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We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of
quantum states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approxima-
tion that retains electron degrees of freedom, we demonstrate that the SDW order parameter obeys
a generalized Landau-Lifshitz equation. With the aid of an enhanced kernel polynomial method, our
linear-scaling quantum Landau-Lifshitz dynamics (QLLD) method enables dynamical SDW simu-
lations with N ' 105 lattice sites. Our real-space formulation can be used to compute dynamical
responses, such as dynamical structure factor, of complex and even inhomogeneous SDW configura-
tions at zero or finite temperatures. Applying the QLLD to study the relaxation of a noncoplanar
topological SDW under the excitation of a short pulse, we further demonstrate the crucial role of
spatial correlations and fluctuations in the SDW dynamics.

Quantum states with unusual broken symmetries have
long fascinated physicists because of their fundamen-
tal importance and potential technological applications.
Of particular interest is the regular spatial modula-
tion of electron spin known as spin-density wave (SDW)
state [1, 2]. SDWs are ubiquitous in strongly correlated
systems and play a crucial role in several intriguing many-
body phenomena. For example, the SDW state is prox-
imate to the superconducting phase in several uncon-
ventional superconductors, including cuprates and iron
pnictides. Indeed, non-Fermi liquid behavior is usually
observed in the vicinity of a SDW phase transition [3].
Moreover, conduction electrons propagating in a non-
coplanar spin texture acquire a nontrivial Berry phase
and exhibit unusual transport and topological proper-
ties [4, 5]. Consequently, metallic SDW with complex
spin structures, such as spirals or skyrmion crystals, of-
fers a novel route to control the charge degrees of freedom
through manipulation of spins and vice versa [6].

While analytical techniques have yielded much insight
about itinerant magnetism and SDW states [7, 8], nu-
merical methods continue to provide valuable bench-
marks and shed light on controversial issues. Among
the various numerical tools [9], quantum Monte Carlo
(QMC) simulations provide numerically exact solutions
to strongly correlated models [10–12]. However, one
severe restriction of most QMC methods is the infa-
mous sign-problem. Powerful alternative approaches that
avoid the sign-problem include dynamical mean-field the-
ory (DMFT) [13, 14] and density-matrix renormaliza-
tion group (DMRG) [15, 16]. Significant developments
have also been made in their nonequilibrium extension
such as time-dependent (TD) DMFT [17, 18] and TD-
DMRG [19, 20]. Both methods, however, are still very
limited in their treatment of complex mesoscopic struc-
tures.

In this paper, we present a different numerical ap-
proach to SDW dynamics, emphasizing the ability to

simulate large-scale lattices and complex SDW orders
that often occur in highly frustrated systems. Our start-
ing point is a semi-classical treatment of Hubbard-like
models, which neglects quantum fluctuations, but retains
the spatial fluctuations of the SDW field. In a way, this
approach is the complement of DMFT, which includes
quantum fluctuations at the expense of neglecting spatial
correlations. A systematic approach is then developed
to reintroduce quantum dynamics to the SDW order pa-
rameter. We show that in the leading adiabatic approx-
imation, the SDW dynamics is described by a general-
ized Landau-Lifshitz (LL) equation in which the effec-
tive forces acting on the spins are generated from itin-
erant electrons. Our numerical scheme can be viewed
as a quantum LL dynamics (QLLD), in which the elec-
tronic degrees of freedom are integrated out at each time
step. By supplementing the LL equation with Ginzburg-
Landau type relaxation and stochastic terms, our QLLD
method can be used to simulate SDW dynamics both
near and far-from equilibrium.

I. SPIN-FERMION HAMILTONIAN FOR
EQUILIBRIUM SDW PHASES

We consider the one-band Hubbard model with an on-
site repulsion U > 0,

H = −
∑
ij,α

tij c
†
i,αcj,α + U

∑
i

ni,↑ni ↓. (1)

After performing the Hubbard-Stratonovich (HS) trans-
formation [21, 22], we obtain the following spin-fermion
Hamiltonian

HSDW = −
∑
ij,α

tij c
†
i,αcj,α − 2U

∑
i

mi · si + U
∑
i

|mi|2, (2)

where si = 1
2c
†
i,ασαβci,β is the spin operator of conduc-

tion electrons and σ is a vector of the Pauli matrices.
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FIG. 1: (Color online) Phase diagram of the half-filled
triangular-lattice Hubbard model with NN hopping t. With
increasing Hubbard repulsion, the four different phases are:
a paramagnetic metal, an incommensurate spiral metal, a
collinear commensurate zigzag SDW, and the 120◦-order. (a)
average spin length 〈|m|〉 as a function of U/t. The two com-
mensurate SDW phases, collinear zigzag and 120◦ orders, are
shown in (b) and (c), respectively.

The local HS or auxiliary field mi is a classical O(3) vec-
tor in R3. Here we have set ~ = 1. Importantly, since
HSDW describes non-interacting electrons coupled to a
magnetic background, the fermionic degrees of freedom
can be integrated out either in Monte Carlo or dynamical
simulations to be described below.

This HS Hamiltonian is typically the starting point for
determinant QMC (DQMC) simulations [10–12]. In an
alternative approach, one assumes static HS variables;
then the above Hamiltonian resembles the so-called spin-
fermion model [23, 24] and can be simulated with Markov
chain Monte Carlo assuming classical “spins” mi, while
electrons are treated quantum mechanically. Applying
this method to the cubic-lattice Hubbard model, the
obtained Néel temperature agrees remarkably well with
those from DQMC simulations [22]. It is worth noting
that while Eq. (2) is similar to the Hartree-Fock treat-
ment of the Hubbard model, retaining spatial fluctua-
tions of the local HS fields {mi} in this static (in imag-
inary time) HS-field formalism goes beyond the usual
mean-field method. For instance, this approach captures
the critical fluctuations, and consequently the correct uni-
versality class, of any continuous thermodynamic transi-
tion into a magnetically ordered state.

Instead of Markov-Chain Monte Carlo, here we employ
the stochastic Ginzburg-Landau (GL) relaxation dynam-
ics [25, 26] to sample the equilibrium SDW configurations

within the static HS-field approximation,

dmi

dt
= −γ ∂〈HSDW〉

∂mi
+ ξi(t). (3)

Here γ is a damping constant, and ξi is a δ-
correlated fluctuating force satisfying 〈ξi(t)〉 = 0 and
〈ξµi (t)ξνj (t′)〉 = 2γkBTδijδµνδ(t − t′) for vector compo-
nents µ and ν. This equation is similar to the over-
damped Langevin dynamics used in Ref. [27] for the
Kondo-lattice model. We note that the magnitude |mi|
of the O(3) vector mi is not fixed in this over-damped
dynamics. A fictitious inertial mass term can be added
to the above dynamics to improve the efficiency of the
simulation. Unlike conventional GL simulations, where
the force is given by the derivative of a phenomenolog-
ical energy functional, here the force is computed by
solving the equilibrium electron liquid of HSDW at each
time-step. Or equivalently, the effective energy func-
tional Eeff({mi}) = 〈HSDW〉 is obtained by integrating
out electrons on the fly. Our method is thus similar to
the so-called quantum molecular dynamics (MD) simu-
lations [29], in which the inter-atomic force is computed
by solving the quantum electron Hamiltonian, instead of
being derived from a phenomenological classical poten-
tial [30]. Drawing on this analogy with MD simulations,
our approach can be viewed as a quantum GL method
for SDW. Interestingly, the quantum MD method in con-
junction with the functional integral theory has already
been employed to obtain complex magnetic orderings in
itinerant magnet compounds in the past [31].

The GL method is particularly powerful when com-
bined with our recently developed kernel polynomial
method (KPM) and its gradient transformation in which
forces acting on all spins can be efficiently computed [27,
28]; see Appendix A for more details. The result-
ing linear-scaling KPM-GL method allows us to simu-
late large lattices with N ' 105 to 106 sites. We ap-
ply the KPM-GL simulations to the triangular-lattice
Hubbard model as a benchmark. The phase diagram
shown in Fig. 1 agrees very well with those obtained
by holon-doublon mean-field [32] and the rotational-
invariant slave-boson (SB) [33] calculations. Note that
the SB method [34] describes both large and small U
regimes, and shows quantitative agreement with QMC
over a wide range of interaction and doping for the
square-lattice Hubbard model [35].

At large U , our simulation finds the expected 120◦-
order, which is the ground state of the Heisenberg Hamil-
tonian arising from the strong-coupling limit of the half-
filled Hubbard model. In fact, the semi-classical Hamil-
tonian Eq. (2) reduces to the classical Heisenberg spin
model in the U/t � 1 limit. To see this, we note that
any ground state for tij = 0 contains exactly one elec-
tron in each site with its spin locally aligned with the
SDW field mi. The magnitude of the SDW field freezes
at |mi| = 1/2 in this U → ∞ limit because amplitude
fluctuations have an energy cost proportional to U . In
analogy with the large U limit of the original Hubbard
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model, the ground state manifold is massively degen-
erate because each mi can point in an arbitrary direc-
tion. The degeneracy is removed to second order in tij .
The low-energy effective Hamiltonian is obtained by con-
sidering virtual electron hopping processes between two
neighboring sites i and j. The Pauli exclusion principle
dictates that an electron at site-i can hop to the neigh-
boring site only when its spin is anti-aligned with that
of the local moment at site j. Consequently, the effec-
tive hopping constant between the two neighboring sites
is teff

ij = tij〈χi|χj〉 = tij sin(θij/2), where |χi〉 are local
electron spinor eigenstate and θij is the angle between
the two local moments. At second-order, the energy gain
through the virtual electron hopping produces the effec-
tive interaction

Hij =
−2t2ij sin2(θij/2)

U
=

4t2ij
U

(
mi ·mj −

1

4

)
. (4)

This result corresponds to the classical limit of the S =
1/2 Heisenberg model, implying that the semi-classical
SDW Hamiltonian (2) correctly captures the classical
limit of the half-filled Hubbard model in the strong-
coupling regime [36]. A formal derivation of the large-
U effective Hamiltonian and dynamics can be found in
Appendix B.

As U is decreased, our simulation shows that the
120◦ order is replaced by an interesting commensurate
collinear SDW as the ground state [32, 33]. The collinear
SDW at this intermediate U is still gapped electronically
and exhibits a zigzag structure. By computing the elec-
tron density of states (DOS), we find a metal-insulator
transition at Uc2 between an incommensurate spiral and a
commensurate collinear SDW phase (see Fig. 1). Finally,
the metallic spiral SDW undergoes a continuous transi-
tion at into a paramagnetic state at Uc1. We note in pass-
ing that the metal-insulator transition, obtained with
other numerical techniques (e.g. path-integral renormal-
ization group method [37]), is entirely within the para-
magnetic regime [37, 38], implying the existence of a
paramagnetic insulator (or spin liquid) at intermediate
U values. This state cannot be obtained with our semi-
classical approach because it is stabilized by strong fluc-
tuations of the HS fields along the imaginary time axis.
However, the existence of this phase remains to be set-
tled. Recent variational QMC [39] and DMFT [40] cal-
culations show that spiral SDW is more favorable than
the spin liquid phase. Nonetheless, if a magnetic phase
is stabilized by, e.g. applying a magnetic field, we expect
the incommensurate and collinear SDWs obtained here
to be strong candidates.

II. SEMICLASSICAL DYNAMICS AND
LANDAU-LIFSHITZ EQUATION

Having demonstrated that the semiclassical Hamilto-
nian HSDW provides a viable approach to equilibrium
SDW phases, a natural question is whether we can use

it to study the SDW dynamics. To this end, we need
to reintroduce physical dynamics to the “static” aux-
iliary SDW field. We first note that the spin-fermion
Hamiltonian HSDW can also be obtained from a Hartree-
Fock decoupling of the interaction term that varies from
one site to another. The important difference relative
to the HS approach is that the SDW field satisfies the
self-consistent condition mi = 〈si〉 = Tr(ρ si), where ρ
is the density matrix characterizing the physical electron
state. Consequently, the field mi belongs to the sphere
of radius 1/2 (0 ≤ |mi| ≤ 1/2).

To derive the time dependence of the SDW field,
we start with the continuity equation associated with
the total spin conservation: dsi/dt = −∑j Jij , where

si = 1
2c
†
iασαβciβ is the electron spin, and Jij =

−i tij2 σαβ(c†iαcjβ − c†jαciβ) is the spin current density on

bond 〈ij〉. We then introduce the single-particle density

matrix ρ with elements ρiα,jβ ≡ 〈c†jβ ciα〉. Taking the
average of the continuity equation leads to

dmi

dt
= − i

2

∑
j

tijσβα (ρiα,jβ − ρjα,iβ) . (5)

The SDW dynamics is thus related to the time evolu-
tion of the density matrix ρ, which obeys the von Neu-
mann equation dρ/dt = i[ρ,Heff ]. Up to a constant,
Heff is the effective single-electron Hamiltonian defined

as HSDW =
∑
iα,jβ H

eff
iα,jβ c

†
iαcj,β . Using Eq. (2), we ob-

tain the equation of motion

dρiα,jβ
dt

= i (tik ρkα,jβ − ρiα,kβ tkj) (6)

+ iU (mi · σαγ ρiγ,jβ − ρiα,jγ σγβ ·mj) .

The electron density matrix is partly driven by the time-
varying SDW field. Eqs. (5) and (6) comprise a complete
set of coupled ordinary differential equations for the SDW
dynamics. An alternative is to dispense of Eq. (5) and
substitute mi(t) = 1

2ρiα,iβ(t)σβα in Eq. (6), giving rise
to a set of nonlinear differential equations for ρ.

In general, time dependence of physical quantities in
mean-field approaches can be obtained using the Dirac-
Frenkel variational principle [41, 42]. Our derivation
here, on the other hand, is based on the spin-density con-
tinuity equation, hence emphasizing the importance of
conservation laws in physical dynamics. This physically
intuitive approach can be easily generalized to obtain dy-
namics for other symmetry-breaking phases. Finally, we
note in passing that the finite temperature extension of
the semiclassical SDW dynamics will be discussed else-
where [51].

Our approach to SDW dynamics here is essentially
a real-space formulation of the time-dependent Hartree-
Fock (TDHF) method [43, 44], similar to the familiar
time-dependent Bogoliubov-de Gennes equation for su-
perconductors or Bose condensates [45, 46]. Assuming
that the order parameters are characterized by well de-
fined momenta, e.g. mi =

∑
r Mr exp(iQr · ri), the
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above equations can be simplified due to the transla-
tion invariance. The problem is then reduced to a set
of coupled differential equations for density-matrix el-

ements nαβ(k, t) ≡ 〈c†kα ckβ〉 and grαβ(k, t) ≡ (Mr ·
σαβ)〈c†kαck+Qr,β

〉 in momentum space. This mean-field
approximation of TDHF has recently been applied to
the out-of-equilibrium dynamics of BCS-type supercon-
ductors [46, 47], and of Néel-type SDW [48–50]. Since
the order-parameter field Mr is assumed to be uniform,
spatial inhomogeneity and/or fluctuations are ignored in
such k-space approaches. Our formulation here does
not require the prerequisite knowledge of ordering pat-
terns, and are particularly capable of simulating com-
plex symmetry-breaking phases, inhomogeneous configu-
rations, and disordered phases with preformed local mo-
ments, such as the paramagnetic state in the large U
limit.

The SDW dynamics Eq. (5) can be simplified in the
large U limit in the so-called adiabatic approximation,
which assumes that electrons quickly relax to the ground
state of the instantaneous SDW configuration {mi}. Us-
ing second-order perturbation theory, one readily com-

putes the average spin current: 〈Jij〉 =
4t2ij
U mi × mj .

Substituting this into the right-hand side of Eq. (5) gives
rise to a Landau-Lifshitz (LL) equation

dmi

dt
= −

∑
j

4t2ij
U

mi ×mj , (7)

with an effective torque computed using the Heisenberg
exchange of Eq. (4). More details can be found in Ap-
pendix B.

For intermediate and small U/t values, one needs to
solve the von Neumann equation. Since the number of
independent density-matrix elements is of order O(N2)
for a lattice of N spins, the computational cost of in-
tegrating the von Neumann equation is tremendous for
large lattices, e.g. N ∼ 105. To further simplify the
numerical calculation, here we derive the SDW dynam-
ics in a similar adiabatic limit for arbitrary U . Formally,
we employ the multiple-time-scale method [52] and intro-
duce an adiabaticity parameter ε ∼ |dm/dt| such that the
fast (electronic) and slow (SDW) times are τ = εt and t,
respectively. The single-particle Hamiltonian varies with
the slow time, i.e. Heff({mi}) = Heff(τ). Expanding
the density matrix in terms of the adiabaticity parame-
ter: ρ(t) = ρ(0)(τ) + ερ(1)(t, τ) + ε2ρ(2)(t, τ) + · · · , and
plugging it into the von Neumann equation, we obtain

[ρ(0), Heff ] = 0 and dρ(`)

dt − i[ρ(`), Heff ] = −dρ(`−1)

dτ for
` ≥ 1. This provides a systematic approach to obtain the
time dependence of the density matrix.

Here we use the leading adiabatic solution ρ(0) to com-
pute the expectation value of the spin-current density
Jij , which is the right-hand side of Eq. (5). We first
write Heff = T + Σ where Tiα,jβ = −tijδαβ is the tight-
binding Hamiltonian and Σiα,jβ = −Uδij mi · σαβ is
the spin-fermion coupling. It is then straightforward to

show that Eq. (5) is simply dmi/dt = iσαβ [ρ, T ]iβ,iα/2.

Using the adiabatic equation [ρ(0), Heff ] = 0, we have
[ρ(0), T ] = −[ρ(0),Σ], which gives

dmi

dt
= − iU

2
σαβ

[(
σβγρ

(0)
iγ,iα − ρ

(0)
iβ,iγσγα

)
·mi

]
. (8)

The right-hand side of the above equation can be fur-
ther simplified using the properties of Pauli matrix mul-
tiplication: σaσb = δabI2×2 + iεabcσ

c, where a, b, c are

x, y, z. For example, σαβ(σβγ · mi)ρ
(0)
iγ,iα = n

(0)
i mi +

imi ×σαβρ
(0)
iβ,iα, where n

(0)
i = ρ

(0)
iα,iα is the local electron

density. After some algebra, we obtain

dmi

dt
= Umi × σβα ρ(0)

iα,iβ = −mi ×
∂〈HSDW〉
∂mi

. (9)

The second equality comes from the fact that ρ(0) is com-
puted from the equilibrium electron liquid described by

HSDW. The local electron spin 〈si〉 = 1
2 〈c
†
iασαβ ciβ〉 =

1
2σβα ρ

(0)
iα,iβ acts as an effective magnetic field and drives

the slow dynamics of the SDW field. Importantly, this
equation shows that the adiabatic SDW dynamics is de-
scribed by the Landau-Lifshitz (LL) equation [53] with
an effective energy functional Eeff({mi}) = 〈HSDW〉, ob-
tained from the equilibrium electronic state of the instan-
taneous spin-fermion Hamiltonian.

A. Benchmark with exact diagonalization

We first benchmark our semiclassical SDW dynamics,
with and without the adiabatic approximation, against
the exact diagonalization (ED) calculation of the origi-
nal Hubbard model. To this end, we apply our formu-
lation to the two-sublattice collinear Néel state that is
obtained for the half-filled Hubbard model on a square
lattice. Since we only include NN hopping, the Néel or-
dering is stable for any positive value of U/|t|. Specif-
ically, as shown in Fig. 2, we compute the dynamical
structure factor S(k, ω) of a 4× 4 Hubbard cluster with
periodic boundaries for U/t = 7.33. Details of the ED
calculation are discussed in Appendix C. We compare the
ED result at T = 0 and the semiclassical SDW dynam-
ics at an extremely low temperature (classical moments
freeze at T = 0 [54]). We set temperature at T = 10−4t
and verify that the results do not change upon decreasing
the temperature to T = 10−5, indicating that our results
capture the dynamical response of the classical moments
in the T → 0 limit.

For both the real-space TDHF dynamics [Eqs. (5) and
(6)] and the adiabatic dynamics [Eq. (9)], SDW states
are first generated by means of GL-Langevin simulations
described in Sec. I. The obtained spin configurations,
which are representative of the canonical ensemble, are
used as the initial condition for dynamical simulations.
The dynamical structure factor, S(k, ω), is calculated by
applying the space-time Fourier transform to the time
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FIG. 2: (Color online) Comparison of the dynamical structure
factor of the Hubbard model on a 4 × 4 square lattice for
t = 1 and U = 7.33: (a) The exact diagonalization result
at T = 0, where a Lorentzian broadening factor η = 0.02 is
used, (b) the semiclassical SDW calculation in the adiabatic
approximation described by Eq. (9), and (c) the real-space
TDHF calculation. For (b) and (c), the temperature was
set T = 10−4 for generating initial configurations, and the
results were averaged over 27 independent runs starting from
different initial configurations.

evolution of the auxiliary field mi(t). In the SDW dy-
namics, the elastic peak has a finite width for finite dura-
tion of the dynamical simulation (not shown in Fig. 2(b)
and (c)). The area under the elastic peak is proportional
to N〈mi〉2, where N is the number of sites. In contrast,
the lowest energy peak of the exact result appears at
a small but finite frequency arising from quantum fluc-
tuations neglected by the semiclassical treatment (the
exact ground state is a singlet state for a finite size sys-
tem). This quasi-elastic peak becomes the elastic peak
of the spontaneously broken symmetry state in the ther-
modynamic limit. In Fig. 2, we normalize the spectral
weights obtained from the SDW dynamics so that the
total weight of inelastic peaks equals that obtained from
the ED excluding the quasi-elastic peak.

The low-energy spectrum of the original Hubbard
model is not well described by a simple effective spin
Hamiltonian for U/|t| = 7.33 (charge fluctuations can
strongly renormalize the spin-wave dispersion). It is then
quite remarkable that all the approaches produce a rather
flat magnon dispersion for the wave-vectors included in

a 4 × 4 square lattice. However, the excitation energies
in the adiabatic approximation are roughly 25% lower
than the exact result [see Fig. 2]. This discrepancy is
attributed to two factors: the semi-classical treatment
of the spin degrees of freedom and the adiabatic ap-
proximation. The excitation energies obtained from the
real-space TDHF method are approximately 15% lower
than the exact result. We thus conclude that the adi-
abatic approximation accounts for roughly 10% of the
discrepancy, while the semiclassical treatment accounts
for the remaining 15%. In addition, the normalized spec-
tral weights (areas) in both the semiclassical dynamics
are different only approximately 30% from the exact re-
sult. A much better quantitative agreement is expected
for 3D systems, but their solutions are beyond the scope
of state of the art ED methods.

The real-space TDHF method captures not only the
transverse modes, but also the longitudinal mode arising
from charge fluctuations [55]. We note however that the
method does not capture the longitudinal spin fluctua-
tions associated with quantum fluctuations of the mag-
netic moments. Unlike charge fluctuations, quantum
(magnetic) fluctuations persist for arbitrarily large-U/t
(they arise from fluctuations of the m-field along the
imaginary time axis). These longitudinal fluctuations
correspond to two-magnon excitations in a 1/S expan-
sion [56]. Correspondingly, they have an energy of order
J ∝ t2/U for large U/t. In contrast, the longitudinal
spin fluctuations arising from charge fluctuations lead to
the high-energy peaks at ω ∼ U , which are observed in
the real-space TDHF dynamics, as shown in the inset of
Fig. 2(c), while they are absent in the adiabatic dynam-
ics. Nevertheless, as expected for this value of U/t, the
longitudinal mode is well separated from the transverse
modes.

B. 120◦ SDW order in Hubbard and
Anderson-Hubbard model

Our benchmark study shows that both the TDHF and
the adiabatic approach provide a reasonable description
of the SDW dynamics. It is worth noting that the lin-
earized TDHF equation of motion corresponds to the ran-
dom phase approximation (RPA) [57–59]. Our real-space
formulation of the TDHF thus provides an efficient and
universal numerical approach to describe nonlinear dy-
namics beyond the RPA level. Moreover, our approach
allows for computation of dynamical response functions
at any finite temperature, including the high-temperature
regime in which the magnetic moments only exhibit short
range correlations.

Another unique feature offered by our real-space
method is the capability of computing the dynamical
response of inhomogeneous SDW. To demonstrate this,
here we apply the above adiabatic dynamics Eq. (9) to
compute S(k, ω) for the 120◦ SDW depicted in Fig. 1(c)
for Hubbard model with quenched disorder. Specifically,
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FIG. 3: (Color online) Dynamical structure factor S(k, ω)
computed using the semiclassical SDW dynamics equation
Eq. (9) for the 120◦-order in (a) Hubbard model and (b)
Anderson-Hubbard model with an on-site disorder. The lat-
tice size is 120×120. The Hubbard parameter is U = 7.33 and
the standard deviation of the on-site disorder is σV = 0.45,
in units of NN hopping tnn.

we consider the Anderson-Hubbard model by adding an

on-site potential disorder
∑
i,α Vi c

†
iαciα to Eq. (2). This

model has served as a canonical platform for investigating
the intriguing interplay of localization and correlations.
Relevant to our study here is the effect of disorder on
long-range SDW order. For Néel-type SDW on a half-
filled bipartite lattice, it has been shown that increasing
the disorder first closes the electron spectral gap, while
the SDW remains finite [60]. The disappearance of the
SDW order parameter occurs at a larger disorder [60, 61].
This result is relevant to the non-equilibrium dynamics
to be discussed below.

We first compute the dynamical structure factor for
the pure Hubbard model on a large lattice with N =
120 × 120 sites. The results shown in Fig. 3(a) resem-
ble the linear spin wave dispersion of the Heisenberg
model [62], except for a significantly renormalized lower-
energy branch. Next we include a Gaussian disorder
with zero mean and standard deviation σV = 0.45 tnn,
which is relatively large yet not strong enough to destroy
the SDW order [64]. The S(k, ω) computed using the
adiabatic SDW dynamics is shown in Fig. 3(b). While
the overall dispersion is similar to that of the SDW in
the disorder-free Hubbard model [Fig. 3(a)], there are
a few notable new features. Firstly, the magnon dis-
persion is significantly broadened by the quenched disor-
der, and the middle of the low-energy branch is further
renormalized. Interestingly, a rather sharp dispersion re-
mains near the zone center, indicating that these long-

wavelength modes are less sensitive to disorder. Secondly,
several new modes appear at low energies, especially be-
low the original gap at the M point. Interestingly, simi-
lar disorder-induced low-energy modes are also obtained
in bi-layer Heisenberg antiferromagnet using the bond-
operator method [63]. A systematic study of the SDW
dynamics with disorder will be left for future studies.

III. NONEQUILIBRIUM DYNAMICS AT
FINITE TEMPERATURES

The adiabatic LL equation can also be used to study
nonequilibrium SDW phenomena as long as the elec-
tron relaxation is much faster than the SDW dynamics.
Here we first generalize the adiabatic dynamics to finite
temperatures by adding dissipation and fluctuations to
Eq. (9). It is worth noting that the adiabatic SDW dy-
namics preserves the length of local moments |mi|. Lon-
gitudinal spin relaxation and fluctuations thus come from
either higher order terms in the adiabatic expansion or
other processes beyond the self-consistent field approach.
The standard Gilbert damping also preserves the spin
length [65]. Instead, here we combine the Ginzburg-
Landau relaxation discussed in Eq. (3) with the adiabatic
dynamics of Eq. (9) to account for the longitudinal relax-
ation [25, 66]. This procedure gives rise to the following
generalized LL equation

dmi

dt
= −mi ×

∂〈HSDW〉
∂mi

− γ ∂〈HSDW〉
∂mi

+ ξi(t). (10)

HSDW is the spin-fermion Hamiltonian defined in Eq. (2),
γ is a damping constant, and ξi is a δ-correlated fluc-
tuating force satisfying 〈ξi(t)〉 = 0 and 〈ξµi (t)ξνj (t′)〉 =
2γkBTδijδµνδ(t − t′). The damping coefficient and the
stochastic terms are chosen such that the dissipation-
fluctuation theorem is satisfied and the above LL equa-
tion can be used to faithfully sample the equilibrium
Boltzmann distribution at finite temperatures [68, 69].

A microscopic calculation of the damping coefficient γ
is beyond the adiabatic approximation. In the real-space
TDHF method, relaxation of SDW mainly arises from
the Landau damping mechanism, which describes the
energy transfer from the collective SDW mode to single-
particle excitations [50, 67]. Electron-electron scattering,
which is not captured by the TDHF, also contributes to
the damping of SDW, especially in ultrafast dynamics of
metals [70, 71]. Moreover, for open systems as in most
pump-probe experiments, coupling of electrons to other
degrees of freedom [72, 73], such as phonons, also play an
important role in the relaxation of SDW dynamics. Here
γ is treated as as a phenomenological parameter which
we chose to ensure the adiabatic approximation.

That the SDW field obeys the LL dynamics can be
understood intuitively from the fact that the Heisen-
berg equation of motion for spin operators corresponds
to the classical LL equation [68]. Here we give a mi-
croscopic derivation starting from the Hubbard model,
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which reveals the condition for the validity of the LL
dynamics (adiabatic approximation of the von Neumann
equation). In fact, the adiabatic approximation has been
widely employed for spin dynamics in the context of time-
dependent spin-density-functional theory [74–76]. Our
results thus provide a theoretical foundation for the LL
dynamics of SDW, and pave the way for systematic im-
provements beyond the adiabatic approximation.

It is worth noting that, in contrast to the conventional
LL method, the energy functional in our approach is ob-
tained by solving the spin-fermion Hamiltonian HSDW at
each time-step. In analogy with the quantum MD simula-
tions [29], our numerical scheme can then be viewed as a
quantum LL dynamics (QLLD) method. Although solv-
ing the electron Hamiltonian on the fly is computation-
ally expensive, large-scale (N ∼ 105) QLLD simulations
are enabled by our recently developed KPM algorithm
with automatic differentiation, such that the “forces” can
be computed along with the total energy without extra
overhead [27, 28]; see Appendix A for more details.

We next apply our stochastic QLLD method to in-
vestigate the time evolution of a topological SDW on
the triangular lattice that arises as a weak-coupling in-
stability at filling fraction n = 3/4 [77]. The combi-
nation of a van Hove singularity and perfect Fermi sur-
face nesting at this filling fraction gives rise to a mag-
netic susceptibility that diverges as χ(q) ∝ log2 |q−Qη|,
where Qη (η = 1, 2, 3) are the three nesting wavevec-
tors [77]. The system thus tends to develop a triple-
Q SDW characterized by three vector order parameters:
mi = ∆1e

iQ1·ri + ∆2e
iQ2·ri + ∆3e

iQ3·ri . Note that the
phase factors eiQη·ri = ±1. In general, there are four
distinct local moments, leading to a quadrupled mag-
netic unit cell. The SDW instability of triangular-lattice
Hubbard model at n = 3/4 filling is similar to that of the
half-filled Hubbard model on square lattice. However,
unlike the simple Néel order in the later case, there are
several possible triple-Q SDWs [27, 78].

At the lowest temperatures, the magnetic ordering con-
sists of a non-coplanar SDW with |∆1| = |∆2| = |∆3|
and ∆1 ⊥ ∆2 ⊥ ∆3 [77–79]. This SDW is also called
a tetrahedral or all-out order as spins in the unit cell
point to the four corners of a regular tetrahedron [77];
see Fig. 4(a). Moreover, as the spins on each triangular
plaquette are non-coplanar, the resulting nonzero scalar
spin chirality mi · mj × mk = ±4∆3 also breaks the
parity symmetry. Consequently, the tetrahedral SDW
is also characterized by a discrete Z2 chirality order pa-
rameter. More importantly, electrons propagating in this
non-coplanar SDW acquire a nonzero Berry phase, which
is equivalent to a uniform magnetic field. Since the Fermi
surface is gapped out by the SDW, the resulting electron
state exhibits a spontaneous quantum Hall effect with
transverse conductance σxy = ±e2/h [77, 79].

Motivated by a recent pump-probe experiment on the
ultrafast SDW dynamics in chromium [80], we perform
simulations of this topological SDW subject to a short
heat pulse. For simplicity, we assume that the effect of
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FIG. 4: (Color online) (a) Configuration of the topolog-
ical triple-Q SDW with a quadrupled unit cell; the four
spins in the unit cell point to corners of a regular tetrahe-
dron. (b) Time dependence of the effective electron tempera-
ture. Also shown is the pump pulse with a Gaussian profile:

Q(t) ∝ e−(t−tp)2/w2

, where tp = 15, and w = 5, in units of
1/tnn. The green dashed line marks the equilibrium transi-
tion temperature of the tetrahedral SDW. (c) the SDW order
parameter M, average normalized scalar spin chirality χ4,
standard deviation of the scalar chirality σχ4 , and the elec-
tron energy gap εgap as a function of time. BothM and εgap
are normalized to its maximum value. (d) the transverse and
longitudinal conductivity (normalized to the quantized e2/h)
as a function of time. The (green) shaded area indicates the
temporal window when the electronic gap is closed.

the pump pulse is to inject energy to the electron sys-
tem, which quickly equilibrates to a state characterized
by temperature Te. This is consistent with our adiabatic
approximation for the SDW dynamics. The time depen-
dence of the effective electron temperature is governed by
the rate equation CdTe/dt = −G(Te − TL) + Q(t) [81],
where C is the heat-capacity of the electron liquid, G
is the coupling to the lattice, TL is the lattice tempera-
ture, and Q(t) ∝ exp[−(t − tp)2/w2] is the heat source
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due to the pump pulse. We further assume that TL ≈ 0
throughout the relaxation process. The resultant Te(t)
curve is shown in Fig. 4(b).

Te(t) is then used for the stochastic noise ξ(t) in our
QLLD simulations of Eq. (10). We use the parameters,
U = 3, damping γ = 0.1, G/C = 0.02, tp = 15, and
w = 5, in units of the NN hopping tnn. The lattice
size is N = 1202. Fig. 4(c) shows the evolution of the
magnetic order parameter at the nesting wavevectors:
M =

√
|∆1|2 + |∆2|2 + |∆3|2 normalized to its maxi-

mum. We also estimate the time dependence of the elec-
tron spectral gap εgap from the instantaneous DOS [see
Fig. 4(c)]. Interestingly, as the temperature rises, the de-
cline of M is rather slow compared with the closing of
the energy gap. In fact, the SDW order parameters ∆η

remain finite throughout the process, while the gap closes
quickly after the photoexcitation (at t ≈ 12). In equilib-
rium the SDW order parameters disappear along with
the gap above the transition temperature [82], implying
that the photoexcited SDW is in a highly non-equilibrium
transient state. As the system relaxes, the gap reopens
at a later time [see Fig. 4(c)].

This picture is further supported by our calculation
of instantaneous longitudinal and transverse conductivi-
ties shown in Fig. 4(d). Here we use KPM to compute
the Kubo-Bastin formula for the conductivities [83, 84].
The error bars are estimated from five independent sim-
ulations. The electrons exhibit a negligible longitudinal
conductivity σxx ≈ 0 and a quantized Hall conductiv-
ity σxy = e2/h in the gapped regimes, as expected for
this topological SDW. On the other hand, the longitudi-
nal conductivity increases significantly during the period
of vanishing gap, while the transverse conductance de-
creases and exhibits small oscillations in the vicinity of
the gap-closing transitions.

The closing and subsequent re-opening of the SDW gap
have been reported in recent pump-probe experiment on
chromium [80]. The ultrafast SDW dynamics seem to be
well described by a model that assumes a thermalized
electron gas. However, the closing of the gap is assumed
to be always accompanied by the disappearance of the
SDW order parameter in Ref. 80, which is not necessar-
ily the case. As demonstrated in our simulations, an out-
of-equilibrium electron state might be gapless while the
spin density remains modulated. Indeed, similar pump-
probe experiments on the charge density wave (CDW)
have revealed a fast collapsing of electronic gap in the
time-resolved photoemission spectroscopy [85, 86], and
a reduced, yet finite, modulation of charge density in-
ferred from core-level X-ray photoemission [87] during
the nonequilibrium melting process. Numerical simula-
tions taking into account coupling to the lattice distortion
showed that the CDW order parameter can indeed be
partially decoupled from the spectral gap dynamics [88].
However, it should be noted that the lattice degrees of
freedom introduce a new time scale, in addition to that of
the hot electron relaxation. The transient metallic SDW
observed in our simulations is probably due to a different
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FIG. 5: (Color online) Top panels: spatial distribution of the
normalized plaquette scalar spin chirality χ4 at time (a) t = 5
and (b) t = 40 from QLLD simulations on a triangular lattice
with 120×120 sites. (c) histogram of the normalized plaquette
chirality χ4 at varying simulation time. The corresponding
electronic DOS near the Fermi level are shown in (d).

mechanism.

To understand the origin of this nonequilibrium metal-
lic SDW, we first note that the electronic gap of this
topological SDW arises from the scalar spin chirality [79].
Indeed, the electronic gap vanishes for collinear or copla-
nar triple-Q SDWs [78, 79]. This observation leads us to
investigate the temporal and spatial fluctuations of the
scalar chirality. To this end, we introduce the normalized

scalar spin chirality: χ4 = χijk = (mi ·mj ×mk)/ |m|3
for individual triangular plaquettes (here the overline in-
dicates average over all triangles). The time dependence
of the (spatial) average and the standard deviation of
the scalar chirality χ4 are shown in Fig. 4(c). Inter-
estingly, the average chirality remains finite and of the
same sign, indicating that the chiral symmetry is still
broken in this transient SDW. On the other hand, as
shown in Fig. 4(c), the standard deviation σχ4 increases
significantly with T . In fact, the transient gapless regime
coincides roughly with the period when σχ4 > χ4, im-
plying that the vanishing gap is due to thermally induced
spatial fluctuations of χijk.

Our scenario is confirmed by the spatial distribution
of the normalized plaquette chirality at the initial stage
(t = 5) and the gapless regime (t = 40), shown in
Fig. 5(a) and (b), respectively. While the chirality is
relatively uniform initially (χ4 ∼ 1), noticeable inhomo-
geneity develops at later times [see Fig. 5(b)]. Histograms
of the plaquette chirality h(χ4) and the corresponding
electron DOS at various simulation times are shown in
Fig. 5(c) and (d), respectively. The chirality distribution
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becomes asymmetric and very broad during the period
of vanishing gap. This transient gapless SDW is similar
to the disorder-induced metallic antiferromagnetic state
observed in the Anderson-Hubbard model [60]. As dis-
cussed above, the plaquette scalar chirality acts as local
magnetic field and it is known that strongly disordered
magnetic flux destroys the quantum Hall effect, in agree-
ment with our simulations. Our results thus underscore
the importance of thermal fluctuations and spatial in-
homogeneity for the nonequilibrium dynamics of SDW,
which have been overlooked in most dynamical studies of
correlated systems.

IV. SUMMARY AND OUTLOOK

We have developed a new theoretical framework for
the semiclassical dynamics of SDW in Hubbard-like mod-
els. Based on a real-space time-dependent Hartree-Fock
(TDHF) method applied to symmetry-breaking phases,
our approach provides a Hamiltonian formulation for the
SDW dynamics. The time evolution of the SDW field
is coupled to the von Neumann equation that describes
the dynamics of single-electron density matrix. The for-
mulation correctly reduces to the Holstein-Primarkoff
dynamics of magnons (linear spin waves) in the large-
U limit at half-filling. We further show that an adia-
batic approximation of the von Neumann equation gives
rise to a quantum Landau-Lifshitz dynamics (QLLD)
for the SDW order parameter. Importantly, the energy
functional of the LL equation is computed from an ef-
fective spin-fermion Hamiltonian that is obtained from
a Hubbard-Stratonovich transformation of the original
Hubbard model.

Our benchmark study of the Néel order on a half-filled
Hubbard cluster showed that the semiclassical SDW dy-
namics agrees reasonably well with the exact diagonal-
ization calculation. We apply our QLLD simulations to
compute the dynamical structure factor of a 120◦ SDW
at intermediate values of U/t on the triangular lattice.
While the overall spectrum resembles that obtained us-
ing linear spin-wave theory for the large U/t limit of
the Hubbard model (S = 1/2 Heisenberg model), charge
fluctuations produce a significant renormalization of the
low-energy branch. We note that quantum fluctuations,
not included in our approach, can also produce a signif-
icant renormalization of the spin-wave spectrum of frus-
trated 2D models [89–92], like the one considered here.
However, renormalization due to quantum fluctuations
is much smaller in 3D models, whose dynamical struc-
ture factor is typically well described by semiclassical
approaches. Importantly, our real-space approach al-
lows us to include the effects of spatial inhomogeneities
of the SDW on large lattices. We have demonstrated this
unique capability by computing the dynamical structure
factor of the same 120◦ SDW on an Anderson-Hubbard
model with disordered on-site potentials. Other than sig-
nificant broadening of the magnon dispersion, our result

shows that the disorder induces many low-energy modes,
especially at the boundary of the Brillouin zone.

Another important application of our QLLD method
is the study of SDW-related non-equilibrium phenom-
ena. Here we generalize the LL dynamics by including a
Langevin-type damping and the corresponding stochas-
tic noise to account for longitudinal relaxation and fluc-
tuation. We then apply the generalized QLLD scheme
to study the evolution of a topological SDW subject to
a heat pulse, similar to the situation in the pump-probe
setup. Our simulation shows an intriguing transient non-
equilibrium SDW on the triangular lattice. While the
SDW order parameter decreases with rising electron tem-
perature, it remains finite even when the electronic gap
is closed. The gap reopens at a later time as the sys-
tem relaxes. Since the electronic gap in this topological
SDW originates from the noncoplanar spin configuration,
we show that the vanishing gap is due to strong spa-
tial fluctuations of the scalar spin chirality, a quantity
measuring the non-coplanarity of plaquette spins. Our
real-space QLLD simulations thus underscores again the
importance of spatial inhomogeneity and thermal fluctu-
ation of the SDW dynamics.

The theoretical framework and numerical method de-
veloped in this paper can be easily generalized to study
the dynamics of other symmetry-breaking phases, no-
tably charge-density wave and superconductivity. Com-
pared with other phenomenological method (e.g. time-
dependent Ginzburg-Landau simulation for superconduc-
tors), keeping the electron degrees of freedom allows us
to also look into the instantaneous electronic structure
during the evolution of the order-parameter field.

Our efficient semiclassical approach can also be feasi-
bly integrated with first-principles method such as den-
sity functional theory (DFT) [93–95]. Here we note the
analogy with molecular dynamics (MD) simulations [30].
While classical MD simulations use phenomenological
inter-atomic potentials, the quantum or ab initio MD
method computes the forces by solving, e.g. the Kohn-
Sham Hamiltonian on the fly [29, 96]. The quantum MD
methods have proven a powerful tool in many branches
of physical sciences. Our method can be viewed as the
quantum version of the Landau-Lifshitz dynamics. We
envision that the QLLD method combined with DFT cal-
culation will provide a new approach to SDW dynamics
in realistic materials.

It is worth pointing out that the numerical method
presented here is complementary to DMFT. Both ap-
proaches are not restricted by the sign-problem that
plagues the QMC methods. Conventional DMFT ig-
nores spatial correlations from the outset and focuses
on quantum effects or fluctuations along the imaginary
time axis. Spatial correlations are partially included in
recent cluster or real-space generalization of DMFT [97–
100]. Our semiclassical approach, on the other hand,
emphasizes the large-scale simulations in order to fully
take into account the spatial correlations and fluctua-
tions of the magnetic order parameter. Taking advan-
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tage of recent developments of efficient electronic struc-
ture method, such as KPM, our scheme is to progres-
sively include the quantum corrections at each time step
of the dynamical simulations. In developing this method,
we are partly motivated by several recent studies empha-
sizing the important role of emergent nano-scale struc-
tures in the functionality of strongly correlated materi-
als [101, 102]. Our work here has laid the groundwork for
systematic improvement beyond the adiabatic or TDHF
approximation, which will be left for future studies.
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Appendix A: Kernel polynomial method and its gradient transformation

The kernel polynomial method (KPM) [83] and the technique of automatic differentiation [27, 28] are crucial to our
implementation of efficient QLLD simulations. Here we briefly review these numerical techniques. Conventional KPM
provides an efficient approach to computing the system free-energy F . However, central to our QLLD simulations is
the calculation of the ‘forces’ acting on spins: ∂F/∂mi, where the effective energy functional is calculated from the
quadratic fermion Hamiltonian: F = 〈HSDW〉. Specifically, the force is

∂F
∂mi

= −U〈si〉 = −U
2
ρiα,iβ σβα. (A1)

Computing the force is thus equivalent to evaluating the single-particle density matrix ρiα,jβ . We first introduce the
single-particle Hamiltonian Hiα,jβ such that the quadratic spin-fermion Hamiltonian is expressed as (up to a term
that is independent of fermions)

HSDW =
∑
iα,jβ

Hiα,jβc
†
iα cjβ =

∑
IJ

HIJc
†
I cJ . (A2)

Here we have introduced notation I = (i, α), J = (j, β), · · · for simplicity. The density matrix is then given by the
derivative

ρIJ = 〈c†J cI〉 =
∂F
∂HIJ

. (A3)

Next we outline the KPM procedure for computing the free energy which is expressed in terms of the DOS as
F =

∫
ρ(ε) f(ε)dε, where f(ε) = −T log[1 + e−(ε−µ)/T ]. KPM begins by approximating the DOS as a Chebyshev

polynomial series,

ρ(ε) =
1

π
√

1− ε2
M−1∑
m=0

(2− δ0,m)µm Tm(ε), (A4)

where Tm(x) are Chebyshev polynomials, and µm are the expansion coefficients. The expansion is valid only when
all eigenvalues of HIJ have magnitude less than one. This can in general be achieved through a simple shifting and
rescaling of the Hamiltonian. Moreover, damping coefficients gm are often introduced to reduce the unwanted artificial
Gibbs oscillations. Substituting ρ(ε) into the free energy expression gives

F =

M−1∑
m=0

Cm µm, (A5)

where coefficients Cm = (2 − δ0,m)gm
∫ 1

−1
Tm(ε)f(ε)

π
√

1−ε2 dε are independent of the Hamiltonian and may be efficiently

evaluated using Chebyshev-Gauss quadrature.
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The key step of KPM is to replace computation of the Chebyshev moments µm = TrTm(H) by an ensemble average

µm = 〈Tm(H)〉 = 1
R

∑R
`=1 r

†
`Hr` over random normalized column vectors r [103]. Taking advantage of the recursive

relation of Chebyshev polynomials: Tm(H) = 2H · Tm−1(H) − Tm−2(H), the moments can be evaluated recursively
as follows:

µm = r† · αm, (A6)

where r is a random vectors with complex elements drawn from the uniform distribution |rI |2 = 1. The random
vectors αm are given by

αm =

 r, m = 0
H · r, m = 1
2H · αm−1 − αm−2, m > 1

(A7)

The above recursion relation also indicates that evaluation of µm that are required for computing F only involves
matrix-vector products. For sparse matrix H with O(N) elements, this requires only O(MN) operations, where M is
the number of Chebyshev polynomials. On the other hand, even with the efficient algorithm for F , a naive calculation
of the derivatives ∂F/∂HIJ based on finite difference approximation is not only inefficient but also inaccurate. The
computational cost of finite difference is similar to the KPM-based Monte Carlo method with local updates.

To circumvent this difficulty, we employ the technique of automatic differentiation with reverse accumulation [104].
Instead of directly using Eq. (A5), the trick is to view F as a function of vectors αm and write

∂F
∂HIJ

=

M−1∑
m=0

∂F
∂αm,K

∂αm,K
∂HIJ

, (A8)

Here αm,K denotes the K-th component of vector αm, and summation over the repeated index K is assumed. Using
Eq. (A7), we have

∂α0,K

∂HIJ
= 0,

∂α1,K

∂HIJ
= δIK α0,J ,

∂αm,K
∂HIJ

= 2δIK αm−1,J (m > 1) (A9)

The expression of ∂F/∂HIJ can be simplified by introducing a new set of random vectors:

βm ≡
∂F

∂αm+1
, (A10)

From Eqs. (A8) and (A9) , we obtain

∂F
∂HIJ

= β0,I α0,J + 2

M−2∑
m=1

βm,I αm,J . (A11)

Remarkably, the vectors βm can also be computed recursively. To this end, we note that the recursion relation (A7)
implies that F depends on αm through three paths:

∂F
∂αm,K

=
∂F
∂µm

∂µm
∂αm,K

+
∂F

∂αm+1,L

∂αm+1,L

∂αm,K
+

∂F
∂αm+2,L

∂αm+2,L

∂αm,K
. (A12)

The various terms above can be straightforwardly calculated:

∂F
∂µm

= Cm,
∂µm
∂αm,K

= r∗K ,
∂αm+1,L

∂αm,K
= 2HLK ,

∂αm+2,L

∂αm,K
= −δLK . (A13)

Consequently,

βm = Cm+1 r
† + 2βm+1 ·H − βm+2, (m < M − 1). (A14)

Restoring the site and spin indices, we obtain the following expression for the density matrix

ρiα,jβ = β0,iα α0,jβ + 2

M−2∑
m=1

βm,iα αm,jβ . (A15)

As in standard KPM, there are two independent sources of errors in our method [27, 83]: the truncation of the
Chebyshev series at order M − 1, and the stochastic estimation of the moments using finite number R of random
vectors. The performance of the stochastic estimation can be further improved using correlated random vectors based
on the probing method [105]. Most simulations discussed in the main text were done on a 120×120 triangular lattice.
The number of Chebyshev polynomials used in the simulations is in the range of M = 1000 to 2000. The number of
correlated random vectors used is R = 64 to 144.
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Appendix B: Large-U limit: formal derivation

Here we present a formal derivation of the effective SDW Hamiltonian in the large-U limit, which is expected to
be equivalent to that of the original Hubbard model. Our first step is to write the spin-fermion Hamiltonian Eq. (2)
in a new reference frame, such that the local quantization axis of site i coincides with the direction of the SDW field.
Let mi = |mi|(sin θi cosφi, sin θi sinφi, cos θi), the fermionic operators in the new reference frame are

c̃†i,+ = e−iφi/2 sin(θi/2) c†i,↓ + eiφi/2 cos(θi/2) c†i,↑,

c̃†i,− = e−iφi/2 cos(θi/2) c†i,↓ − eiφi/2 sin(θi/2) c†i,↑, (B1)

The inverse transformation is

c†i,↑ = e−iφi/2 cos(θi/2) c̃†i,+ − e−iφi/2 sin(θi/2) c̃†i,−,

c†i,↓ = e+iφi/2 sin(θi/2) c̃†i,+ + e+iφi/2 cos(θi/2) c̃†i,−. (B2)

We separate the spin-fermion Hamiltonian into two parts HSDW = T + U . The kinetic hopping term can be re-
expressed in the new reference frame as

T = −
∑
〈ij〉

∑
µν=±

tij

(
ηµνij c̃

†
iµ c̃jν + h.c.

)
, (B3)

where

η++
ij = + cos

(
φj − φi

2

)
cos

(
θj − θi

2

)
+ i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η+−
ij = − cos

(
φj − φi

2

)
cos

(
θj − θi

2

)
− i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η−+
ij = − cos

(
φj − φi

2

)
cos

(
θj − θi

2

)
+ i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
,

η−−ij = + cos

(
φj − φi

2

)
cos

(
θj − θi

2

)
− i sin

(
φj − φi

2

)
cos

(
θj + θi

2

)
. (B4)

To derive the effective Hamiltonian, we use the standard perturbation approach by treating the hopping T as a
perturbation to the coupling term

U = −U
∑
i

|mi|
(
c̃†i,+c̃i,+ − c̃†i,−c̃i,−

)
+ U

∑
i

|mi|2. (B5)

For convenience, we first introduce the resolvent of U : Ĝ0(ε) = 1/(ε − U). The effective Hamiltonian up to second
order in tij is given by

Heff = P T Ĝ0(ε0)T P, (B6)

where P is a projector onto the lowest energy subspace with one electron per site whose spin is parallel to local
moment mi, and ε0 = −NU/4 is the energy of the degenerate large-U ground state (N is the number of lattice sites).
Then, in the new reference frame, the only processes contributing to Heff are the spin-flip hoppings which annihilate
electrons with spin µ = + and create electrons in a difference site with spin µ = −. Given that each state of the lowest
energy subspace is fully characterized by the field configuration {mi}, the effective Hamiltonian can be expressed in
terms of the the SDW field:

Heff = −
∑
〈ij〉

t2ij
U

(∣∣η−+
ij

∣∣2 +
∣∣η+−
ij

∣∣2)
=
∑
〈ij〉

t2ij
U

[1− sin θi sin θj cos(φi − φj)− cos θi cos θj ] =
∑
〈ij〉

4t2ij
U

(
mi ·mj −

1

4

)
(B7)

which is the expected Heisenberg exchange interaction for spin-1/2 in the large U limit [36].



13

We next derive the dynamics equation in the large-U limit, which is given by the Landau-Lifshitz equation. To
this end, we first consider the Heisenberg equation of motion for local spin operator dsi/dt = −i[si,HH]. Here

si = 1
2c
†
iασαβciβ , andHH is the Hubbard Hamiltonian. Expressing the on-site U interaction in terms of spin operators,

it is given by

HH = −
∑
〈ij〉,α

tij

(
c†iαcjα + h.c.

)
− 2U

3

∑
i

s2
i +

NeU

2
. (B8)

where Ne is the number of electrons. Obviously, the U term of the Hubbard Hamiltonian commutes with the spin
operator, and we have dsi/dt = −i[si, T ]. For example, we consider the z component first. Using commutation

relations [szi , c
†
i,↑] = 1

2c
†
i,↑ and [szi , c

†
i,↓] = − 1

2c
†
i,↓, we have

−i
[
szi ,
(
c†iαcjα + c†jαciα

)]
= − iσα

2

(
c†iαcjα − c†jαciα

)
= − i

2

(
c†iασ̂

z
αβ cjβ − c†jασ̂zαβ ciβ

)
. (B9)

Here σα = ±1 for α =↑, ↓, respectively. Summing over repeated indices is also implied. The equation for the x and y
components of si can be obtained by applying π/2 rotations to this equation. We have

dsi
dt

= −
∑
j

Jij , (B10)

where we have defined the spin current density operator Jij .

Jij = − iσαβ
2

(
c†iαcjβ − c†jαciβ

)
. (B11)

It is worth noting that Eq. (B10) is simply the continuity equation for the spin density. Taking the expectation value
with respect to the ground state gives rise to the equation of motion for the SDW field

dmi

dt
= −

∑
j

〈Jij〉, (B12)

Next we compute the expectation value of Jij in the large U limit. In the t/U → 0 limit, obviously 〈Jij〉 = 0. A
nonzero contribution comes from the second-order perturbation due to electron hopping. The procedure is similar to
what we did to derive the effective Hamiltonian. Specifically, we project the spin current operator into the degenerate
low-energy manifold of HSDW with the electronic eigenstates corrected up to first order in the perturbation. For the
z-component, we have

〈Jzij〉 =
1

2

[
PJzijG0(ε0)T P + PT G0(ε0)JzijP

]
. (B13)

Once again, it is convenient to work in the new reference frame. For example, the current density operator

Jzij = − itij
2

∑
µν=±

(
τµνij c̃

†
iµ c̃jν − (τµνij )∗c̃†jν ciµ

)
. (B14)

Here we have introduced

τ++
ij = + cos

(
φj − φi

2

)
cos

(
θj + θi

2

)
+ i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ+−
ij = − cos

(
φj − φi

2

)
cos

(
θj + θi

2

)
− i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ−+
ij = − cos

(
φj − φi

2

)
cos

(
θj + θi

2

)
+ i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
,

τ−−ij = + cos

(
φj − φi

2

)
cos

(
θj + θi

2

)
− i sin

(
φj − φi

2

)
cos

(
θj − θi

2

)
. (B15)

Using expressions (B14) and similar one for the kinetic term Eq. (B3), we obtain

〈Jzij〉 = −
it2ij
U

{[
τ−+
ij (η−+

ij )∗ − (τ−+
ij )∗η−+

ij

]
+
[
τ+−
ij (η+−

ij )∗ − (τ+−
ij )∗η+−

ij

]}
(B16)
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Using the definitions for τµνij and ηµνij , it can be shown that[
τ−+
ij (η−+

ij )∗ − (τ−+
ij )∗η−+

ij

]
=
[
τ+−
ij (η+−

ij )∗ − (τ+−
ij )∗η+−

ij

]
= 2i sin(φj − φi)

[
sin2

(
θj + θi

2

)
− sin2

(
θj − θi

2

)]
= 2i sin(φj − φi) sin θi sin θj (B17)

In terms of the SDW field mi, the right-hand side of the above equation is 2i m̂i × m̂j · ẑ, where m̂i is a unit vector
along the local moment direction. Using the fact that |mi| = 1/2 in the large U limit at half filling, this result
indicates the following vector identity for the spin current

〈Jij〉 =
4t2ij
U

mi ×mj . (B18)

Substituting this into Eq. (B12) gives the well known Landau-Lifshitz equation of motion (7) in the main text for the
Heisenberg exchange Hamiltonian.

Appendix C: Exact diagonalization calculation of dynamical structure factor

Here we provide details of the exact diagonalization (ED) calculation of Hubbard Model on 4 × 4 square lattice
with periodic boundary condition (PBC). For simplicity, we consider the case where SU(2) symmetry is conserved in
the model, which leads to S(q, ω) = 3Szz(q, ω).

To calculate Szz(q, ω) at T = 0, we first obtain the ground state |Ψ0〉 in the total Sz = 0 sector at half-filling, by
using the implicitly restarted Arnoldi method provided through the ARPACK libary [106]. The dynamical structure
factor can be expressed through the fluctuation-dissipation theorem:

Szz(q, ω) = −2Imχzz(q, ω)

= −2〈Ψ0|SzqSz−q|Ψ0〉 Im〈φ0|(ω + iη + E0 −H)−1|φ0〉, (C1)

where |φ0〉 ≡ Sz(−q)|Ψ0〉/
√
〈Ψ0|SzqSz−q|Ψ0〉, and E0 is the ground state energy: H|Ψ0〉 = E0|Ψ0〉.

The matrix inverse (z −H)−1 can be calculated through the Lanczos algorithm [107, 108]:

Algorithm 1: Lanczos algorithm

input : |φ0〉 = Sz(−q)|Ψ0〉/
√
〈Ψ0|SzqSz−q|Ψ0〉, b0 = 0

1for j = 0, 1, 2, . . . do
2 |wj〉 = H|φj〉 − bj |φj−1〉;
3 aj = 〈wj |φj〉;
4 |wj〉 = |wj〉 − aj |φj〉;
5 bj+1 =

√
〈wj |wj〉;

6 |φj+1〉 = |wj〉/bj+1;

7end

In the new basis {|φ0〉, |φ1〉, |φ2〉, . . .}, the Hamiltonian is expressed by a tridiagonal matrix:

H =


a0 b1
b1 a1 b2

b2 a2
. . .

. . .
. . . bn
bn an

 . (C2)

With Cramer’s rule, the first element of the inverse matrix can be expressed as a continued fraction:

〈φ0|(z −H)−1|φ0〉 =

(z − a0)− b21

(z − a1)− b22
(z−a2)−···

−1

, (C3)
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which leads to

Szz(q, ω) = −2〈Ψ0|SzqSz−q|Ψ0〉 · Im
[

(z − a0)− b21

(z−a1)− b22
(z−a2)−···

]−1

, (C4)

where z ≡ ω + iη + E0.
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