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Motivated by the recent developments on cluster Mott insulating materials such as the cluster
magnet LiZn2Mo3O8, we consider the strong plaquette charge ordered regime of the extended Hub-
bard model on a breathing Kagome lattice and reveal the properties of the cluster Mottness. The
plaquette charge order arises from the inter-site charge interaction and the collective motion of three
localized electrons on the hexagon plaquettes. This model leads naturally to a reduction of the lo-
cal moments by 2/3 as observed in LiZn2Mo3O8. Furthermore, at low temperatures each hexagon
plaquette contains an extra orbital-like degree of freedom in addition to the remaining spin 1/2. We
explore the consequence of this emergent orbital degree of freedom. We point out the interaction
between the local moments is naturally described by a Kugel-Khomskii spin-orbital model. We de-
velop a parton approach and suggest a spin liquid ground state with spinon Fermi surfaces for this
model. We further predict an emergent orbital order when the system is under a strong magnetic
field. Various experimental consequences for LiZn2Mo3O8 are discussed, including an argument that
the charge ordering must be short ranged if the charge per Mo is slightly off stoichiometry.

I. INTRODUCTION

Spin, charge, and orbital are three basic degrees of
freedom of condensed matter systems, and their mutual
interaction, interplay, and entanglement cover the ma-
jor topics of modern condensed matter physics1–4. In
conventional Mott insulators, the electron charge local-
ization creates the local spin moments at the lattice sites,
and the orbital degree of freedom becomes active when
the local crystal symmetry allows the degeneracy of the
atomic orbitals3. Recently, the cluster Mott insulator
emerge as a new type of Mott insulator in which the elec-
trons are localized inside the cluster5–13. As a result, the
keen interplay between the charge and the spin degrees
of freedom in cluster Mott insulators (CMI) is often quite
different from the conventional Mott insulator5–8. In par-
ticular, it was shown that the two-dimensional CMI of the
Kagome system6,8 with an extended Hubbard model at
the 1/6 electron filling may develop a plaquette charge or-
der14–18 on the hexagon plaquette (see Fig. 1). This pla-
quette charge order immediately impacts the spin degree
of freedom and modulates the spin properties by rescon-
structing the spin state within each plaquette. Such
a charge-driven spin-state-reconstruction is one crucial
property of the CMI in this system6.

Well known examples of the cluster magnets include
LiZn2Mo3O8, Li2InMo3O8

19, and ScZnMo3O8
20, where

the Mo electrons are in the CMI with the Mo electrons
localized in the smaller triangular clusters of the dis-
torted Kagome lattice (see Fig. 1)21–25. The distortion is
such that the up and down triangles have different bond
lengths and the lattice is often referred to as the breath-
ing kagome. Interestingly, the material LiZn2Mo3O8 ex-
periences two Curie regimes with distinct Curie-Weiss

temperatures and Curie constants22,23 in which the low
temperature Curie constant is 1/3 of the high tempera-
ture one and the low temperature Curie-Weiss temper-
ature is much smaller than the high temperature one.
Moreover, the system remains magnetically disordered
down to the lowest measured temperature, and the in-
elastic neutron scattering does observe a continuum of
excitations21. This is consistent with the proposal of
spin liquid ground state in this material. Partly inspired
by the experiments in LiZn2Mo3O8, we here explore the
strong plaquette charge ordered regime of the CMI on

FIG. 1. (Color online.) The breathing Kagome lattice with
plaquette charge order. The solid (dashed) lines represent
the up (down) triangles. The plauette charge order hosts
three electrons that are resonating on the hexagons with cir-
cles marked, and a1,a2 are two lattice vectors that connect
neighboring resonating hexagons. ‘R’ labels the resonating
hexagon, and ‘1,2,3,4,5,6’ label the six vertices.
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the breathing Kagome system where the electron charges
are localized on the resonating hexagon plaquettes (see
Fig. 1). In addition to the on-site repulsion, a large inter-
site repulsion is assumed which forbids the occupation of
neighboring sites. This leads to plaquette charge ordering
and the expansion of the unit cell, formed by a triangular
lattice of hexagons marked by the circles in Fig 1. The
low lying degree of freedom is the collective resonant ro-
tation of the three occupied sites on each hexagon (see
Fig. 2). To put this model in context of the earlier model
by Flint and Lee26, there the inter-site repulsion is as-
sumed to be weak and each up triangle is occupied by
one electron, and no correlation is assumed around the
hexagons. The up triangles form a triangular lattice and
a lattice distortion is postulated which creates a honey-
comb lattice of up triangles, with the spin at the center
of the honeycomb relatively isolated and responsible for
the local moments at low temperatures. Note that both
for this model and the current model, a tripling of the
unit cell is assumed. This has been searched for by X-
ray scattering but so far no new diffraction peaks have
been observed. This issue will be discussed in the Dis-
cussion section, where we point out that if the system
is slightly off stoichiometry, domain walls will form be-
tween the ordered states. Due to a special feature of
domain walls forming a honeycomb lattice27, it can be
shown that long range order is always destroyed, i.e. the
system can only have short range order. This may help
explain the absence of new diffraction spots and both
models may remain viable. We also point out that in the
Flint-Lee model addressed only the freeze out of 2/3 of
the spins at low temperatures, and the ultimate fate of
the local moments that remained was not discussed. In
the current model, we address both the freeze out and
the true ground state of this system and argue that due
to an emergent orbital degree of freedom, a spin liquid
state may form as the true ground state.

We also compare the current paper with a previous
work on a similar model6 which treats the weak plaquette
order regime. The current treatment of the CMI is anal-
ogous to the strong Mott regime of a conventional Mott
insulator, while the previous weak plaquette charge or-
dered regime6 is like the weak Mott regime (ie close to the
Mott transition) where the charge fluctuation may desta-
bilize the spin order and lead to a spin liquid28,29. We
find that in the strong charge ordered regime, the charge-
spin interaction appears in a much more straightforward
and transparent manner. We explain the local moment
reconstruction in the presence of the strong plaquette
charge order on the hexagon, giving rise to a net spin-
1/2 local moment on the hexagon. We point out that
there exists an emergent orbital-like degree of freedom.
This emergent orbitals are two-fold degenerate and pro-
tected by the symmetry of the hexagon plaquette. The
natural model, that describes the interaction between the
effective spin and the emergent orbital on the hexagon
plaquette, is the Kugel-Khomskii exchange model30. As
a comparison with the conventional Mott insulators, the

Kugel-Khomskii model is used to describe the exchange
interaction between the local moments when there exists
an orbital degeneracy for the atomic orbitals30.

For the Kugel-Khomskii model, we design a fermionic
parton approach to represent the effective spin and the
emergent orbital degrees of freedom, and propose a
spinon Fermi surface spin liquid ground state. We point
out that the emergent orbital generically creates non-
degenerate spinon bands and allows inter-band particle-
hole excitations. Specifically, the inter-band particle-hole
excitations would manifest as a finite-energy spinon con-
tinuum at the Γ point in the inelastic neutron scattering
and the optical measurement. Polarizing the spin de-
grees of freedom by applying strong magnetic fields, we
obtain a simple 120-degree compass model for the emer-
gent orbital interaction. We further predict that the sys-
tem selects a specific orbital order via order by quantum
disorder and supports a nearly gapless pseudo-Goldstone
mode. These results establish a new perspective on the
Mottness of the CMI.

The following part of the paper is organized as fol-
lows. In Sec. II, we introduce the extended Hubbard
model and explain the plaquette charge order. In Sec. III,
the explain the local moment structure of the resonating
hexagon in the strong plaquette charge ordered regime
and point out the fundamental existence of the emer-
gent orbital degree of freedom. In Sec. IV, we derive the
Kugel-Khomskii model that describes the exchange inter-
action between the spin and the orbital on the triangular
lattice formed by the resonating hexagons. In Sec. V, we
design a parton construction and suggest the features of
the spinon continuum for the proposed spinon Fermi sur-
face ground state. In Sec. VI, we explain the emergent
orbital order, quantum order by disorder effect of the
compass model for the orbitals, and the orbital excita-
tion when the spin is polarized by the external magnetic
field. In Sec. VII, we discuss the the relevance of this
model to LiZn2Mo3O8 and explore various experimental
consequences. We end with a broad view on the cluster
Mott insulating materials.

II. THE MICROSCOPIC MODEL AND THE
PLAQUETTE CHARGE ORDER

We start with the extended Hubbard model on the
breathing Kagome lattice (see Fig. 1),

H = −
∑
〈ij〉∈u

(t1c
†
iσcjσ + h.c.)−

∑
〈ij〉∈d

(t2c
†
iσcjσ + h.c.)

+
∑
〈ij〉∈u

V1ninj +
∑
〈ij〉∈d

V2ninj +
∑
i

Uni↑ni↓, (1)

where c†iσ (ciσ) creates (annihilates) an electron with spin
σ(=↑, ↓) at the lattice site i, ni(≡ ni↑+ni↓) is the electron
occupation number, and ‘u’ and ‘d’ refer to the up and
down triangles that are of different sizes, respectively.
Here, t1 and V1 (t2 and V2) are the electron hopping and
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FIG. 2. (Color online.) The correlated and collective motion
of the three electrons on the elementary hexagon. Arrow in-
dicates the hopping direction. Note that the hoppings of the
three electrons happen at the same time.

repulsion on neighboring sites of the up (down) triangles,
respectively. The electron filling is 1/6, i.e. one electron
per unit cell on the breathing Kagome lattice. This model
was suggested to capture the physics of the Mo-based
cluster magnets such as LiZn2Mo3O8 in which the Mo
atoms form an breathing Kagome lattice6,19,20.

The Hubbard U interaction for our system merely re-
moves the electron double occupancy on the lattice site,
but cannot localize the electrons on the lattice sites. The
electrons can move on the lattice without encountering
any double occupancy. This is quite different from the
conventional Mott insulator where the electrons are local-
ized on the lattice sites. It is the inter-site interactions, V1

and V2, that localize the electron on the triangular clus-
ters of the Kagome system. Despite being localized on
the triangular clusters, the electrons manage to fluctuate
in a collective fashion due to the extensive degeneracy of
the electron occupation configuration on the Kagome lat-
tice. As U is often quite large compared to t1, t2, V1, V2,
one could safely ignore the electron configurations with
any double occupancy. With a third-order degenerate
perturbation of the electron hoppings, we obtain an ef-
fective Hamiltonian that operates on the degenerate elec-
tron occupation manifold and is given as6

Heff = −
∑
7

∑
αβγ

[
K1(c†1αc6αc

†
5βc4βc

†
3γc2γ + h.c.)

+K2(c†1αc2αc
†
3βc4βc

†
5γc6γ + h.c.)

]
, (2)

where we have

K1 = 6t31/V
2
2 , K2 = 6t32/V

2
1 , (3)

and “1,2,3,4,5,6” refer to the six vertices on the elemen-
tary hexagon of the Kagome lattice. Heff describes the
correlated and collective motion of the three electrons on
the elementary hexagon (see Fig. 2). By mapping the
electron occupation to the dimer covering on the dual
honeycomb lattice6,31, the previous work has obtained
a plaquette charge order where the electrons preferen-
tially occupy 1/3 of the hexagons in a periodic fashion
(see Fig. 1)6,16–18,32,33. This plaquette charge order is a
quantum effect because the three electrons are resonating
on the hexagons and form a linear superposition of the
two occupation configurations6. In the strong plaquette

charge ordered limit, the electron (charge) occupation
wavefunction would be well approximated by a simple
product state with

|Ψ〉c =
∏
R

1√
2

[
|7R〉A + |7R〉B

]
, (4)

whereR refers to the position of the resonating hexagons,
and A and B label the two charge occupation configura-
tions of the three electons on the resonating hexagon (see
Fig. 1). The spin quantum number can still be trans-
ferred via the spin exchange interaction, so |Ψ〉c merely
represents the charge wavefunction.

III. THE EMERGENT ORBITALS AND THE
LOCAL MOMENTS

In this section, we focus on the strong plaquette charge
ordered regime and reveal the novel features of the local
moment structure. The three electrons are well localized
on the resonating hexagons but still move in the collec-
tive fashion that is governed by Heff. This collective mo-
tion tunnels the electron spins that are interacting with
the superexchange interaction at the same time. As a
comparison, the localized electrons on a lattice site of
a conventional Mott insulator are fully governed by the
atomic electron interactions and the Hund’s rules. Here,
the right model that describes the localized electrons on
an individual resonating hexagon is

H7R
= −K1

∑
αβγ

(c†1αc6αc
†
5βc4βc

†
3γc2γ + h.c.)

−K2

∑
αβγ

(c†1αc2αc
†
3βc4βc

†
5γc6γ + h.c.)

+Hex,R, (5)

where the superexchange interaction is given as

Hex,R = J
∑

〈〈ij〉〉∈7R

(Si · Sj −
1

4
)ninj . (6)

It is interesting to note that the above superexchange dif-
fers from the usual form of the exchange interaction by
having extra electron density opertors ni and nj . This is
because the positions of the electrons are not fixed due to
their collective tunneling on the hexagon plaquette. The
local Hilbert space of H7R

also differs significantly from
the on-site one for a conventional Mott insulator, and is
instead spanned by the electron states that are labelled
by both the positions and the spin quantum numbers
of the three resonating electrons. Because the electrons
are separated from each other by one lattice site due to
the repulsive interaction, the Hilbert space for the elec-
tron positions is highly constrained. For the resonating
hexagon centered at R, there are in total 16 states that
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are labelled by

|αβγ〉A ≡ |n1 = 0〉|n2 = 1, α〉|n3 = 0〉
× |n4 = 1, β〉|n5 = 0〉|n6 = 1, γ〉, (7)

|αβγ〉B ≡ |n1 = 1, α〉|n2 = 0〉|n3 = 1, β〉
× |n4 = 0〉|n5 = 1, γ〉|n6 = 0〉, (8)

where α, β, γ (=↑, ↓) refer to the electron spins at the
occupied site. Since the hexagonal Hamiltonian H7R

commutes with the total spin Stot and Sztot of the three
resonating electrons, we use {Stot, S

z
tot} to label the spin

states of the hexagon plaquette. From the spin composi-
tion rule for three electron spins, we have the following
relation

1

2
⊗ 1

2
⊗ 1

2
≡ 1

2
⊕ 1

2
⊕ 3

2
, (9)

where the left side are the product state of the three
electron spins and the right side are the total spin states
Stot. For both A and B occupation configurations, there
are eight spin states. Note that we have two pairs of
Stot = 1/2 states for each occupation configuration.

The two states with Stot = 3/2 are simply the ferro-
magnetic states and are certainly not favored by the anti-
ferromagnetic exchange interaction Hex,R. Directly solv-
ing the Hamiltonian H7R

, we find that when

J >
2

3

[
K1 +K2 − (K2

1 −K1K2 +K2
2 )

1
2

]
, (10)

the local ground states are four symmetric states with
Stot = 1/2. Here, the “symmetric” states refer to be-
ing symmetric between the A and B occupation config-
urations in Fig. 3. This is understood by the fact that
the collective motion of three electrons favors symmetric
states rather than antisymmetric ones. These four-fold
degenerate states can be effectively characterized by two
quantum numbers {sz, τz} with sz = ± 1

2 and τz = ± 1
2 ,

where sz refers to the total spin sz ≡ Sztot = ± 1
2 . The

pseudospin-1/2 operator τ refers to the emergent orbitals
that will be explained below.

The wavefunctions of the four degenerate states are
labelled by |τzsz〉R and are given as (to the order of
O(K2/K1)34),

|↑↑〉R =
1

2

[
|↑↑↓〉A − |↑↓↑〉A

+|↓↑↑〉B − |↑↑↓〉B
]
, (11)

|↓↑〉R =

√
3

6

[
2|↓↑↑〉A − |↑↓↑〉A − |↑↑↓〉A

+2|↑↓↑〉B − |↑↑↓〉B − |↓↑↑〉B
]
, (12)

and these other two states |↑↓〉R, |↓↓〉R are simply ob-
tained by applying a time-reversal transformation to the

FIG. 3. (Color online.) Three spin-singlet positions for both
A and B occupation configurations. The (orange) dimer refers
to the spin singlet, and the (red) arrow is the dangling spin.
The three spin-singlet configurations are related by the three-
fold rotation around the hexagon center.

above two states,

|↑↓〉R =
1

2

[
|↓↓↑〉A − |↓↑↓〉A

+|↑↓↓〉B − |↓↓↑〉B
]
, (13)

|↓↓〉R =

√
3

6

[
2|↑↓↓〉A − |↓↑↓〉A − |↓↓↑〉A

+2|↓↑↓〉B − |↓↓↑〉B − |↑↓↓〉B
]
. (14)

We clarify the physical origin of the four-fold degener-
acy of the above four states for the hexagon plaquette.
First, the two-fold degeneracy of sz = ±1/2 is simply pro-
tected by the time-reversal symmetry. The remaining
two-fold degeneracy comes from the point group symme-
try of the resonating hexagon. This is ready to see if we
fix the occupation configuration of the three electrons.
To be more specific, let us start with the A configuration
in the upper panel of Fig. 3. To optimize the antifer-
romagnetic exchange interaction, two electron spins out
of the three must form a spin singlet, leaving the third
electron as a dangling spin. As shown in Fig. 3, the spin
singlet can be formed between any pair of the electrons,
and the different arrangements of the spin singlet are re-
lated by the three-fold rotation. Although there seems to
be three possible singlet arrangements, only two of them
are linearly independent and are responsible for the two-
fold degeneracy. Likewise, for the B configuration on the
lower panel of Fig. 3, we again have two such degener-
ate states. When the three electrons start to move col-
lectively within the hexagon between the A and B con-
figurations, the corresponding states start to hybridize
and the symmetric states are favored energetically. The
two-fold degeneracy survives and is given as the τz =↑, ↓
states in Eqs. (11)-(14).

The three electrons are localized on the resonat-
ing hexagon but are delocalized within the resonating
hexagon. It is hard for them to move out of the res-
onating hexagon, but easy for them to move within the
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resonating hexagon. Due to this collective motion, the
wavefunctions of |τzsz〉 are extended and span across
the resonating hexagon, and the τz =↑, ↓ states behave
like two degenerate orbitals that are defined on the res-
onating hexagon. Since the degeneracy of τz =↑, ↓ states
originate from the arrangements of the spin singlets, the
pseudospin τ is even under the time-reversal transforma-
tion. The two emergent orbital states that are defined in
Eqs. (11) and (12) comprise the two-dimensional E-type
irreducible representation of the point group, and thus
their two-fold degeneracy is protected by the point group
symmetry of the resonating hexagon.

IV. THE KUGEL-KHOMSKII SPIN-ORBITAL
INTERACTION

In this section we study and derive the interaction be-
tween the spins and the emergent orbitals that live on
the neighboring resonating hexagons. This interaction is
necessarily of the Kugel-Khomskii type. Based on the
Kugel-Khomskii model, we obtain the Curie-Weiss tem-
perature and Curie constant in the strong plaquette or-
dered regime, and compare with the high temperature
results.

A. The Kugel-Khomskii model

The neighboring resonating hexagons are connected by
a “bow-tie” structure that is composed of the corner-
shared up and down triangles (see Fig. 4). The local
moment interaction comes from the remaining exchange
interaction between the two electron spins that reside on
the four exterior vertices of the bow-tie. To illustrate
the idea, we consider the bow-tie structure that connects
the two resonating hexagons centered at R and R+ a1

(see Fig. 1 and Fig. 4). To derive the local moment in-
teraction, we need to project the remaining electron spin
exchange interaction onto the four-fold degenerate local
moment states |τzsz〉 of each resonating hexagon. For
this purpose, we first write down the inter-hexagon ex-
change interaction between the electrons at the bow-tie
vertices,

H ′ex = −J
′

4
[n4(R) + n5(R)][n1(R+ a1) + n2(R+ a1)]

+J ′[S4(R)n4(R) + S5(R)n5(R)] · [S1(R+ a1)

×n1(R+ a1) + S2(R+ a1)n2(R+ a1)], (15)

where we have included the exchange interactions for
electrons at all four pairs of the external vertices. Again,
since the position of the electron is not fixed, the electron
number operator ni is introduced. The exchange paths
all go through the central vertex of the bow-tie and are
of equal length. Therefore, only one exchange coupling
J ′ is introduced for all the four pairs in Eq. (15). The
exchange coupling J ′ can be obtained from the fourth

FIG. 4. (Color online.) The bow-tie structure that connects
two neighboring resonating hexagons. In the upper right cor-
ner, we indicate the exchange interaction J ′ between two elec-
trons.

order perturbation theory and is given as

J ′ =
4t21t

2
2

UV 2
1

+
4t21t

2
2

UV 2
2

+
4t21t

2
2

UV1V2
, (16)

and the fifth order perturbation theory could introduce
more terms to J ′ without invoking double electron oc-
cupancy on a single lattice site. Moreover, since J ′ is
the exchange coupling between the spins in the strong
plaquette ordered regime, J ′ is expected to be weaker
than the intra-resonating-hexagon exchange coupling J
in Eq. (6).

We project H ′ex onto the local ground state manifold at
resonating hexagon sites R and R+a1 and then express
the resulting interaction in terms of the spin s and the
pseudospin τ . The effective interaction on other bonds
can be obtained likewise. The final local moment in-
teraction reduces to a Kugel-Khomskii model30 that is
defined on the triangular lattice formed by the resonat-
ing hexagons. To the order of O(K2/K1), the Kugel-
Khomskii model is given as

HKK =
J ′

9

∑
R

∑
µ=x,y,z

(sR · sR+aµ)

×[1 + 4TµR][1− 2TµR+aµ
], (17)

where the new set of pseudospin operators, Tµ’s, are de-
fined as

T xR = −1

2
τzR −

√
3

2
τxR, (18)

T yR = −1

2
τzR +

√
3

2
τxR, (19)

T zR = τzR, (20)

and ax = a1,ay = a2 and az = −a1 − a2. The particu-
lar expression of the Kugel-Khomskii model in Eq. (17)
originates from the choice of two orbital wave functions
in Eqs. (11)-(14). If a different set of orbital wave-
functions is chosen, the resulting Kugel-Khomskii model
would have a different form. In Eq. (17), the effective
exchange coupling is significantly reduced by after the
projection compared to the original exchange coupling
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J ′ in Eq. (15). The important factor 1/9 in front of this
equation can be understood physically as coming from
the fact that each spin is found in the bowtie structure
connecting two hexagons only 1/3 of the time.

B. The Curie-Weiss laws

Since the pseudospin τ is even under the time rever-
sal transformation and thus does not couple to the exter-
nal magnetic field, the low-temperature Curie-Weiss tem-
perature thus detects the spin-spin interaction, and from
the Kugel-Khomskii model HKK we directly compute the
Curie constant C and the Curie-Weiss temperature ΘCW

at the low temperature,

CL =
g2µ2

Bs(s+ 1)

3kB

N

3
, (21)

ΘL
CW = −2s(s+ 1)J ′

9
, (22)

where N is the total number of electrons, g is the Landé
factor, and “N/3” in CL means the active spin degrees
of freedom in the strong plaquette ordered phase com-
prise 1/3 of the total number of electrons. This is a
natural consequence due to the spin state reconstruc-
tion within each resonating hexagons. This result is con-
sistent with the low-temperature magnetic susceptibility
LiZn2Mo3O8

21–24.
To make a comparison with the high-temperature sus-

ceptibility, we consider the high temperature regime
where the plaquette charge order is present and the spin
singlet within the resonating hexagon plaquette is ther-
mally destroyed. In this regime, all the electron spins
contribute to the magnetic susceptibility. Therefore, the
Curie constant for this high-temperature regime is simply
given by

CH =
g2µ2

Bs(s+ 1)

3kB
N, (23)

and is three times larger than the low-temperature one.
Moreover, in this regime, Fig. 1 is a typical electron con-
figuration. For each electron, there are four neighboring
electrons that interact with this electron spin with the
pairwise spin interaction across the bow-tie structure.
Among these interactions, there are two intra-resonating-
hexagon interactions with the coupling J and two inter-
resonating-hexagon interaction J ′. Then the Curie-Weiss
temperature for this high-temperature regime is given as

ΘH
CW = −2s(s+ 1)

3
(J + J ′), (24)

and is 3(1 +J/J ′) times larger than the low-temperature
one. Since J ′ is expected to be less than J , the ratio
is larger than 6 and provides a separation of scale be-
tween the high temperature freezing of 2/3 of the spins
and the interaction among the remaining spins. In the
experiment on LiZn2Mo3O8, the two Curie-Weiss tem-
peratures are −220K and −14K respectively23.

V. PARTON CONSTRUCTION FOR THE
CANDIDATE SPIN LIQUID STATE

Like any other spin-orbital exchange models30, the
Kugel-Khomskii model HKK in our context involves
the spin-spin interaction, the pseudospin-pseudospin in-
teraction and the spin-pseudospin interaction, and all
these interactions are of the same energy scale. These
interactions together make the model analytically in-
tractable. In the absence of the spin-pseudospin inter-
action, the Heisenberg spin exchange model would favor
the conventional 120-degree state with a long-range or-
der. The spin-pseudospin interaction, however, competes
with the Heisenberg term, destabilizes the conventional
120-degree state and may potentially induce a spin liquid
state. This is because the quartic-like spin-pseudospin
interaction allows the local moment to fluctuate more ef-
fectively in the spin-pseudospin space. Such a spin liquid,
if exists, may be smoothly connected to the U(1) spin liq-
uid with spinon Fermi surfaces that was proposed for the
weak plaquette charge ordered regime in Ref. 6.

From the experimental side, a broad continuous exci-
tation has been discovered in the inelastic neutron scat-
tering measurement on powder samples. The authors
in Ref. 21 proposed a gapless spin liquid state. More-
over, the neutron spectral weight in the experiment is
not suppressed at low energies, which indicates that the
ground state cannot be a Dirac spin liquid. Based on
the experimental results, we here propose the candidate
ground state to a spin liquid with a spinon Fermi sur-
face. This phenomenological proposal is again consistent
with the previous suggestion from the weak coupling ap-
proach6. To demonstrate the phenomenological conse-
quence of this proposal, we develop a new parton con-
struction that is designed for our spin-orbital model and
suggest the experimental consequence of this candidate
state.

A. The parton construction

There are both spin and orbital degrees of freedom on a
single site R. To account for both of them, we introduce
the following fermionic parton representation,

τR =
∑
m,n

∑
α

1

2
f†RmασmnfRnα, (25)

sR =
∑
m

∑
α,β

1

2
f†RmασαβfRmβ , (26)

where m,n = ↑, ↓ refer to the pseudospin state for the
orbitals, α, β = ↑, ↓ refer to the spin state, and σ =
(σx, σy, σz) is the vector of Pauli matrices. To get back
to the physical Hilbert space, we further impose a Hilbert
space constraint∑

α

∑
m

f†RmαfRmα = 1. (27)
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FIG. 5. (a) Three fold rotation around the center of the pla-
quette. (b) The two fold rotation axis. (c) Another two fold
rotation axis.

Unlike the pure spin model, our spinon carries an extra
orbital index. This parton construction could be well
extended to other spin-orbital models.

B. The symmetry property of the spinons

The U(1) spin liquid with spinon Fermi surfaces was
proposed for the weak plaquette charge ordered regime6.
For this state, the spinon transforms identically like the
electron under the lattice transformation, and there is
no projective realization of the lattice symmetry. Since
we suggest that the possible spin liquid for our Kugel-
Khomskii model in the strong coupling regime is con-
nected to the ground state in the weak plaquette ordered
regime, we here explictly derive the symmetry transfor-
mation of the spinons in our context.

Let us consider a single plaquette atR, the symmetries
include the three-fold rotation C3 and two two-fold rota-
tions C2 and C ′2 (see Fig. 5). The lattice symmetry does
not change the spin component, but acts on the orbital
degree of freedom. Under C3, the lattice sites within the
hexagon plaquette transform as

C3 : 2→ 4, 4→ 6, 6→ 2, (28)

C3 : 1→ 3, 3→ 5, 5→ 1, (29)

therefore, from the orbital wavefunctions, we have that
the states |↑↑〉R and |↓↑〉R transform as

C3 : |↑↑〉R → −
1

2
|↑↑〉R +

√
3

2
|↓↑〉R, (30)

C3 : |↓↑〉R → −
√

3

2
|↑↑〉R −

1

2
|↓↑〉R, (31)

where the transformation does not depend on the spin
quantum number, and the identical transformations are
obtained for the states |↑↓〉R and |↓↓〉R. One then estab-
lishes

C3 : fR↑α → −
1

2
fR↑α +

√
3

2
fR↓α, (32)

C3 : fR↓α → −
√

3

2
fR↑α −

1

2
fR↓α. (33)

Following the same type of calculation, under C2 and C ′2,
we have

C2 : 5↔ 6, 1↔ 4, 2↔ 3, (34)

and

C2 : fR↑α → −fR↑α, (35)

C2 : fR↓α → +fR↓α, (36)

and

C ′2 : 1↔ 6, 2↔ 5, 3↔ 4, (37)

and

C ′2 : fR↑α → +
1

2
fR↑α −

√
3

2
fR↓α, (38)

C ′2 : fR↓α → −
√

3

2
fR↑α −

1

2
fR↓α. (39)

C. The spinon Fermi surface state

From the spinon symmetry properties, we determine
the generic symmetry allowed spinon mean-field Hamil-
tonian Hspinon,

Hspinon =
∑
R,µ

∑
m,n

∑
α

tµmnf
†
RmαfR+aµ,n,α + h.c., (40)

where tµmn is a bond dependent hopping matrix for the
spinons, and we have the symmetry allowed hoppings as

tx = −t̃112×2 + t̃2σ
z +
√

3t̃2σ
x, (41)

ty = −t̃112×2 + t̃2σ
z −
√

3t̃2σ
x, (42)

tz = −t̃112×2 − 2t̃2σ
z, (43)

and 12×2 is a 2×2 identity matrix. This model describes
the spinon hopping on the triangular lattice with two
orbitals at each lattice site. Since the spinons are at
1/4 filling, each band is partially filled and the system
develops spinon Fermi surfaces (see Fig. 6). The mean-
field ground state is obtained by filling the spinon states
below the Fermi energy EF,

|ΨMF〉 =
∏

Ek,j<EF

ξ†kj↑ξ
†
kj↓|0〉, (44)

where Ek,j is the energy of the eigenmode that is defined

by ξ†kj↑ or ξ†kj↓, and is given as

Ek,1 = −2t̃1(cx + cy + cz) + 4|t̃2|(c2x + c2y + c2z

−cycz − cxcz − cxcy)
1
2 , (45)

Ek,2 = −2t̃1(cx + cy + cz)− 4|t̃2|(c2x + c2y + c2z

−cycz − cxcz − cxcy)
1
2 . (46)

Here cµ = cos(k · aµ).

D. The qualitative feature of the spinon continuum
due to the emergent orbitals

The key property for the spinon mean-field model is the
presence of the inter-orbital hopping t̃2 that hybridizes
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FIG. 6. (Color online.) The two spinon bands and their
vertical particle-hole transition between the two bands. In the
plot, t̃2 = 0.3t̃1, and t̃1 = 1 is used as the energy unit. The
inset is the Brillouin zone of the triangular lattice formed by
the reonating hexagons.

different orbitals such that each spinon band no longer
has a definite orbital character. This inter-orbital spinon
hopping arises from the fact that the orbital interaction
is anisotropic in the orbital space and only respects the
discrete lattice symmetry. In the inelastic neutron scat-
tering, the neutron would only see the effective spin and
not see the emergent orbital degree of freedom. The or-
bital degree of freedom, however, has an important effect
on the spinon continuum that is observed by inelastic
neutron scattering. The neutron detects the particle-hole
excitation across the spinon Fermi level. From the mo-
mentum and energy conservation, we have the momen-
tum and energy transfer of the neutron as

q = q1 − q2, (47)

E = Eq1,j1 − Eq2,j2 , (48)

where q1 and Eq1,j1 are the momentum and the energy
of an unoccupied spinon while q2 and Eq2,j2 are the mo-
mentum and the energy of the filled spinon. The particle-
hole excitation would involve both the intra-band transi-
tions (with j1 = j2) and the inter-band transitions (with
j1 6= j2). If there is no orbital degree of freedom and
there is only one single spinon band, the inter-band tran-
sition is not involved, and the inelastic neutron scattering
spectral weight for the intra-band transition is suppressed
for the finite energies at the Γ point. This is because at
the mean-field level the intra-band process always ex-
cites the finite-energy spinon particle-hole pair with a
finite momentum. In contrast, with the inter-band verti-
cal process (see Fig. 6), the spinon particle-hole pair with
zero momentum can carry a wide range of finite energies.
In Fig. 7, we explictly compute the energy and momen-
tum spread of the contribution to spin-spin correlation
function as measured by neutron scattering due to the
spinon particle-hole pair excitation for the specific choice
of spinon hoppings. Qualitatively a broad continuum is
observed, with a small amount of missing weight near the
Γ point due to features of the inter-band transition.

FIG. 7. (Color online.) The spinon continuum contribution
to the spin spin correlation function as measured by neutron
scattering along high symmetry momentum direction. Due to
the inter-band transition, there exists the spinon continuum
up to finite energies near the Γ point, with a small region of
missing weight. The energy parameters here are the same as
the ones in Fig. 6.

VI. EMERGENT ORBITAL ORDER IN A FIELD

Despite the possible exotic spin liquid ground state at
zero field, the Kugel-Khomskii model HKK becomes more
tractable in the presence of a strong external magnetic
field. Due to the suppression of the exchange coupling
in HKK, it is feasible to choose the magnetic fields to
fully polarize the local spin moments such that sz = ↑ for
every resonating hexagon, but at the same time keep the
field from polarizing all the electron spins in the kagome
system. The pseudospin τ is not directly effected by
the magnetic field since it does not couple to the Zeeman
field. The pseudospins remain active, and the interaction
between them turns out to be a ferromagnetic compass
model on the triangular lattice formed by the resonating
hexagons,

HRKK = −2J ′

9

∑
R

∑
µ=x,y,z

TµRT
µ
R+aµ

. (49)

From a standard Luttinger-Tisza type of mean-field
approach35, we find that the mean-field ground state of
HRKK has an accidental U(1) continuous degeneracy, i.e.
any ferro-orbital (q = 0) state with the pseudospin τ ori-
enting in xz plane is a classical ground state. Here, we
parametrize the mean-field pseudospin order as

τcl =
1

2
(cos θ ẑ + sin θ x̂) (50)

with θ ∈ [0, 2π).

This continuous U(1) ground state degeneracy at the
mean-field level of the reduced Kugel-Khomskii model
HRKK is lifted when the quantum fluctuations of the or-
bitals are included. We study this quantum order by
disorder phenomenon from the linear orbital-wave the-
ory. Here we introduce the Holstein-Primakoff boson to
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represent the pseudospin operator τR as follows,

τR · τ̂cl =
1

2
− a†RaR, (51)

τR · ŷ =
1

2i
[aR − a

†
R], (52)

τR · (ŷ × τ̂cl) =
1

2
[aR + a†R], (53)

where τ̂cl ≡ τcl/|τcl| is the orientation of the pseudospin.
We keep the quadratic terms in the Holstein-Primakoff
boson operators and express the reduced Kugel-Khomskii
model as

HRKK =
∑
k∈BZ

[
2Aka

†
kak +Bk(aka−k + h.c.)

]
+Ecl, (54)

where “BZ” refers to the Brillouin zone of the triangular

lattice formed by the resonating hexagon plaquettes and

FIG. 8. The quantum zero-point energy per resonating
hexagon for the mean-field orbital order. The energy unit
is set to 2J ′/9 in the figure.

Ecl = −J
′

12

N

3
, (55)

Ak =
2J ′

9

[
− sin2(θ − π/3)

4
cos(k · ax)− sin2(θ + π/3)

4
cos(k · ay)− sin2 θ

4
cos(k · az) +

3

4

]
, (56)

Bk =
2J ′

9

[
− sin2(θ − π/3)

4
cos(k · ax)− sin2(θ + π/3)

4
cos(k · ay)− sin2 θ

4
cos(k · az)

]
, (57)

The linear orbital-wave Hamiltonian is then diagonal-
ized by a Bogoliubov transformation for the Holstein-
Primakoff bosons and is given by

HRKK = Ecl +
∑
k∈BZ

[
ωk

2
−Ak] +

∑
k∈BZ

ωkα
†
kαk,

where the orbital-wave (or ‘orbiton’) mode reads

ωk = 2(A2
k −B2

k)
1
2 . (58)

From Eq. (58), the quantum correction to the ground
state energy is

∆E =
∑
k∈BZ

[
ωk

2
−Ak]. (59)

In Fig. 8, we plot the quantum correction as a function
of the angular parameter θ. The minima occur at

θ =
π

6
+
nπ

3
, n ∈ Z, (60)

and are indicated in Fig. 9a.
Since the two-fold orbital degeneracy arises from the

point group symmetry, the emergent orbital order, that
breaks the orbital degeneracy, has to be related to the
symmetry breaking. To understand the physical conse-
quence of the orbital order, we consider the following
product state wavefunction that is appropriate for the

q = 0 ferro-orbital state,

|Ψ〉orb =
∏
R

[
cos

θ

2
|↑↑〉R + sin

θ

2
|↓↑〉R

]
, (61)

This variational wavefunction gives the orbital ordering
in Eq. (50). From this wavefunction, we find that the
electron density is uniform at every site within each res-
onating hexagon and thus preserves the rotation and re-
flection symmetries. We then compute the local magne-

FIG. 9. (Color online.) (a) The selection of the θ on a unit
circle by quantum fluctuation. The arrow indicates the opti-
mal choice. (b) The magnetic moment distribution within the
resonating hexagon for θ = π/6. It is clear that the three-fold
rotation about the center of the hexagon is broken.
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FIG. 10. The orbiton disperson along the high-symmetry mo-
mentum line. The inset is the Brioullin zone of the triangular
lattice formed by the resonating hexagons. The energy unit
is set to 2J ′/9 in the figure.

tization for each site within the resonating hexagon,

〈sz1〉R = 〈sz6〉R =
1

12
+

sin(θ − π/6)

6
, (62)

〈sz2〉R = 〈sz3〉R =
1

12
+

sin θ

6
, (63)

〈sz4〉R = 〈sz5〉R =
1

12
− sin(θ + π/6)

6
. (64)

Although the total local magnetization of each resonat-
ing hexagon is 〈sz〉R =

∑6
i=1〈szi 〉R = 1/2, the orbital or-

dering leads to a modulation of the spin ordering inside
each resonating hexagon (see Fig. 9b). The three-fold
rotational symmetry about the center of the resonating
hexagon is explicitly broken by the orbital ordering.

In Fig. 10, we plot the dispersion of the orbiton exci-
tation for θ = π/6. We find the dispersion is gapless at
the Γ point due to the breaking of the accidental U(1)
degeneracy. This pseudo-Goldstone mode is expected
to be gapped if the interaction between the Holstein-
Primakoff bosons is included. Since the interaction in-
duced gap should be very small compared to the orbiton
energy scale, one would expect to observe the heat ca-
pacity Cv ∼ T 2 at low temperatures.

VII. DISCUSSION

We discuss the experimental consequences of the pla-
quette charge order, the emergent orbitals, and the or-
bital orders. The plaquette charge order explicitly breaks
the lattice translation symmetry and would lead to some
variation of the bond lengths according to the symmetry
breaking. This may be detected by high-resolution X-
ray scattering or X-ray pair distribution function (PDF)
measurement. The plaquette charge order reconstructs
the spin states within each resonant hexagon leading to
the freezing of 2/3 of the spins, as observed in the spin
susceptibility in LiZn2Mo3O8

21–25. A different explana-
tion of the susceptibility anomaly in LiZn2Mo3O8 based
on the lattice distortion and the emergent lattices has
been proposed in a previous work26. Both this previous

FIG. 11. A picture of the domain walls separating the ABC
domains when the electron occupation is off-stoichiometry, in
this case slightly more than 1/6 per Mo.

work and the current work require a translation sym-
metry breaking by tripling the crystal unit cell. Such a
translation symmetry breaking has not yet been observed
in the experiment. Here we point out the possible rea-
son, namely, that under certain conditions, the symmetry
breaking must be short range at all temperatures.

The Li ion is mobile and may make the system slightly
off stoichiometry. To accommodate the missing or extra
charges, the system needs to create domain walls within
the symmetry broken phase. An example of such domain
walls is shown in Fig. 11 for the case when the filling is
slightly more than 1/6. Each solid dot represents the
charge order shown in Fig. 1. Note that the charge or-
der can be centered on one of three hexagons, thereby
forming ABC type domains. A certain density of do-
main walls will be required for a given deviation from
1/6 filling. There is an energy cost per unit length of the
domain wall, because electrons are now forced to occupy
neighboring sites. The resulting state is expected to be a
“liquid” state with an exponential decay of correlations
for the electron charge density27. This result is special
for the hexagonal arrangement of domain walls and the
reason is as follows. It was pointed out by J. Villain36,
there exists a breathing mode that expands or shrinks one
particular domain but costs no energy because the total
domain wall length is not changed. This is illustrated
in Fig. 12. Consequently the free energy of the system
of domain walls is purely entropic and is proportional to
temperature T . In the long wavelength limit, the elastic
constant of the system is also proportional to T and so
is the energy to create a dislocation. An example of a
dislocation is shown in Fig. 13. By the usual Berezinski-
Kosterlitz-Thouless (BKT) argument, the competition of
this energy with the entropy associated with the disloca-
tion determines whether the dislocation will proliferate,
resulting in an exponentially decaying correlation func-
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FIG. 1. "Breathing" freedom that contributes to entropy
of honeycomb phase.

result for the breakdown of the Luther-Pokrovsky-
Talapov theory due to dislocations, in the uniaxial
case for p ( JS, was found independently by Villain
and Bak. ' In another independent work, Chui'
predicted that a softening of the elastic constants
would cause a dislocation instability near the
commensurate-incommensurate transition, for both
the uniaxial and hexagonal cases. We disagree, how-
ever, with Chui's statement that the coefficient of the
logarithmic interaction between dislocations in the in-
commensurate solid will vanish as the domain-wall
separation goes to infinity. ' Rather, we find that the
coefficient remains finite, and stability depends on
the order of commensurability.
The importance of investigating the interplay

between dislocation formation and the commensur-
ate-incommensurate transition was emphasized by
Villain. "

the elastic constants associated with the wall fluctua-
tions need not be sufficient to stabilize these solids
against spontaneous creation of dislocations. If this
is the case, the C-I transition must either take a
commensurate solid to an "incommensurate liquid, "
or else the transition must be a "large" first-order
transition which bypasses entirely the region where
the domain walls are nonoverlapping. Using the
Kosterlitz-Thouless theory' "for dislocation melt-
ing, we show that the stability criteria is temperature
indeperident and that sufficiently near to low-order
commensurate phases such as the v 3 x J3R30'
phase of Kr on graphite, the incommensurate phase
is unstable to dislocations.
In Sec. II, we examine rectangular phases which

are incommensurate in one direction only. Using the
results of Schulz" and Pokrovsky and Talapov, ' it is
shown that if the number of different commensurate
domains is p, then the weakly incommensurate
striped phase can be stable only if p ~ JS. In Sec.
III, we examine the honeycomb array of walls. The
elastic constants of this phase are calculated from
considerations of changes of the entropy due to
strains and from numerical calculations of the dis-
placement correlation functions. Here, we find that
for adsorbate layers with N different possible com-
mensurate domains arranged in a honeycomb array,
the solid is stable only if N «7.5 +1.5.
In Sec. IV, we consider the question of a transition

from the hexagonal-honeycomb arrays to the striped
phase and discuss the effect of small rotations of the
overlayer lattice due to the instability of Novaco and
McTague. ' Finally, in the last section, we consider
the possible relation of our work to the experiments
on Kr absorbed on graphite and in addition, the
consequences of this work with respect to the general
phase diagram of overlayers.
The principal results of the present paper were re-

ported earlier in a short letter by the authors. '4 The

II. RECTANGULAR COMMENSURATE SOLIDS

V (0)
Yopac

(2.1)

For definiteness, we will first consider atoms ad-
sorbed on a rectangular substrate with lattice con-
stants a and c in the x and y directions, respectively.
At some temperature T, we will assume that there is
a range of chemical potential, g, for which the adsor-
bate forms a rectangular commensurate solid with lat-
tice constants pa and c, i.e., a p x 1 registered phase.
There are thus p possible positions of the adsorbate
lattice relative to the substrate; in the registered
phase only one of the p domains will be present.
As the chemical potential is raised, the surface

density of adsorbate atoms will increase. This may
initially occur via interstitials or second layer promo-
tion. We will, however, assume that above a critical
value of the chemical potential, $0, it becomes ener-
getically favorable for the adsorbate to form all p pos-
sible domains rather than just one. The resulting
structure will be an incommensurate "striped" phase
with the domains arranged sequentially in the x direc-
tion with the adsorbate atoms in each domain shifted,
(on average) by (np —1)a (n an integer) with respect
to those in the previous domain. This arrangement
has the effect of adding I/p of an extra row of atoms
in the y direction at each domain wall. The x lattice
constant of the adsorbate will hence be pa (I—a/i)
where l is the average distance between domain ~alls.
There is a repulsive interaction between the walls

which for low temperatures and l large has the value,
per unit length of wa11, ~

& (0)slat= C e"
K

where Ct is a positive constant, V~(0) is the x cur-
vature of the substrate potential at its minimum, and

FIG. 12. The breathing mode of Villain36. Note that the
total wall length and hence its energy has not changed. This
mode contributes only to the entropy.

tion. Unlike the usual BKT argument, where the dislo-
cation enery is a constant and a phase transition is pre-
dicted at a finite temperature, here the result depends
on the numerical coefficient of the linear T term in the
elastic energy. A detailed computation carried out in
Ref. 27 showed that the system is always disordered at
any temperature. A short range charge ordering makes
the detection more difficult, but not impossible. Perhaps
resonant X-ray scattering which couples directly to the
electrons will have a better chance seeing this distortion.

The emergent orbital is a degree of freedom that nat-
urally emerges from the plaquette charge order on the
breathing Kagome lattice. The presence of this extra de-
gree of freedom distinguishes the current proposal from
the previous one in Ref. 26. However, the emergent or-
bital is not detectable in the magnetization measurement
since the orbital does not couple directly to the external
magnetic field. However, it does contribute to the heat
capacity and the entropy. We expect an additional en-
tropy from the emergent orbitals apart from the spin en-
tropy. The suggested spinon Fermi surface ground state
and the spinon excitation should be detectable via inelas-
tic neutron scattering. In fact, the existing measurement
does suggest a broad continuum of excitations21, even
though the measurement was taken on powder samples.
Since the qualitative feature for the spinon inter-band
particle-hole excitation is more visible at the Γ point,
optical measurement or Raman scattering can be useful
for detecting the finite energy spinon continuum at the
Γ point.

A magnetic field that is of the order of the low-
temperature Curie-Weiss temperature is expected to po-
larize the spin degree of freedom. The magnetic field
should be much less than the high temperature Curie-
Weiss temperature to prevent polarizing the spins that
form the spin singlet within the resonating hexagon. The
remaining orbital degrees of freedom then develop an or-
bital order via a quantum order by disorder mechanism
and support a pseudo-Goldstone mode that gives a heat
capacity Cv ∼ T 2 at low temperatures. The orbital wave
excitation may be detected by the resonant inelastic X-

FIG. 13. A picture of a dislocation center (in red) in the
system of domain walls.

ray scattering. The orbital order creates a magnetic mo-
ment redistribution within the resonating hexagon. This
intra-hexagon static magnetic structure may be detected
by high-resolution neutron scattering, µSR and/or NMR
measurements.

Finally, there exists a large family of cluster magnets in
which the electrons are localized on the cluster units and
form CMIs5–13,19,20. The physical properties of many of
these cluster magnets have not been explored carefully.
Recently, 1T-TaS2 is proposed as a spin liquid candi-
date12. In this system, the low-temperature (commen-
surate) charge density wave order enlarges the unit cell
such that there exists one localized and unpaired elec-
tron inside the 13-site David-star cluster. This system
can thus be considered as a CMI12. These clusterly lo-
calized electrons form effective spin-1/2 local moments
that interact with each other and may develop a spin liq-
uid ground state12. Besides these two-dimensional clus-
ter magnets, the Ta-based and Mo-based lacunar spinels
are good examples of three dimensional CMIs5,9–11. In
these materials, the systems naturally host a breathing
pyrochlore lattice structure where one half of the tetra-
hedral clusters is smaller than the other half and host
the localized electrons5. The study on these systems are
quite limited so far. We expect that the cluster local-
ization of the electrons in these CMIs may bring some
interesting phenomena and enriches our understanding
of Mott physics.
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