

0.02

0.04

0.06

0.08

0.10

A
(ω

) 
(e

V
−1

)

d :: k-summed spectra

with-core

no-core

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

k (N-Γ-N) (a.u.)

−8

−6

−4

−2

0

e
n

e
rg

y 
(e

V
)

c :: band Γ-N

with-core-QP

with-core-sat

no-core-QP

no-core-sat

Figure 17: (a) Band and satellite dispersions along ΓN and
(b) k-integrated spectral function, calculated with or without
the core polarization contribution.

plasmon excitations in bulk and at surfaces of Cu and
Ag due to polarization of occupied d-bands65. Another
example is the comparison of graphene and graphite in
Ref. 12: also in that case it was found that the pres-
ence of neighboring graphene planes in graphite affects
more the satellite than the QP spectra. This implies that
plasmon satellites in photoemission spectra are powerful
“detectors” for small variations of a material, and that
measuring and analyzing the satellites in photoemission
spectra, in addition to the quasi-particle peaks, may give
additional precious information.

V. THE SCREENED INTERACTION BEYOND

THE RPA

In the GWA the screening given by the inverse di-
electric function ǫ−1 is usually calculated at the level
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Figure 18: The loss functions − Im ǫ−1 of Na calculated in
RPA (black solid lines) and ALDA (red dashed lines) at dif-
ferent momentum transfers q in a.u..
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Figure 19: k-resolved spectral functions A(k, ω) of sodium
using RPA (black dotted curve) and ALDA screening (red
curve) (a) at the Γ point and (b) close to Fermi level (kF =
0.49 a.u.).

of the RPA. However, previous studies have shown that
in sodium, like in other materials, the ALDA yields loss
functions in better agreement with IXS experiments,59,63

since it leads to a redshift of the plasmon energy that in-
creases with the momentum transfer. This is confirmed
by the results reported in Fig. 18. One would there-
fore expect that the choice of the ALDA or the RPA for
the calculation of the screening should significantly affect
the plasmon satellites. On the other hand, our previous
analysis shows that the satellite position in the spectral
function is mainly determined by the plasmon energy at
small momentum transfers, where the difference between
the RPA and the ALDA, and the difference between the
RPA and experiment, are minor. This rises the ques-
tion of how important it is to go beyond the RPA in the
calculation of plasmon satellites, and whether the calcu-
lation that yields loss functions in better agreement with
IXS measurements also yields plasmon satellite spectra in
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Figure 20: (a) Band and satellite dispersions and (b) k-
integrated spectral functions of sodium using RPA and ALDA
screening.

better agreement with photoemission experiments. This
is a non-trivial question, and we can only give evidence,
since the quality of MBPT results is often influenced by
error canceling.
Going beyond the RPA for W corresponds to the in-

clusion of vertex corrections beyond the GWA for Σxc,
which has been an issue of intense research for decades.
In agreement with results from literature66–69, here we
find that passing from RPA to ALDA the QP bandwidth
decreases by 0.22 eV, while the QP peaks increase slightly
their width, implying a reduction of the QP lifetimes68

(see Fig. 19).
In line with the findings in the previous section, also

in this case we find that the change in the screening af-
fects more the satellites than the QPs [see Fig. 20(a)]:
the quasi-particle binding energy at Γ is reduced by 0.22
eV due to the ALDA, while the satellite binding energy
decreases by 0.37 eV. This leads to a decrease of the dis-
tance between the QP and the satellite of 0.15 eV, going
from RPA to ALDA. Also in the k-integrated spectral
function [see Fig. 20(b)], both the increase of the QP
width and a slight reduction of the binding energy of
the center of mass of the satellite peak are apparent.
This means that using the ALDA instead of the RPA
for the calculation of W , spectral functions are obtained
in slightly better agreement with photoemission exper-
iments. The comparison with experiment will be dis-
cussed more in detail in the next section.

VI. COMPARISON WITH EXPERIMENT

In Ref. 16 the spectral function of sodium valence was
calculated using the TOC together with RPA screening,
the 5K lattice constant and a valence only pseudopoten-
tial. Moreover, in the calculation of the self-energy the
screened interactionW (q) is summed over wavevectors q,
and it is difficult to evaluate the intraband contribution
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for q = 0. Since this contribution is vanishing when the
sum is converged with respect to the number q-points,
the intraband contribution for q = 0 was neglected in
Ref. 16 and in the present work. For any finite q-point
sampling, however, this neglect is an approximation. We
have checked that it introduces an error of 0.2 eV for the
q-point mesh that was used in Ref. 16. (Note that the
results presented here are different since we take intra-
band contributions for q = 0 approximately into account,
as explained in Sec. A, and therefore obtain much better
convergence). Altogether, a discrepancy with experiment
of almost one eV was found concerning the distance be-
tween the first plasmon satellite and the valence band,
and it was speculated that the RPA might be at least
partially responsible for this difference. As we have seen
in the previous sections, the RPA does indeed lead to an
overestimate of the QP-satellite distance of 0.15 eV, but
several other effects add up: together with the effects
of the lattice constant (0.15 eV), the core polarization
(0.23 eV) the intraband contribution (0.2 eV) and the
use of the RC instead of the TOC (0.11 eV), the total
improvement amounts to the significant change of about
0.84 eV.

While the comparison of peak positions with the exper-
imental ones can be done on a quantitative level, the com-
parison of spectra including spectral weight and shapes
is more delicate. For sodium, the ARPES data of Jensen
et al.

70,71 displayed a bandwidth reduction due to inter-
action effects that was larger than predicted from HEG
calculations, and a sharp peak at the Fermi energy for
photon energies where no hole excitation should be pos-
sible in a single-particle picture. These experimental re-
sults gave rise to controversial interpretations72,73, with
Overhauser74 proposing that the observed sharp peak
close to the Fermi level was a signature of the existence of
a charge-density wave, while Mahan and coworkers75–77

showed that a careful description of the photoemission
process itself was needed to reconcile theory and experi-
ment. This debate illustrates that for a detailed compar-
ison with experimental photoemission spectra, the calcu-
lation of the intrinsic spectral function alone is not suffi-
cient. However, the simulation of the photoemission pro-
cess is a complex task itself. We therefore limit ourselves
to a semi-quantitative comparison of spectra, following
the simplified approach used87 in Refs. 6,16.

The photoelectron leaving the sample undergoes scat-
tering events: these extrinsic losses sum with the ad-
ditional excitations induced by the photohole that are
seen as satellites in the intrinsic spectral function. More-
over, the interaction of the photoelectron and the pho-
tohole produces an interference effect that partially can-
cels with intrinsic and extrinsic contributions. In order
to take into account these extrinsic and interference ef-
fects in the calculation of the photocurrent, we adopt the
model of Hedin and coworkers78,79. Since this approach
has been developed for the time-ordered formalism only,
here we discuss these effects on the basis of the TOC
spectral function. We also included the secondary elec-

tron background using a Shirley profile80, we multiplied
the calculated spectral functions with a Fermi function
for T = 300 K and applied a Gaussian broadening of 0.255
eV corresponding to the experimental resolution37. The
final comparison between the calculated photocurrent for
photon energy hν = 1487 eV and the experimental data
from Ref. 37 is shown in Fig. 21.
The TOC intrinsic (black dashed curve) and intrinsic

plus extrinsic and interference effects (solid curve) spec-
tral functions are almost identical88 to the results of Ref.
16, with its overestimate of the QP-satellite distance of
0.8 eV, since besides a lightly different broadening (0.3
eV in 16, 0.25 eV in the present work) the curves have
been calculated using the same ingredients: RPA screen-
ing without intraband contributions, a valence only pseu-
dopotential, and the 5K lattice constant. Our best intrin-
sic spectral function, namely the RC result obtained at
the room temperature lattice constant and with ALDA
screening including core polarization as well as intraband
contributions, is given by the red dashed curve. The
quasi-particle peak of the two results is similar (the QP
maximum of the red and black dashed curves is at 0.49
and 0.68 eV binding energy, respectively). However, it
can be clearly seen that as outlined above, the binding en-
ergy of the first plasmon satellite in the new calculation is
about 0.8 eV smaller than the old one, such reducing sig-
nificantly the difference with respect to experiment. This
can be better appreciated when the full photoemission
experiment is simulated as explained above (magenta
curve). Concerning the spectral shape and intensities,
more work is needed: the experimental quasi-particle is
broader and slightly more symmetric than the calculated
one, which may be due to several reasons, like the ex-
perimental resolution or temperature effects beyond the
change in lattice constant (e.g. phonons). Moreover also
the photoionisation cross sections and the presence of
the surface (with the corresponding surface plasmons)
are known to play a role37. This also leads to an uncer-
tainty in the relative normalization of the spectra, which
are given in arbitrary units, and partially explain the
apparent difference in the weight of the satellites. How-
ever, our method to simulate extrinsic and interference
effects is admittedly quite crude, and one should not over-
interpret the results.

VII. CONCLUSION

We have presented a detailed study of the photoemis-
sion spectra of sodium and the homogeneous electron
gas, with a focus on plasmon satellites. This study is
motivated by the increasing use of cumulant expansion
approximations (CEAs) for the ab initio calculation of
photoemission spectra. While model studies in this con-
text are numerous, many details concerning quantitative
calculations remain to be elucidated.
The main conclusion of the present work is the high

sensitivity of satellites to many details of the calcula-
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Figure 21: The black and red dashed curves are intrinsic TOC
from Ref. 16 (using the 5 K lattice constant, transitions from
valence only, without intraband transitions, and RPA screen-
ing) and RC spectral functions (using room temperature lat-
tice constant, including transitions from semi-core and intra-
band transitions, and ALDA screening), respectively. The
TOC spectral function (using the 5 K lattice constant, tran-
sitions from valence only, without intraband transitions, and
RPA screening) with extrinsic and interference effects, to-
gether with secondary electron background (magenta solid
curve) is compared with experimental data from Ref. 37
(green dots). The black solid curve is obtained by adding the
extrinsic and interference effect on the black dashed curve.
All curves have been aligned on the low-binding energy side
of the QP.

tions and, strictly related, to many details of the real
material in experiments. Noticeable changes in the satel-
lite positions occur due to thermal expansion and due to
the effect of the crystal potential. Moreover, the semi-
core polarization modifies the satellite positions. These
effects are important to explain the measured spectra.37

On the computational side, improvements are also found
by using TDDFT in the adiabatic local density approxi-
mation instead of the RPA for the calculation of screen-
ing. Moreover, the RC version of the CEA instead of the
traditional TOC leads to a further small improvement of
the satellite position, and creates electron removal satel-
lites for spectral functions at k > kF which might be
measurable if sufficient experimental resolution in k and
energy is available. A fully quantitative comparison with
experiment is beyond the scope of this work, since pho-
toemission contains many effects that go beyond the in-
trinsic spectral function. In particular, the inclusion of
extrinsic and interference effects has up to now only been
done in a very approximate way, and with a prescription
that is limited to the TOC. However, our study yields
detailed insight about interesting features of the intrinsic
spectral functions and about the care that is needed in
the calculations, and it highlights the potential impact of
studies of the satellite part of photoemission spectra for
the understanding of materials.
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Appendix A: Computational details

We carry out energy-self-consistent GW calculations
(updating G, but keeping W fixed) using a plane
wave basis and norm-conserving Troullier-Martins-type
pseudopotentials81 as implemented in the ABINIT
code82. This scheme can be seen as an approximation
to an optimized quasi-particle calculation, such as in the
quasi-particle self-consistent GW scheme83. The update
of energies is consistent with Hedin’s suggestion of level
alignment in Ref. 48; it is important in order to ob-
tain the correct distance between the quasi-particle and
the satellite44,45. The Brillouin zone (BZ) of sodium
and homogeneous electron gas are both sampled using
a 20× 20× 20 grid mesh that yields 145 inequivalent k-
points in the irreducible Brillouin zone (IBZ) for sodium,
and 726 k-points for homogeneous electron gas, since
sodium is face-centered cubic and our homogeneous elec-
tron gas is simulated using a simple cubic structure. A
smearing temperature of 0.005 Ha was used for all the
calculations. This is a fictitious temperature that only
serves as a computational trick to speed up the k-point
convergence, which explains why we can still use a stan-
dard time-ordered formalism in the GW calculation (be-
sides the fit of the intraband contribution to the screen-
ing, see below).
The plane-wave cutoff of the LDA ground-state calcu-

lation was 6 Ha for the homogeneous electron gas, 16 Ha
for sodium with valence electrons only, and 200 Ha for
sodium containing core electrons. The converged param-
eters for the calculation of screening and self-energy are
reported in the table II, where the first part contains the
parameters for screening calculation and the second part
is for the self-energy calculation. The Lorentzian broad-
ening in both χ0 and Σ [e.g., η in Eq. (13)] are chosen to
be 0.1 eV in all GW calculations. For the loss functions
(see Figs. 8, 9, 13, 14, 15 and 18) the parameter η is
reduced to 0.001 eV in the calculation of χ0 and the final
spectra are convoluted with a Gaussian of 0.1 eV width.
Also all the spectral functions have been convoluted with
a Gaussian of 0.3 eV width, except in Fig. 21, where we
adopted a broadening of 0.255 eV corresponding to the
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experimental resolution.
In Tab. II, nband refers to the number of bands,

npwwfn and npweps are the number of plane waves repre-
senting the wave functions and the dielectric matrix, re-
spectively, and nfreqim, nfreqre are the number of imag-
inary and real frequencies, respectively. The maximum
real frequency is represented by freqremax. The number
of plane waves for the exchange part of the self-energy is
named npwsigx.
The intraband transitions in the dielectric function

for q = 0 are taken into account approximately using
ǫintra = 1− ω2

p/[ω(ω + iη)]68,84 where the parameters ωp

and η are fitted on the calculated retarded loss function
for small q 6= 0.

Table I: Parameters used in the intraband transitions

systems ωp (eV) η (eV)
HEG 6.39 0.2
Na-5k (valence) 5.96 0.289
Na-293k (valence) 5.857 0.274
Na-293k-core-rpa 5.449 0.248
Na-293k-core-alda 5.383 0.242

The spectra of the cumulant expansion approximations
are calculated using our cumulant code.85 The cumulant
code takes the outputs of the GW calculation from the
ABINIT code. In particular, we evaluate Eqs. (6), (8)
for the calculation of the time-ordered cumulant, and Eq.
(9) in the retarded cumulant calculation.

Table II: Parameters in the GW calculations. the upper part
refers to the calculation of W and the bottom part to the
calculation of Σxc, respectively.

Parameters HEG Na (valence) Na (core)
nband 30 60 60
npwwfn 50 100 1500
npweps 50 50 50
nfreqim 25 10 10
nfreqre 225 150 150
freqremax 25 eV 25 eV 25 eV
nband 30 60 60
npwwfn 50 200 9000
npwsigx 50 200 9000
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versité Paris-Saclay, France (2016), URL http://etsf.

polytechnique.fr/system/files/thesis_sky_0.pdf.
48 L. Hedin, J. Phys. Condens. Matter 11, R489 (1999), ISSN

0953-8984.
49 W. Schülke, Electron Dynamics by Inelastic X-Ray Scat-

tering, Oxford Series on Synchrotron Radiation (OUP Ox-
ford, 2007), ISBN 9780198510178.

50 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52,
997 (1984), URL https://link.aps.org/doi/10.1103/

PhysRevLett.52.997.
51 C. Ullrich, Time-Dependent Density-Functional Theory:

Concepts and Applications, Oxford Graduate Texts (OUP
Oxford, 2012), ISBN 9780199563029.

52 A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980),
URL https://link.aps.org/doi/10.1103/PhysRevA.

21.1561.
53 M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys.

Rev. Lett. 76, 1212 (1996), URL https://link.aps.org/

doi/10.1103/PhysRevLett.76.1212.
54 G. Onida, L. Reining, and A. Rubio, Reviews of Modern

Physics 74 (2002).
55 S. Botti, A. Schindlmayr, R. D. Sole, and L. Reining,

Reports on Progress in Physics 70, 357 (2007), URL
http://stacks.iop.org/0034-4885/70/i=3/a=R02.

56 B. Holm and F. Aryasetiawan, Phys. Rev. B 56,
12825 (1997), URL https://link.aps.org/doi/10.1103/

PhysRevB.56.12825.
57 F. Caruso and F. Giustino, The European Physical Journal

B 89, 238 (2016), ISSN 1434-6036, URL http://dx.doi.

org/10.1140/epjb/e2016-70028-4.
58 D. Vigil-Fowler, S. G. Louie, and J. Lischner, Phys. Rev. B

93, 235446 (2016), URL https://link.aps.org/doi/10.

1103/PhysRevB.93.235446.
59 M. Cazzaniga, H.-C. Weissker, S. Huotari, T. Pylkkänen,

P. Salvestrini, G. Monaco, G. Onida, and L. Reining, Phys.
Rev. B 84, 075109 (2011), URL https://link.aps.org/

doi/10.1103/PhysRevB.84.075109.
60 R. Wyckoff, Crystal structures, vol. 1 (Interscience Pub-

lishers, New York, 1963), 2nd ed.
61 M. Taut, Journal of Physics C: Solid State Physics 20,

2961 (1987), URL http://stacks.iop.org/0022-3719/

20/i=19/a=520.
62 K. Sturm, E. Zaremba, and K. Nuroh, Phys. Rev. B 42,

6973 (1990), URL https://link.aps.org/doi/10.1103/

PhysRevB.42.6973.
63 A. A. Quong and A. G. Eguiluz, Phys. Rev. Lett. 70,

3955 (1993), URL https://link.aps.org/doi/10.1103/

PhysRevLett.70.3955.
64 M. Gatti, I. V. Tokatly, and A. Rubio, Phys. Rev. Lett.

104, 216404 (2010), URL https://link.aps.org/doi/

10.1103/PhysRevLett.104.216404.
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