
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Polymorphous band structure model of gapping in the
antiferromagnetic and paramagnetic phases of the Mott

insulators MnO, FeO, CoO, and NiO
Giancarlo Trimarchi, Zhi Wang, and Alex Zunger

Phys. Rev. B 97, 035107 — Published  5 January 2018
DOI: 10.1103/PhysRevB.97.035107

http://dx.doi.org/10.1103/PhysRevB.97.035107


  

1 
 

A polymorphous band structure description of gapping in the antiferromagnetic and 
paramagnetic phases of the Mott insulators MnO, FeO, CoO, and NiO 

                                  Giancarlo Trimarchi (1) Zhi Wang (2) and Alex Zunger (2)   

(1) Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA 

(2) Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, USA 

 

  The existence of band gaps in both the antiferromagnetic (AFM) and paramagnetic (PM) phases of the 
classic NaCl-structure Mott insulators MnO, FeO, CoO, and NiO is traditionally viewed and taught as a 
manifestation of strong correlation whereby insulation results from electrons moving across the lattice 
forming states on certain atomic sites with doubly occupied d orbitals and empty d orbitals on other sites. 
Within such theories, the gap of the AFM and PM phases of these oxides emerges even in the absence of 
spatial symmetry breaking. The need for such a correlated picture is partially based on the known failure 
of the commonly used band models for the PM phase which assumes for such a spin disordered state the 
macroscopically averaged NaCl structure, where all transition metal (TM) sites are symmetry-equivalent 
(a monomorphous description), producing a gapless PM state with zero magnetic moments, in sharp 
conflict with experiment. Here we seek to understand the minimum theoretical description needed to 
capture the leading descriptors of ground state Mott insulation in the classic, 3d monoxide Mott 
systems—gapping and moment formation in the AFM and PM. As noted by previous authors, the spin-
ordered AFM phases already show in band theory significant band gaps when one doubles the NaCl unit 
cells by permitting different potentials for transition metal atoms with different spins. For the spin-
disordered PM phase we allow analogously larger NaCl-type supercells where each TM site can have 
different spin direction and local bonding environments (i.e. disordered), yet the total spin is zero. Such a 
polymorphous description has the flexibility to acquire symmetry-breaking energy lowering patterns that 
can lift the degeneracy of the d orbitals and develop large on-site magnetic moments without violating the 
global, averaged NaCl symmetry. Electrons are exchanged between spin up and spin down bands to 
create closed shell insulating configurations that lend themselves to a single determinental description.  It 
turns out that such a polymorphous description of the structure within the single determinant, mean field, 
Bloch periodic band structure approach (based on DFT+U) allows large on-site magnetic moments to 
develop spontaneously, leading to significant (1-3 eV) band gaps and large local moments in the AFM, 
and PM phases of the classic NaCl-structure Mott insulators MnO, FeO, CoO, and NiO in agreement with 
experiment. We adapt to the spin disordered polymorphous configurations the “special quasi-random 
structure” (SQS) construct known from the theory of disordered substitutional alloys whereby supercell 
approximants which represent the best random configuration average (not individual snapshots) for finite 
(64, 216 atoms or larger) supercells of a given lattice symmetry are constructed. We conclude that the 
basic features of these paradigm Mott insulators can be approximated by the physics included in 
symmetry broken DFT. 
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I. Introduction 
 
   The physical origin of the insulating phases occurring in crystals with partially occupied d 
shells exemplified by the transition metal (TM) monoxides MnO, FeO, CoO and NiO, has held 
the condensed matter physics community in constant fascination ever since Mott and Peierls 
proposed an explanation1. These oxides have a low-temperature spin-ordered antiferromagnetic 
(AFM) phase, in which they exhibit slightly distorted rock salt structures (rhombohedral for NiO, 
and MnO, and monoclinic for CoO and FeO, the latter having also Jahn Teller atomic 
displacements), and a high-temperature spin disordered paramagnetic (PM) phase, having 
macroscopically the cubic rock salt structure and a globally zero magnetic moment. In simplified 
band structure calculations2-7 it has been customary to evaluate the electronic structure for the 
macroscopically observed average rock salt configuration ઱଴. Because there is but a single 
transition metal atom in such a unit cell, the PM condition of globally zero magnetic moment 
leads to vanishing local magnetic moment ߤ௜ሺ઱଴ሻ at each metal site ݅, and therefore, by 
symmetry, to zero band gaps Eg(઱଴ሻ for such odd number of electron cases. Here, ઱଴ was taken 
as the non-magnetic, cubic rock salt configuration in which all TM sites are equivalent (a 
monomorphous representation). As is generally taught8, 9 , the ensuing electronic structure of 
compounds having partially occupied energy bands described in a structure where all atoms are 
equivalent would be metallic2, 3 with the Fermi level intersecting a band. Yet, experimentally 
MnO, FeO, CoO and NiO are local-moment large band gap insulators, both in the AFM and PM 
phase10-12 (see Table I).  
   The fundamental disagreement between such band structure theory and experiment set the 
historical stage for modeling the electronic structure of the PM phases of MnO, FeO, CoO and 
NiO and related quantum materials by many-body, correlated electron descriptions, such as the 
description based on the Hubbard Hamiltonian13, 14, or, more recently, the dynamical mean field 
theory (DMFT)15, 16 rendering of the Hubbard Hamiltonian. Within such theories, the gap of the 
AFM and PM phases of these oxides emerges because the d electrons become localized due to 
the correlation-induced electron-electron repulsion, even in the absence of spatial symmetry 
breaking (symmetry can break afterwards, as a secondary fact). From the strongly correlated 
standpoint the existence of local magnetic moments is a consequence of the electron localization 
and not an essential part of the gap opening mechanism itself. The Mott mechanism envisions 
that the electrons move across the lattice forming states on certain atomic sites with doubly 
occupied d orbitals and empty d orbitals on other sites. These types of excited configurations 
correspond respectively to the upper and lower Hubbard bands, which are envisioned to form the 
physical band edges ,i.e the valence band maximum and conduction band minimum.  
      Indeed one often finds in the literature comments that single determinant mean field  DFT 
band theory fails to reproduce the gap in the absence of long-range magnetic order.4, 17-19 But 
such conclusions may have been clouded by a few restrictions applied unwittingly to band theory 
itself. For example, the model that has been often used for the PM phase of these oxides restricts 
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all metal sites to see identical local environments and potentials, ie use unit cells with single TM 
per cell. Because such a monomorphous representation of a disordered PM phase forces upon us 
in band theory a zero magnetic moment on an atom-by-atom basis (instead of having a global 
zero moment but nonzero local moments), the ensuing band gaps in such nonmagnetic models 
were always zero, irrespective of the quality of the description of the interelectronic interaction 
Exc[n↑(r), n↓(r)] in DFT band theory. However, as shown here, upon examining the total DFT 
energies, one finds that the non magnetic (NM) ‘phase’ is unstable by more than 2 eV/formula 
unit than a proper DFT paramagnetic phase of CoO, so the NM it is but an hypothetical state. In 
addition to confusing paramagnetic state with non magnetic state, other approximation to DFT 
band theory may have perhaps prematurely disqualified such approaches for describing even 
simple Mott systems and related quantum materials. These include (i) disallowing geometrical 
symmetry breaking (such as Jahn –Teller, or atom-pairing, or charge disproportionation), or (ii) 
using DFT functionals that do not distinguish occupied from unoccupied states (ie lacking 
exchange correlation discontinuity as in self interaction corrected DFT or its DFT+U 
approximant), thus forcing equal and fractional occupation of all components of open shell 
degenerate states at the Fermi energy. Since none of these simplifications are defining features of 
band theory itself, the failure of such approaches in explaining Mott insulation may have been 
prematurely viewed as a fundamental failure of the single determinant mean field approach itself. 
The path then suggested in the literature to model the paramagnetic state of Mott insulators has 
been that of solving the Hubbard model by strongly correlated approaches. (Perhaps an early 
clue that d electron strong correlation is not the deciding factor for these binary oxide systems is 
the fact that the valence band and conduction band edges consist of oxygen p and transition 
metal s orbitals, shown below, not the proverbial d-like lower and upper Hubbard bands, 
envisioned by the founding thinkers in this field). Here, we relax the restrictions often imposed 
previously but which are not an integral part of band theory per se, seeking to understand the 
minimum theoretical approach needed to describe the leading features of the Mott insulating 
behavior, namely, gap opening and amplitude and on-site magnetic moment formation in the 
AFM and PM phase of the classic, 3d monoxide Mott systems. To this end we deliberately use a 
single-determinant, mean field Bloch periodic band structure approach (based on DFT+U), but 
permit any energy-lowering symmetry breaking effects sanctioned by such a mean field 
description. 
       We find here for the text book MnO, FeO, CoO and NiO Mott insulators that symmetry 
breaking afforded by using in band theory sufficiently flexible unit cells (the polymorphous 
representation of disorder) and allowing orbital occupation symmetry breaking and spin 
unrestricted symmetry breaking produce in DFT+U 20-24 an insulating solution (band gaps of 1-3 
eV) with strong local magnetic moments (2-4 Bohr Magnetons), in general agreement with 
experiment. This symmetry breaking is not assumed, but obtained as an energy-lowering event 
within the mean field like variational theory, and differs from correlation-induced gap opening 
mechanism in the absence of spatial symmetry breaking. This approach produces detailed 
geometrical information (such as atomic displacements; equilibrium cell structure), magnetic 
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moments, band gaps, bonding charge density, and the total energies of al phases, and permits the 
future use of precisely the same polymorphous description for studying defects and doping. The 
emerging physical picture is that at any given moment in time, (i.e., a snapshot) each TM atom 
will have a finite magnetic moment (but randomly pointing to different directions), and these 
moments are rotating with time. So, the average magnetic moment of each atom will not equal to 
zero because of a quantum fluctuation. The conventional physics encoded in DFT with current 
nonlocal functionals-- bonding, magnetism, spin-polarization, Jahn-Teller distortions, 
hybridization and selective occupation of the components of eg and t2 orbitals --suffices to 
produce large moments if not disallowed by imposing artificially high symmetry. As a result of 
these symmetry-breaking channels, electrons are exchanged between spin up and spin down 
bands to create insulating closed shell configuration that lend them to a single determinental 
description. Whereas the final expression would involve a (macroscopically symmetrized) 
combination of all individual symmetry broken configuration, the crucial fact is that such 
individual symmetry broken configuration have closed shells with large band gaps and magnetic 
moments, suggesting that such configurations would have but weak mutual interaction, so  
dynamically correlated approaches are not forced upon us by the physics at hand. We note that it 
is entirely possible that some other Mott compounds would remain metallic in a  single particle 
treatment  even  if  the monomorphous  description  were replaced by a polymorphous 
representation. It is also possible that DFT with the current functional could miss properties 
other than the insulating character of the PM phases. We are not claiming otherwise. These are 
open, future research questions. 
    The fact that the main attribute of the classic Mott insulators (i.e., the existence of gaps) could 
be described by mean-field, single configuration band theory is consequential, as it redefines the 
minimal level of physics and computational effort required. Indeed, such single determinant 
mean field like DFT approaches have recently successfully described in agreement with 
experiment the hole density in p-type doped NiO (ref 25), the metal-insulator transition in rare 
earth nickelates (ref 26), and the n-type doping of SmNiO3 (Ref 27), discussed in Ref 28. Such 
results may open the door for reexamination of the utility of non naïve DFT based band theory 
methods for studying the basic attributes of more complex Mott systems, including ternary and 
quaternary oxides, as well as defects, doping, and interface  characteristics.  
 
II. Dual inputs to electronic structure theory 

   Any electronic structure method requires specifying (a) a representation for the crystal 
structure (and, for random systems such as the PM phases, the way the configurational average 
is performed), as well as (b) the type of electronic interactions allowed by the Hamiltonian and 
its solver (e.g., forms of exchange and correlation in band theory; dynamic correlation in 
explicitly correlated theories). In regard to (b), Table I shows the magnetic moments and band 
gaps calculated by ordinary DFT+U for the AFM as well as the assumed ferromagnetic (FM) 
phases of MnO, FeO, CoO, and NiO. Recall that in the DFT+U method24 as well as related 
methods such as the self-interaction corrected DFT29 and the hybrid functionals30 are all single 
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particle schemes in which the wave function of the N electron system is a single determinant.  
We see from Table I that even in the single-determinant DFT+U description with reasonable 
U=5 eV, which we used across the board for all compounds and spin configurations, these 
transition-metal monoxides, regardless of the type of magnetic ordering (AFM or FM), exhibit 
large local moments and band gaps. This opens the possibility that the actual magnetic order 
may not be the primary reason for these materials to be insulators, but the existence of on-site 
magnetic moments caused by breaking of the symmetry between spin up and spin down 
electronic states may. We will follow this hint by removing in band theory the conceptual and 
computational barriers to the formation of energy lowering symmetry breaking. 

III. Allowing for a polymorphous description of the magnetic structure 
of the paramagnetic phases : Basic concepts 
 

    Gapping in 3D metals can occur due to magnetic spin effects even without symmetry breaking 
(as is the case for the hypothetical FM phase in Table I). In this case there is no atomic symmetry 
breaking and gapping is a local electronic effect due to the possibility to make majority spin and 
minority spin occupy different states and render spin up and spin down as closed shells. [Note, 
however, that the FM phase is not a viable representation for the PM phase that the latter is 
disordered; also, as Table I shows, E(FM) has a higher total energy than E(PM) even at low 
temperature]. But gapping in a 3D metal can also occur due to non-magnetic atom symmetry 
breaking effects that can also create close shell structures. This is illustrated by gapping a metal 
by permitting the geometric flexibility that enables electronic symmetry lowering. For example, 
the DFT total energy of cubic perovskite BaBiO3 with a single Bi4+ site per cell (a metal), is 
lowered by doubling the cubic perovskite primitive cell, allowing two Bi4+ ions to express their 
multivalent nature by disproportioning into Bi3+ + Bi5+ (see Ref.31) with each site having its 
own, local bond geometry, a cell-internal symmetry lowering that caused gapping. Similarly (see 
Ref.32) for CsTlF3 being allowed to express the multivalence of Tl in Cs2 [Tl1+Tl3+]F6 leading to 
gapping of a previously metallic state. In all such cases, a restricted structural description (one 
type of octahedron) incorrectly produced a metal, whereas a more flexible description of the cell 
lowered the total energy and produced the observed insulating gap in band theory. Such 
geometrical freedom needs to be exercised also for spin alloys to concomitantly examine its effect 
on the total energy and possible gapping. 

    Here, we wish to examine if significant on-site magnetic moments might produce a gap also in 
the PM phases within a single-determinant approach, had these moments not been eliminated at 
the outset by selecting for the representation for the crystal structure the monomorphous 
macroscopically averaged configuration ઱଴ where each TM site sees the same local environment. 
In the latter case the global zero moment characteristic of the PM phase is interpreted on an atom 
by atom basis so ߤ௜ሺ઱଴ሻ ൌ 0 at each metal site ݅, leading in band theory (where large moments 
mean large exchange splitting) to a band gap Eg(઱଴ሻ=0.  The polymorphous approach allows 
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each TM atom to see a distinct local magnetic environment and a locally varying density-
functional potential ܸሾߩሺ࢘ሻ, ݉ሺ࢘ሻሿ [where ߩሺ࢘ሻ and ݉ሺ࢘ሻ are, respectively, the electron density 
and magnetization at position ࢘] subject to the constraint that the total magnetic moment is zero 
as must be in a paramagnet. We will enquire if such a representation has sufficient geometrical 
freedom (e.g., unrestricted spatial symmetry) to allow in a self-consistent DFT(+U) calculation 
the evolution of local magnetic moments on individual sites, if this would lower the total energy. 
In band theory language, large moments imply large exchange splitting which could enable large 
gaps. 

     
A. Using the average ۄ۾ۃ of the properties ሼܑܘሽ of individual configurations ሼોܑሽ vs. using 

the property ۾ሺ઱૙ሻ of the average configuration ઱૙ ൌ  ۄોܑۃ
  A common misconstrued approximation in calculating observable macroscopic 
electronic or magnetic property ۄܲۃ of a disordered random alloy A௫Bଵି௫ of composition ݔ or of a disordered moment PM phase is to substitute the calculation of the ensemble 
average ۄܲۃ for property ܲ by the calculation of the property ܲሺ઱૙ሻ of the 
macroscopically averaged configuration ઱࢕. This monomorphous approximation has 
been used in the single-site Coherent Potential Approximation (s-CPA) for chemical 
alloys33 where all A (B) sites in the random alloy see the same potential VA (VB), 
irrespective of the existence of different local environments for different A sites 
(characterized by different  numbers of A vs. B nearest neighbors to a given central 
atomic site). This approach in alloy theory forced vanishing charge fluctuations (hence 
zero Madelung contribution to the total energy34, 35) and vanishing atomic 
displacements,36, 37 38, 39 both in conflict with more general theories (such as 
supercells40,34, 36, 41 having a polymorphous distribution of different A sites each with its 
local environment (and same for B sites)  

 The correct way to calculate the property ܲ of a phase that can have numerous 
individual configurations ሼ࣌௜ሺ௡ሻሽ each with property ܲሺ࣌௜ሺ௡ሻሻ, (where ݊ is the index of the 

configuration), is to calculate the polymorphous statistical average ۄܲۃ ൌ ∑ ܿ௡ܲሺ࣌௜ሺ௡ሻሻ௡  
over the ensemble of microscopic spin configurations accessible to the system, instead 
of assuming ۄܲۃ ൌ ܲሺ઱࢕ሻ. The former approach has largely replaced the monomorphous 
approaches (s-CPA, Virtual Crystal Approximation) in the theory of disordered 
substitutional alloys A௫Bଵି௫, producing qualitatively different results34, 36, 40, 41 in much 
better agreement with experiment. The same polymorphous approach can be applied to 
spin disordered phases, i.e the PM phase of Mott insulators.  

 
B. Time average vs. spatial average 

 In a spin-disordered phase the orientation of the on-site magnetic moments ૄ୧ can 
change over time showing spin wave excitations representing the low energy scale of the 
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problem; such fluctuations in the orientation of the moments have zero overall average. In single 
impurity DFMT the Hubbard model is mapped onto an equivalent Anderson single impurity 
model in which the electrons at the impurity interact with a mean field bath those models the rest 
of the system. There is but a single impurity, which fluctuates in time to give a time average of 
zero spin.  

We examine instead how accurately can one predict the gaps of the PM phases of MnO, 
FeO, CoO, and NiO within a single-determinant description, for which here we use the DFT+U 
scheme, if one correctly estimates the statistical average ۃPۄ ൌ ∑ c୬Pሺો୧ሺ୬ሻሻ୬  over the ensemble 
of microscopic spin configurations accessible to the system instead of forcing a zero moment on 
an atom-by-atom basis. Using a supercell consisting of 2x2x2 or 3x3x3 primitive cells, rather 
than a single NaCl primitive cell (N=1) permits different local environments to each TM atom. 
Such a polymorphous representation allows for a number of degrees of freedom, consistent with 
an overall paramagnetic state, including (i) different number of TM neighbors with spin up and 
spin down (geometric fluctuations), (ii) different occupations of the 3d orbitals on each TM 
(occupation number fluctuation), as well as (iii) different local displacements (positional 
fluctuations), and consequently (iv) different local magnetic moments. The magnitude (zero or 
otherwise) of these fluctuations is determined in a charge self-consistent DFT calculation by 
seeking lower total energies. This provides for an intrinsically multi-site representation involving 
a distribution of transition metals, each with its own local environment. No mean field-
embedding bath is needed, and no arbitrarily selected symmetry breaking is involved. 
 
       Our underlying conjecture is that time fluctuations that could average the magnitude (not 
orientation) of the magnetic moment to zero would involve excitations across the band gap, so 
the time scale for such fluctuations is slow in relation to the relevant electron energy scale. Thus, 
the magnitude of the on-site moments |ૄ୧|ଶ in gapped PM systems will not be zero, deciding the 
higher energy scale of the problem. As a result, the time average of the gaps of all configurations 
could be nonzero. Even though the average ۄܲۃ ∑ ܿ௡ܲቀ࣌௜ሺ௡ሻቁ௡  over the ensemble of microscopic spin configurations  is involved, the band 

gaps and moments ܲሺ࣌௜ሺ௡ሻሻ of individual configurations are nonzero.  
     Indeed, the fact that the antiferromagnetic ordering disappears at TN does not mean that the 
magnetic moments at the transition metal sites go to zero too. On the contrary, the transition 
metal atoms retain robust local magnetic moments as evidenced by the Curie-Weiss behavior of 
the magnetic susceptibility as a function of the temperature. This means that the symmetry 
between spin up and spin down electronic states is instantaneously broken at each site thus 
allowing the localized magnetic moments to form. In contrast, in the naïve  non-magnetic 
approximation to the PM spin configuration4, 1717-19 one imposes perfect symmetry between spin-
up and spin-down which is the symmetry that one obtains via time averages. However, properties 
such as band gaps calculated by using this zero average magnetic configuration does not 
correspond to the property calculated as an average of the properties of the spin configurations 
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that the system traverses. A possible way to allow for a polymorphous description of the PM 
phase that permits the development of local moments in a variational calculation is the Special 
Quasirandom Structure ( SQS) construct. 
 
C. The special quasi-random structure (SQS) as a finite supercell realization of a 

polymorphous paramagnet, not a snapshot configuration 

   Let us focus on the band gap as the property P to be calculated. Instead of calculating 
the band gap for many snapshot configurations ሼ࣌௜ሺ௡ሻሽ and averaging the corresponding 

band gaps ܲሺ࣌௜ሺ௡ሻሻ, we construct a single supercell of N sites that approximates the 
polymorphous configurational average. This is done by requiring that the pair and 
multibody atom-atom correlation functions in this special N site cell best match the 
analytically known correlation functions for the infinite, perfectly random configuration.42, 

43 Convergence with respect to N must be examined; we use ܰ ൑ 216 atoms/cell finding 
that the moments and the total energy have stabilized. The SQS fully complies with the 
polymorphous description of the PM phases that we want to apply here. An observable ܲ calculated for such a structure is not simply the property of a single snapshot 
configuration but approximates the ensemble average ۄܲۃ for the random configuration 
(see Appendix A for the SQS construct44-46 and the explanation of how an SQS 
approximates the ensemble average for a random system).  

It is clear that describing random alloys by periodic structures will introduce 
spurious spatial correlations in the moment configuration beyond a certain distance 
(“periodicity errors”). However, many physical properties of solids are characterized by 
microscopic length scales that can be ordered according to their typical size so as to 
establish a hierarchy. For instance, interactions between distant neighbors generally 
contribute less to the total energy than do interactions between close neighbors. 
Therefore, the guiding idea in the construction of special quasi-random structures is to 
obtain within such structures a close reproduction of the perfectly random network for 
the first few shells around a given site, while the periodicity errors originate from the 
arrangement of the more distant neighbors. In this respect, the SQS construct is 
reminiscent of the ‘special k points’ used for Brillouin zone integration47, 48 in the sense that the 
selected k points are not meant to reproduce properties that reflect mostly the long-range order. 
The accuracy of the SQS improves as one uses larger SQS cell representation (analogous to 
using more k points in BZ sampling methods) in which longer range correlation functions can be 
matched. We have used 64-tom (2x2x2 primitive cells) and 216-atom (3x3x3 primitive cells) 
SQS’s. 
   The SQS, as we just pointed out, is a convenient computational tool to approximate ensemble 
averages. It has been shown that relatively small SQS produce numerically the same 
property values as far larger (ergodic) randomly selected supercells (see Ref.49 ). Note, 
however, that the SQS approach is not to be confused with the commonly practiced supercell 
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approach. In the supercell approach, one occupies lattice sites by different spins using, say, a 
random statistics (i.e., via coin toss) or some choice of short-range order. However, each such 
occupation pattern corresponds to a single snapshot and in order to calculate the observable 
property ۄܲۃ, which is an ensemble average, one should average the properties ሼ ௜ܲሽ of different 
supercell snapshots. In the SQS approach the property PSQS calculated for one SQS provides an 
approximation of the average ۄܲۃ which is progressively improved by increasing the size ܰ of 
the SQS and by extending the order and size of the figures that the SQS algorithm tries to 
hierarchically match. Because the SQS is a polymorphous approach, it allows chemically 
identical sites to develop their own, energy-lowering displacement patterns. In the transition 
metal monoxides investigated here the minimization of the total energy for the PM phases shows 
negligible positional atomic displacements relative to the rock salt positions (less than 0.07 A in 
amplitude. Examples of previous works that use the SQS construct to model magnetic disorder 
are Ref. 50 and Ref. 51 in which magnetic SQSs  were used to model UO2 and CrN respectively 
finding encouraging results. 

Fig.1 shows the SQS we use for the random PM phase. The histogram in Fig.1 
illustrates that, while in the AFM phase (formed by doubling of the primitive rock salt 
cell) each metal atom has 6 spin-up and 6 spin-down metal neighbors [denoted by 
(6,6)], in the SQS representation of the high-temperature PM phase there is a 
distribution of local environments, e.g., (4,8), (6,6), (8,4) etc. The landscape of the self-
consistent DFT potential ܸሾߩሺ࢘ሻ, ݉ሺ࢘ሻሿ corresponding to the SQS, in effect, allows each 
metal site to experience its own distinct ‘particle-in-a-box‘ type potential, simply because 
chemically identical metal sites that have different neighbors ‘see’ different local 
potentials. Just as the doubling of the primitive cell is needed to produce anti-
ferromagnetism in the low temperature AFM phases, the magnetic SQSs allow to 
capture the different local patterns in the distribution of the magnetic moments that 
characterize the PM phases. As we will see below, such polarization of the charge 
density into certain areas of space (not necessarily localization in the sense of 2 
electrons on one site as in the Mott-Hubbard picture) is important in driving the selective 
occupation of certain d orbitals out of the originally degenerate ones. The consequence 
is the development of large energy gaps.  

 
          D. Allowing geometrical broken symmetry and occupation broken symmetry  
 
    Within the SQS construct we consider four types of fluctuations introduced by broken 
symmetry (with respect to NaCl with one TM/cell and nonmagnetic): 
 (a) Geometric fluctuation: different local geometrical environments for chemically 
identical TM atoms in the lattice. Specifically, a different number of spin-up vs spin-down sites 
can exist around each TM sites see Fig. 1. Here the 12 (next nearest) neighbor TM atoms to a 
central TM atom can have 6 up spin + 6 down spin, or 4 up +8 down, etc.). This is afforded by 
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the SQS construct, treating the PM phase as a spin alloy. The system is in PM-phase (total 
magnetic moment = 0).  
 (b) Occupation number fluctuations whereby atomic sites with partial occupation of 
initially degenerate levels (e.g., 2 electrons in the threefold degenerate t2 level) can have different 
assignments of the electrons to the degenerate partners. Occupation broken symmetry means that 
for every cobalt atom, the occupations on different d-states are always integer [ such as (1,0,1) in 
2 electron t2 , or (1,0) in single electron e level, rather than using fractional and equal occupation 
such as (2/3,2/3,2/3) in the t2 case, or (1/2,1/2) in the e1 case. 
   In a charge self-consistent DFT calculation, the fluctuations (a) and (b) could lead also to 
further energy lowering via  
(c) Site-to-site local magnetic moment fluctuations, and  
(d) Displacement fluctuations (i.e, atomic relaxation). 
The key point is that the polymorphous approach used here all such symmetry breaking 
mechanisms— geometric [(a) and (d)] or non geometric [(b) and (c)] are considered 
simultaneously as long as they lower the energy. 
    On the technical side, we note that to ensure that the occupation pattern does not correspond to 
a local minimum, one initially applies a ‘nudge’ in the occupation matrix (see Refs.50, 52-54) and 
then proceeds with the charge self consistent DFT calculation. Appendix B describes the 
protocol used for nudging the site occupations and site relaxations. 
 

E. The role of U in DFT+U 
 

      To treat open shell systems with degenerate orbitals (such as 1 or 2 electrons in a triply 
degenerate t2 level) one requires in DFT an exchange correlation (XC) functional that 
distinguishes occupied from unoccupied orbitals (so 1 or 2 of the degenerate t2 partners will be 
occupied by integer electron(s) and the other will be kept empty, rather than occupying all 
partners by fractional electrons). This requirement means that the XC functional contain an 
exchange correlation derivative discontinuity, i.e that the functional should belong to rung 4 or 5 
of the DFT hierarchy: Meta-GGAs (like SCAN) are “semilocal” functionals of the non-
interacting density matrix, and belong to Rung 3. In contrast, DFT+U, Hybrid functionals and 
self interaction corrected (SIC) functionals are all nonlocal functionals of the non-interacting 
density matrix and they are classified as Rung 4. RPA, which is a nonlocal functional of all 
occupied and occupied orbitals and their orbital energies, belongs to Rung 5. The derivative 
discontinuity of the exchange correlation energy is missing in the first three rung of DFT 
functionals, but present in the 4th and 5th rungs.  
    We use here the simplest nonlocal XC ie DFT+U, a method can be seen as an approximation 
to the more rigorous self- interaction correction. We used the PBE+U nonlocal approximation to 
the exchange and correlation functional; for simplicity, we use a constant value of U - J = 5.0 eV 
(the parameter in the DFT+U formulation of Ref.55) for all materials in this study, although, most 
likely one can improve agreement with experiment by tweaking U separately for each 
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compound. In the DFT+U method the DFT total-energy functional is corrected by two terms 
(Refs.20-24, 55-59). The first term is a mean-field approximation of the electron-electron interaction 
within a subset of localized orbitals (here, the d orbitals). The second term subtracts the 
contribution of the electron-electron interaction already accounted for in the approximate 
functional and largely consists of the self-Coulomb interaction (a manifested one body effect).. 
    Despite the impression suggested by the letter (Hubbard) “U”, the DFT+U method (perhaps 
better renamed DFT+V to avoid such a confusion) does not imply correlation in the Hubbard 
Hamiltonian sense. We note that the numerous practitioners apply these methods with the belief 
that they model many-body correlations. DFT+U, as well as the hybrid functionals and SIC DFT, 
are all methods in which the wavefunction of the N electron system is a single determinant. In 
single-determinant, band structure approaches each band structure calculation occupies its levels 
in a single specific manner by electrons (a single Slater determinant) and different possible 
patterns of occupation of levels by electrons (which can be built in separate band structure 
calculations) have no way of seeing each other.  
 
  F. The role of spin disorder vs spin order 
We note from Table I that the FM spin arrangement is monomorphous and has a gap due to its 
long-range order, but it’s obviously not a good model for the paramagnetic phase that is 
magnetically disordered. In a disordered phase we allow for identical atoms to have the 
opportunity to experience different local structural environments. The exchange and crystal 
field interactions present in DFT SQS are local effects that do not need a long-range 
magnetic ordering to mix and split the d levels, and as such these local effects drive the 
opening of a gap in the overall magnetically disordered phase. Furthermore, the SQS PM 
phase has lower energy than the FM phase by 59.5, 45.1, 67.6 and 79.0 meV/formula unit for 
NiO, MnO, FeO and CoO, respectively (See Table I) so the FM description is not selected.   
    Table I shows that the internal energy at T=0 of the spin disordered PM phase is higher than 
that of the AFM phase at T=0, as expected.  We clarify that for the spin disorder PM phase the 
free energy is F=E-TS where S in entropy, so at T=0 the AFM phase is lower in energy, and as T 
grows the free energy of the PM phase E-TS is lowered until it becomes the lowest energy phase. 
However, we do not aim to calculate the Neel temperature. Such calculations within DFT are 
known in the literature (e.g Franceschetti et al., Ref.60 and Daene et al. , Ref.61 ). 
 

IV. Summary of the main results on the PM phases. 

   Before we discuss the physical picture that emerges we state the results 
obtained for the magnetically ordered AFM and FM phases and for the magnetically 
disordered PM phases, which we modeled by a polymorphous description. As we are 
not interested here in fitting the calculated gaps and moments to experiment, for simplicity we 
use DFT+U with a generic constant U= 5 eV same for the FM, AFM, and PM phases and all 
compounds; we also assume collinear moments and neglect short-range order in the PM phase 
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assuming perfect randomness (the high temperature limit). In this paper we do not compute 
transition (Neel or Curie) temperatures but focus on the minimal physics needed to get gapping 
and moments in such Mott insulators. Examples of calculated transition temperatures from DFT 
inputs are given, for example, in Ref 60. All such fine-tuning corrections can be used in the 
future if one seeks more accurate, material-dependent physics. The schematic of Fig. 2 
summarizes the hierarchy of site-specific effects that remove the degeneracy in the four 
monoxides. The calculated values of moments, total energies and band gaps are listed 
in Table I and reported in the projected density of state plots of Figs. 3 and 4. The key 
ingredient of the theory is allowing for chemically identical sites to develop their own 
unique local environments and potentials rather than forcing a monomorphous 
representation which leads in the PM phase to non-magnetic unit cells. We see from Fig 
3 and 4 and Table I that a straightforward band structure description with appropriate 
structural/configurational input and reasonable value of the self-Coulomb U parameter 
captures the moment formation and gapping in the AFM as well as PM phases of the 
classic Mott insulators.   

 
 

V. Analysis of the results 

A. Analysis of the occupations of the localized orbitals 

For our analysis of the DFT+U results we sought linear combinations of the d orbitals 
that form a good representation of the point-group symmetry at the TM sites. The d-
orbital occupation matrix that enters the “+U” term of the DFT+U energy functional is 
calculated using the  ݐଶ௚ and ௚݁ orbitals as basis. However, the actual magneto-
crystalline order in the AFM phases, or the lack of it in the PM phases, breaks the cubic 
point-group symmetry at the TM sites. In such a case a good representation for the d 
orbitals, which is often referred to as the “crystal field representation”, is that defined by 
the eigenvectors of the occupations matrices. This representation is also meaningful in 
terms of the mechanism that drives the band gap opening. The sum of the probability 
distributions of the eigenvector functions with spin down each weighted by its 
occupation gives the distribution of the minority-spin electrons density around the 
transition metal sites, which we inspect in the following. See Appendix B.1 for more 
details on this representation.  

B. Making sure that the electronic structure DFT description does not get trapped 
in a high symmetry basin. 

On the technical side, one needs to assure that the self-consistency cycle is conducted 
so as to avoid that it get trapped in a high-symmetry solution but to permit the 
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exploration of broader positional as well as wave function symmetries. In the case of 
systems in which the crystal field produces degenerate states that are partially filled, 
one must explore lowered symmetries of the electronic state by allowing for distortions 
of the lattice.23, 24, 62 Thus, we permit an initial ‘nudging’ of the atoms off the high 
symmetry sites (and see if the quantum mechanical forces tend to restore such high 
symmetry positions or prefer Jahn-Teller-like displacements). At the same time, one 
needs to assure that the electronic self-consistency cycle could explore a broader range 
of wave function symmetries without getting trapped in high-symmetry solutions. To this 
end we avoid charge density symmetrization during the electronic self-consistent 
iterations. In the case of the PM phases, we “nudge” the systems initially with unequal d 
orbital occupations.. See Appendix B.2 for the details of the nudging protocol. Starting 
from such an orbital configuration helps the self-consistent solver to converge towards a 
solution in which the d orbitals mix to form linear combinations whose occupations 
ultimately are either close to one or zero. 

VI. Results: The magnetically ordered AFM phases 

  The AFM phases of MnO, FeO, CoO, and NiO have been studied by DFT64, 65 as well as its 
extensions and corrections, including DFT+U,23, 62 hybrid functionals,66 and SIC.67 Here we 
briefly describe our results of the evolution of the band gaps (Fig. 2) and provide the density of 
states [Fig 3(a,b) and Fig 4(a,b)] to establish a common basis for discussing later the generalized 
supercells needed to capture the physics of the PM phases. As shown in Fig. 2, in the ideal 
cubic rock salt structure (3݉ܨത݉ space-group) the crystal field splits the atomic d levels 
into spin-up and spin-down ݐଶ௚ and ௚݁ levels. The AFM-II magnetic ordering already 
breaks the cubic space-group magneto-crystalline symmetry even without distortions to 
the ideal cubic lattice. The lattice relaxations that are experimentally observed in the 
low-temperature phases of these monoxides68-70, lower the point-group symmetry of the 
crystal field at the TM sites with respect to that of the ideal cubic structure. See 
Appendix C for the details of the relaxed crystal structure of the AFM phases that we 
obtained by our DFT+U calculations. Qualitatively, a similar combined effect of the 
exchange and crystal field interaction is the mechanism that drives the gap opening in 
the PM phases and provides a unifying, single-particle description of the insulating 
character of both the magnetically ordered and magnetically disordered phases. We, 
therefore, illustrate this mechanism starting with the AFM phases, as well as the 
hypothetical FM phases, through the same protocol used for the PM phases. 
 

A.  AFM MnO and NiO. 
 

AFM MnO and NiO exhibit a ܴ3ത݉ magneto-crystalline structure in which the TM crystal 
field has the rhombohedral D3d point-group symmetry. A crystal field of this symmetry 
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mixes the ݐଶ௚ orbitals so as to give the ܽଵ௚ singlet and the ௚݁ᇱ  doublet (Fig. 2(c)). The  ௚݁ 
orbitals are symmetry invariant to the D3d symmetry operations and are often indicated 
as ௚݁ᇱᇱ. Figures 3(a)-(b) depict the DOS of MnO and NiO projected onto the cubic ݐଶ௚ and ௚݁ orbitals. In MnO, the Mn2+ ions exhibit the d5 electronic configuration which results 
into the five spin-up ݀՛orbitals fully occupied. A band gap opens in MnO between the 
fully occupied spin-up ݀՛ orbitals and the empty spin-down ݀՝ orbitals. In NiO, the Ni2+ 
ions exhibit the d8 configuration which corresponds to the five spin-up ݀՛orbitals fully 
occupied and the ݐଶ௚՝ -derived orbitals also fully occupied. A band gap opens in NiO 
between the occupied ݐଶ௚՝ -derived levels and the empty ௚݁՝-derived levels.  

 
B. AFM FeO and CoO. 

Fe2+ and Co2+ in FeO and CoO are, respectively, in the d6 (meaning one electron in the spin-
down d states) and d7 (meaning two electrons in the spin-down d states) configurations. Our 
DFT+U calculations, in line with earlier studies23, 24, 62, show that a gap opens in FeO and CoO 
already in the undistorted cubic lattice because of the symmetry lowering induced by the AFM-II 
ordering. FeO opens a gap by occupying the ܽଵ௚ ՝ singlet while the ௚݁ᇱ ՝ doublet is in the 
conduction. The opposite occurs in CoO with ௚݁ᇱ ՝doublet occupied by two electrons while the ܽଵ௚ ՝ singlet is in the conduction. FeO71 and CoO69, 70 lower their total energies with respect to the 
ideal cubic lattice through tetragonal distortions of the metal-oxygen coordination octahedra that 
are accommodated within a monoclinic cell with C2/m space group symmetry (see Fig. A1 and 
Table. A1 in Appendix A ) for a description of the calculated equilibrium crystal structure). In 
FeO there is a compression of the in-plane bonds and an expansion of the out-of-plane ones, 
while the opposite occurs in CoO. Figures 4(a)-(b) depict the DOS of monoclinic FeO and CoO 
projected onto the cubic ݐଶ௚ and ௚݁ orbitals: FeO and CoO continue to be insulating in the stable 
AFM monoclinic phase as in the higher-energy, AFM undistorted cubic phase. The orbital 
mixing that occurs because of the tetragonal distortion of the coordination octahedra is reflected 
by the shape of the spin-down electron density ߩ՝ሺ࢘ሻ. In FeO, ߩ՝ሺ࢘ሻ has a square-planar shape 
rotated by 45° degrees around the ݖ axis (see Fig 5(a)). In CoO,  ߩ՝ሺ࢘ሻ has an octahedral shape 
with the vertical axis lying along the diagonal of the ݕ -ݔ  plane (see Fig 5(b)). A detailed 
analysis of ߩ՝ሺ࢘ሻ in terms of the orbital mixing obtained in the DFT+U solution is performed in 
Appendix D.1.  

VII. Results: The magnetically disordered paramagnetic phases 

The DFT+U calculations of the PM phases of the four monoxides modeled with 
the magnetic SQS produce insulating solutions with strong magnetic moments at the 
TM sites (see. Table I for the gaps and magnetic moments at the transition metal sites 
obtained in these SQS calculations). The minimization of the total energy for the PM 
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phases of NiO, MnO and FeO, modeled by the SQS shows negligible positional atomic 
displacements relative to the rock salt positions, thus, no significant broadening of 
Bragg diffraction peaks is expected. The projected DOS (PDOS) on the metal d orbitals 
are depicted in Fig. 3(c,d)  for MnO and NiO and Fig. 4(c,d)  for FeO and CoO.  For the 
sake of comparing the PDOSs across the whole series of oxides and magnetic phases 
included in this study, we project the DFT+U wave functions on ݐଶ௚ and ௚݁ orbitals.  
However, in the polymorphous description which is implemented through the magnetic 
SQSs, the crystal field at each TM site shows a low point-group symmetry which in turn 
allows for the ݐଶ௚ orbitals to mix among themselves and possibly also with the  ௚݁ 
orbitals. The magnetic disordered phases of MnO and NiO exhibit gaps that in both 
cases, as can be seen from the PDOSs in Fig 3(c,d), open between  sub-bands that 
derive predominantly from the ݐଶ௚ and  ௚݁ orbitals and are both filled in a similar fashion 
as in the magnetically ordered AFM phases.  

The PDOS plots of FeO and CoO in Fig. 4(c) and 4(d), respectively, show that 
the gap originates in both systems mainly from a splitting in the ݐଶ௚-derived states. An 
inspection of the density ߩ՝ሺ࢘ሻ of spin-down electrons of PM FeO and CoO (see Fig. 
6(a,b)) and of the eigenvectors of the occupation matrices calculated at the TM sites 
(see Appendix D.2) shows that the gap is the result of the mixing of the d orbitals in the 
low-symmetry crystal field that characterizes each site in the disordered phases and of 
the splitting of these mixed orbitals that lifts the degeneracy of the unperturbed d states. 
In PM FeO, ߩ՝ሺ࢘ሻ at the Fe sites (Fig 6(a)) has a square-planar shape lying on one of the 
Cartesian planes and it is not tilted by 450 around a Cartesian axis as in AFM FeO (see 
Fig. 5(a) and 5(c) for a comparison between ߩ՝ሺ࢘ሻ in AFM FeO and PM FeO), with the 
specific plane varying randomly from site to site. Sites 4 and 14 in Fig. 6(a) are 
examples of two distinct orientations of ߩ՝ሺ࢘ሻ around the Fe sites in PM FeO. The 
analysis of the eigenvectors of the occupation matrices in Appendix D.2 shows that this 
square planar shape originate from one ݐଶ௚ orbital almost completely filled.  

In PM CoO, we observe (see Fig. 6(b)) that ߩ՝ሺ࢘ሻ shows two types of shapes at 
the Co sites: a cylinder-like shape (e. g., at site 14 in Fig. 6(b)) aligned to one of the 
Cartesian axes, and an octahedron-like shape (e.g., at site 4 in Fig. 6(b)), with the apex 
of the octahedron that, as opposed to the similar octahedral shape that ߩ՝ሺ࢘ሻ displays in 
AFM CoO, is tilted away from the Cartesian planes and points into a direction that 
varies randomly from site to site. Figs. 5(b) and 5(d) display ߩ՝ሺ࢘ሻ at the Co sites in 
AFM CoO and PM CoO respectively and show the different orientation of the octahedral 
shape in the two cases. From an inspection of the eigenvalues of the occupation 
matrices at the Co sites within the SQS (see Appendix D.2) we observe that at each site 
two eigenvectors ߶஼௢ሺଵሻ and ߶஼௢ሺଶሻ  have occupations of ~0.9, that is, are almost completely 
full and provide the dominant contribution to ߩ՝ሺ࢘ሻ at the Co sites. The two different 
types of the shape of ߩ՝ሺ࢘ሻ, found for example at site 4 and 14 in Fig. 6(b), originate 
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from two distinct modes of mixing of the d orbitals to which correspond two distinct pairs 
of (nearly fully) occupied eigenvectors ቄ߶஼௢ሺଵሻ, ߶஼௢ሺଶሻቅ. At the sites where ߩ՝ሺ࢘ሻ shows a 

cylindrical shape (e.g., site 14 in Fig. 6(b)) the eigenvectors ቄ߶஼௢ሺଵሻ, ߶஼௢ሺଶሻቅ are two of the 

three ݐଶ௚ orbitals. At sites where ߩ՝ሺ࢘ሻ shows a tilted octahedral shape, the eigenvectors ቄ߶஼௢ሺଵሻ, ߶஼௢ሺଶሻቅ are normalized linear combinations of the three ݐଶ௚ orbitals with contributions 

also from the  ௚݁ orbitals. Analytic models of the probability densities ቚ߶஼௢ሺଵሻቚଶ
 and ቚ߶஼௢ሺଶሻቚଶ

and of their sum ቚ߶஼௢ሺଵሻቚଶ ൅ ቚ߶஼௢ሺଶሻቚଶ
are displayed in Fig. A3 in the Appendices; these 

models are consistent with the tilted octahedral and the cylindrical shape of ߩ՝ሺ࢘ሻ at the 
Co sites in PM CoO obtained in the DFT+U solution. 

The modality of orbital mixing and level splitting revealed by the present 
calculations are analogous in the AFM and PM phase of the respective oxides. This 
helps explains the fact that the magnetic moments in the SQS PM configurations 
converge to values whose average is within to less than 1 % of the AFM values (Table 
I). At the same time, the magnetic disorder decreases the band gap of MnO, NiO, and 
CoO with respect to the value in the AFM phase. 

VIII. Discussion 

A. The physical picture of gapping of the PM phase: The role of 
different  symmetry- breaking modes in the PM phase 

We considered the following degrees of freedom that induce the symmetry breaking with 
respect to nonmagnetic NaCl-structure with one TM per primitive cell: (a) geometric symmetry 
breaking via the local environment distribution supplied by SQS; (b) occupation number broken 
symmetry (OBS); (c) displacement fluctuations (i.e., atomic relaxation), and (d) site-to-site local 
magnetic moment fluctuations. In CoO, we illustrate the effects of these fundamental 
fluctuations in Fig. 7 by starting from the most complete calculation (“Level IV” below) and 
‘peeling of the onion’ (i.e., removing the effects one by one), inspecting total energies, band 
gaps, local moments and atomic displacements for the following 4 levels: 

Level IV theory: SQS + OBS, with relaxation; allows effects (a), (b), (c) and (d). Fig 
7(a) shows the projected density of states as well as total energy, band gap and average cobalt 
local magnetic moment for level IV of the 216-atom rock salt CoO supercell. It represents a very 
large energy lowering of -2219 meV/formula units relative to the monomorphous non magnetic  
description (level I below) and yields a band gap of 2.39 eV and local moment of 2.75 BM. 
Some of its properties include:  

(i) Although the t୥ and  e୥ representations are mixed by the various symmetry breaking 
channels, one can observe that the hole is localized predominantly on t୥՝ derived state rather than 
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e୥ state: The occupation broken symmetry is manifested by the fact that 2 electrons occupying 
the ଵܶ, ଶܶ and ଷܶ components in the spin down t୥ band causes the band to split into the fully 
occupied (by 2 electrons) VBM and an empty t୥ ( CBM) derived spin down conduction band. 
Together with the 3 electrons in the deeper spin up t୥ band and 2 electrons in the spin up t୥ 
band, leads to the t+

3 e+
2 t-

2 configuration akin to the 3T1 multiplet (spin 3/2) where the hole is 
distributed in the t୥-like band. Placing instead the hole in the e୥-like band leads to a higher 
energy 2E multiplet. 

(ii) The atomic displacements are configuration-dependent and average to small 
amplitudes: Relaxation causes small atomic displacements, with displacement directions 
depending on the configuration selected, so the orientation average of the displacements if far 
smaller than in any particular configurations. On average, oxygen atoms have larger 
displacements than cobalt -- the maximum displacement on oxygen is 0.147 Å, while the 
maximum displacement on cobalt is 0.073 Å.  

(iii) The band edges do not look like upper and lower Hubbard states but are oxygen 
derived: The orbital make up of the band edges (Table II(a) and Fig 7(a)) shows that the VBM is 
made predominantly of oxygen p orbitals (down-spin VBM) and roughly equal amounts of 
oxygen and cobalt d (up-spin VBM) whereas the lowest CBM is predominantly oxygen p with 
some cobalt d hybridization. Thus CoO (as well as the other oxides discussed here with late 
transition metal cations having rather deep 3d orbitals) does not have the proverbial lower 
Hubbard d VBM and upper Hubbard d CBM, but are in fact charge transfer type band edges 
more similar to ordinary semiconductors such as ZnO rather than to early transition metal oxides 
(of V and Ti) that have more significant d character in at least one of the two band edges. 

Level III theory: SQS + OBS but no relaxation; allows effects (a), (b) and (d). This 
level is the same as level IV but no sublattice relaxation. Fig. 7(b) shows the density of states and 
provides the total energy and other characteristics. The effect of atomic displacements is small. 
The total energy of relaxed system is 9.5 meV/atom lower than the unrelaxed one, and the orbital 
make up of the band edges (Table II(b)) is rather unchanged. By comparing the occupation 
matrices we also find that in the unrelaxed solution the e୥ states do not mix with the t୥ states e.g 
the spin down valence states are a superposition of the type, e.g., (dxy, dyz). After relaxation the 
valence band  remained basically pure t୥ with little contamination from the e୥ states. 

Level II theory: SQS, no OBS (freezing equivalent occupation on each t-like state), 
no relaxation; allows effects (a) and (d). This level of theory includes different local 
environments (via SQS) in the 216-atom rock salt CoO supercell, but forces equal occupation of 
the members of a degenerate t୥ -like spin down state with components ଵܶ, ଶܶ and ଷܶ, i.e., instead 
of placing two electrons in two of the partners and zero in the third, this central field like 
approximation places (2/3, 2/3, 2/3) electrons in each partner. This places the Fermi level inside 
the down-spin t୥ band leading to a metal. Fig 7(c) shows the density of states and total energy 
revealing a dramatic increase (494 meV/f.u.) in total energy relative to Level III, just 1706 



  

18 
 

meV/formula unit below the level I. Despite the gap being zero, this approximation gives a non-
zero local magnetic moment. 
 Level I theory: no SQS (non-magnetic monomorphous description), no OBS, no 
relaxation; allows no symmetry breaking effects. At this lowest level often used in the past as 
the DFT rendering of paramagnets involves a primitive NaCl-structure unit cell (1 Co + 1 O). 
There is no spin-polarization, so the two spin channels (with plus and minus values) are exactly 
the same. The total energy is very high relative all other theoretical levels; the band gap and 
moments vanish, and the Fermi energy lies in an e୥-like band instead of the correct t୥-like band 
as in the other levels of theory. 
 
B. The existence of many broken symmetry configurations in the PM phase 

 
    Each independent broken symmetry configuration corresponding to a choice of occupation 
patters can have, in principle different charge density, total energy, local moments, and band 
gaps. The ultimate solution for the PM phase should correspond to a symmetrized combination 
of these configurations. Indeed, as explained in Sec. III. A above, the correct way to calculate the 
property P of a phase that can have numerous individual configurations ሼોሺ୬ሻሽ each with 

property Pሺો୧୬ሻሻ, is to calculate the polymorphous statistical average ۃPۄ ൌ ∑ c୬Pሺોሺ୬ሻሻ୬  over the 
ensemble of microscopic configurations. In general, the combination needs to be symmetrized, 
and if many-body configuration interaction is to be considered the problem needs to be subjected 
to this additional diagonalization step. Table III illustrates different configurations for the 216 
atom SQS of the PM phase of CoO (Level III). We see that each of these configurations are 
closed shell and have rather similarly large band gaps and moments. According to our basic 
conjecture discussed in Sec. III.B we expect that the symmetrized superposition state will also 
have the similarly large gaps and moments, ie that the interaction between these base 
configurations will be weak. The single determinant band approach used here neglects such 
dynamic interaction between configurations and would fail when the neglected interaction is 
strong. This is not the case in the currently considered compounds that are closed shell (level IV 
or III) with large band gaps and are thus expected to be well represented by single determinant 
approach. 
 
 
C. Mott localization and double occupation is not involved in the present physical 

picture  
 

 The bands obtained in the current single determinant mean field band structure theory  
are conventional  single-particle states and should not be confused with the lower and 
upper Hubbard bands72, 73 that characterize the solutions of the Hubbard model. The 
Mott mechanism requires that the electrons move across the lattice forming states on certain 
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atomic sites with doubly occupied d orbitals and empty d orbitals on other sites (i.e,, not a Bloch 
Periodic band structure picture) while the overall charge number is conserved. These types of 
excited configurations correspond respectively to the upper and lower Hubbard bands, which are 
truly “dynamic” charge bands and correspond to many-body configurations, whereas the present 
approach produces gapping without such a mechanism, different than the Mott gap opening 
mechanism described in the textbooks. That it is not entirely surprising that d electron strong 
correlation is not the deciding factor for these binary oxide systems as can be gleaned from Fig 7 
and Table II showing that the valence band and conduction band edges consist of oxygen p and 
transition metal s orbitals, not the proverbial d-like lower and upper Hubbard bands.  

E. Comparison with other approaches 

Previously the paramagnetic phases, including those of the present TM oxides, 
have been modeled by the disordered local moments (DLMs)74-76 approach which has 
been implemented within the single-site coherent-potential approximation (CPA).11, 33, 61, 

77 This approach assumes that the Schrodinger equation potential seen by chemically equivalent 
atoms in the disordered PM phase are all equal even though such atoms have distinctly different 
local environments (such as number of neighbors with spin up vs. spin down, see Fig. 1). This 
picture automatically ignores the existence of inhomogeneous distribution of moments and 
charges. This is valid only when the local environment flips its spin so fast that a central atom 
does not distinguish if its environment is made of up spins or down spins but all can be described 
as some average. This is unlikely to be the case in insulators (such as Mott insulators) where the 
screening is ineffective. This DLM view leads to equal local moments on all TM atoms 
irrespective of their environments. The DLM approach is virtually equivalent to the so-called 
“Hubbard III” approximation14 in regard to the treatment of the spin disorder. DLM and Hubbard 
III are in turn related to the DMFT approach, with the difference that DLM and Hubbard III are 
unable to describe quantum fluctuations which are instead described by DMFT16. Similarly, 
to the DLM description, DMFT is inherently a single-site theory in which all sites of a 
given species (e.g., all the Co sites in paramagnetic CoO) are geometrically equivalent.  

The Special Quasi-Random Structure construct is an effective way to establish a 
physically grounded representation of the random magnetic configuration for three 
reasons. First, an SQS is constructed so that a property calculated using it is a close 
estimate of the ensemble statistical average that would be required to calculate that 
property for a fully disordered phase. Therefore, using one SQS one can obtain reliable 
estimates of ensemble averages, i.e., the relevant quantities for the paramagnetic 
phases, by calculating one configuration instead of many randomly-generated 
configurations. Second, an SQS allows for a variety of local magnetic environments and 
for multiple patterns of uneven d orbital occupations that both concur to breaking the 
cubic symmetry and fully lifting the degeneracy of the d orbitals. Finally, it is 
straightforward to construct SQS that represent the property of imperfectly-random 
ensembles, i.e., those that have short range order (SRO) and are thus better 
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representative of PM phases closer to the Néel temperature. Instead of constructing the 
SQS by fitting to the analytically known random pair and many body correlation 
functions (see Appendix A), one can fit to independently measures or calculated 
correlation functions that incorporate SRO.78 

In conclusion, in the present study we find that the DFT+U method, which is a 
generalized Kohn-Sham approach reproduces the insulating character and on-site 
magnetic moments of the prototypical Mott insulators MnO, NiO, CoO, and FeO when 
applied to SQSs, which approximate closely the ensemble average over the random 
magnetic configurations.  

Appendix  

For AFM phases we use low temperature lattice vector symmetry. Even in NiO and MnO the 
spin symmetry alone changes the space group from NaCl to Rhombohedral R3-m [because we 
selected (111) type AFM]. For FeO and CoO the lowest energy AFM cell symmetry is 
monoclinic C2/m. We then optimize the structure to achieve very small quantum mechanical 
forces. Note that the AFM structure can be Jahn Teller distorted (FeO, CoO, see Fig. 2)  
For PM phases we use the supercell shape as the macroscopically observed high T cubic lattice 
vectors, keeping only the cell-internal atomic positions as variables during force calculations. 
In practice this can be done in steps such as (i) Freeze one choice at the time of OBS, and a 
frozen cell-internal atomic geometry, and run charge self-consistency. Do a few OBS choices 
independently, called ``configuration i''; (ii) Unfreeze the OBS choice starting from (i), while the 
geometry is still unrelaxed, and perform charge self-consistency.  
(iii) Unfreeze the previously unrelaxed geometry, seeking a minimum. In practice, to avoid local 
minima, this requires an initial nudge in the form of small random atomic displacements, then 
following the calculated forces to geometries with vanishing forces. 
Another protocol involves performing atomic relaxation concomitantly with steps (i) and (ii).  
Here in step (i’) one freezes a given choice of OBS, and performs a charge self-consistent 
calculation on that frozen OBS while at the same time relaxing the cell internal atomic positions. 
Do a few OBS choices independently called “configuration i” :(ii’) Unfreeze OBS starting from 
(i’), while the geometry is being re-optimized and do charge self-consistency. In the present case 
both protocols (i) +(ii) or (i’) +(ii’) lead to virtually identical results. 
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  ܴ3ത݉  C2/m 

  MnO NiO  FeO CoO 

  Exp. DFT+U Exp. DFT+U  Exp. DFT+U Exp. DFT+U 

AFM 
μ (μ B) 4.58 4.64 1.9 1.68  4.0 3.71 3.8-

3.98 2.72 

Egap (eV) 3.5 1.88 3.5 3.00  2.1 1.66 2.8 2.63 

FM 
μ (μ B) - 4.68 - 1.75  - 3.76 - 2.78 

Egap (eV) - 0.82 - 2.56  - 1.36 - 2.06 

 Etot -Etot[AFM] (eV/fu) - 0.059 - 0.121  - 0.102 - 0.196 

PM 
μ (μ B) - 4.65 - 1.70  - 3.73 - 2.75 

Egap (eV) 3.7 1.22 4.1 2.16  2.5 1.70 2.4 2.25 

 Etot -Etot[AFM] (eV/fu) - 0.014 - 0.061  - 0.035 - 0.117 

 

Table I: Experimental and DFT+U calculated band gaps Egap and magnetic moments of the 
transition metal atoms of MnO, NiO, FeO, and CoO in the following phases: (i) AFM with 
rhombohedral ܴ3ത݉ space-group symmetry for MnO and NiO and monoclinic 2ܥ/݉ space-
group symmetry for FeO and CoO), (ii) FM with cubic symmetry calculated using the same 
volume per formula unit that was found by total energy optimization for the AFM phase, and (iii) 
the gap of the PM phases was calculated by a cubic 64-atom 2 ൈ 2 ൈ 2 SQS whose lattice 
parameter was fixed and the internal coordinates were allowed to relax. The total energies of the 
PM phases were calculated using a cubic 216-atom SQS in which the lattice parameter was fixed 
and the atom was kept at the ideal rocksalt positions. In both sets of SQS calculations, the 
volume per formula unit was equal to the optimal volume per formula unit obtained for the AFM 
phase. The following are the sources for the experimental values: Ref.10 for the band gaps of the 
AFM phases; Ref.11 for the band gaps of the PM phases; Ref.12 for the magnetic moments in the 
AFM phases. We were unable to find in the literature the experimental values of the magnetic 
moments of the PM phases. 
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(a) CoO 
level IV 

 up-spin VBM down-spin VBM up-spin CBM down-spin CBM 

Energy (eV) 
(EFermi = 0) -0.022 -0.022 2.367 2.453 

Co s 0.64% 0.31% 9.00% 0.41% 
Co d eg 52.12% 4.47% 2.80% 2.41% 
Co d tg 1.96% 25.63% 20.78% 95.14% 

O p 45.28% 69.59% 67.44% 2.04% 

(b) CoO 
level III 

 up-spin VBM down-spin VBM up-spin CBM down-spin CBM 

Energy (eV) 
(EFermi = 0) -0.022 -0.022 2.220 2.393 

Co s 0.74% 0.32% 6.66% 0.31% 
Co d eg 51.68% 4.96% 1.94% 1.50% 
Co d tg 1.93% 24.92% 23.86% 96.15% 

O p 45.65% 69.80% 67.55% 2.04% 
 

Table II: Energies (in eV) and orbital make ups of band edges from DFT+U (U=5 eV) 
calculations for (a) level IV (SQS + OBS with atomic relaxations) and (b) level III (SQS + OBS 
but no atomic relaxations) using the 216-atom rock salt CoO supercell. Level IV started initially 
from level III calculation. The occupation configuration given by level III in this table is also 
shown as pattern 1 in Table III. 
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d Occupation pattern Etot (eV/f.u.) Egap (eV)  (μ (μ B)) 

1 -11.561 2.26 2.75 
2 -11.560 2.37 2.75 
3 -11.559 2.26 2.75 
4 -11.560 2.35 2.75 

 
Table III: Comparision of the properties of 4 different configurations of SQS-PM CoO 
obtained by different initial occupation broken symmetries. All are closed shell. Shown 
are the total energies (in eV per formula unit), band gap (in eV), and average magnetic 
moment (in Bohr magnetons) at the transition-metal sites. Table A3 in Appendix also 
illustrates some typical output configurations. 
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Figure 1. Percent fraction ܨ൫݊ேே՛ ൯ of cation sites as a function of the number ݊ேே՛  of spin-up 
nearest-neighbor (NN) metal site of a central cation site in (a) the AFM-II phase and (b) the PM 
phase modeled here by the 216-atom rock-salt SQS shown in the insert (in this model only the 
metal sub-lattice of the underlying rock salt structure is shown). In the AFM phase ݊ேே՛ = 6 for all 
cations while in the PM phase  ݊ேே՛  varies between 0 and 12 and ܨ൫݊ேே՛ ൯ approximates a 
binomial distribution. The frequency of local environment types ܨ൫݊ேே՛ ൯ was calculated 
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averaging over a 216-atom SQS with A0.5B0.5 composition and its complementary B0.5A0.5 spin 
configuration. The band gap and the TM magnetic moment are reported for CoO in the AFM 
phase and the PM phase which was calculated using the displayed 216-atom 3 ൈ 3 ൈ 3 SQS. 

 
Figure 2. Schematic of the sequence of level splittings and combinations for the d orbitals in 
MnO, NiO, FeO, and CoO as the exchange coupling and the crystal field of the symmetry 
appropriate to each phase are progressively imposed: (a) Splitting of the d orbitals into the 
transition-metal atoms subjected to exchange coupling. (b) Splitting of the spin-up and spin-
down d levels subjected to a cubic ܱ௛ crystal field: this is the case of a rock salt structure with 
hypothetical 3݉ܨത݉ magnetic ordering. (c) Splitting of the d level in the ܦଷௗ crystal field in the 
distorted rock-salt lattice with the rhombohedral ܴ3ത݉ AFM-II magnetic ordering. (d) Splitting 
of the d orbitals in a tetragonal crystal field as in the monoclinic 2ܥ/݉ phases of FeO and CoO. 
Note that in this schematic we emphasize the effect of the relevant interaction in progressively 
removing the degeneracy of the d orbitals, while we do not intend to reproduce to scale the 
position of the spin-up and spin-down energy levels. The reader should inspect the projected 
DOSs of Fig. 3 and 4 to obtain the actual calculated energy position of the d bands. 
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Figure 3. Projected density of states (PDOS) on the transition metal s and d orbitals (ݐଶ௚ and  ௚݁ components) calculated by DFT+U (U=5 eV) for MnO and NiO in (a)-(b) the AFM phase 
with fully relaxed ܴ3ത݉ structures, and (c)-(d) the PM phase modeled by a cubic 64-atom 2 ൈ 2 ൈ 2 SQS. The lattice parameters of the SQSs are set so that the volume per formula unit is 
equal to the calculated volume per formula unit of the DFT+U relaxed ܴ3ത݉ structures of MnO 
and NiO. 
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Figure 4. Projected density of states (PDOS) on the transition metal s and d orbitals (ݐଶ௚ and  ௚݁ components) calculated by DFT+U (U=5 eV) for FeO and CoO in (a)-(b) the AFM phases 
with the fully relaxed monoclinic 2ܥ/݉ structures, and (c)-(d) the paramagnetic phases modeled 
by a cubic 64-atom 2 ൈ 2 ൈ 2 SQS. The lattice parameters of the SQSs are set so that the volume 
per formula unit is equal to the calculated volume per formula unit of the DFT+U relaxed 2ܥ/݉ 
structures of FeO and CoO.  
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Figure 5.  Panel (a) and (b) depict the minority spin electron density ߩ՝ሺ࢘ሻ at the Fe and Co site 
in the AFM monoclinic phases of, respectively, FeO and CoO calculated by DFT+U. Panel (c) 
and (d) depict the minority spin electron density ߩ՝ሺ࢘ሻ at the Fe and Co site in the PM phase of, 
respectively, FeO and CoO modeled by the magnetic 64-atom cubic SQS used for the calculation 
of the PDOS shown in Fig. 5(c,d). The full ߩ՝ሺ࢘ሻ of PM FeO and CoO in the SQS is shown in 
Fig. 6(a,b). 
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Figure 6. Minority spin electron density ߩ՝ሺ࢘ሻ in the regions with positive magnetization ݉ሺݎሻ ൌ ሻ࢘՛ሺߩ െ ሻ࢘՝ሺߩ ൐ 0 within the magnetic 64-atom SQS cell used in the DFT+U (U=5 eV) 
calculations of the PM phases of (a) FeO and (b) CoO. To avoid visual clutter we masked out the 
regions of space within spheres of 1 Å of radius centered at the oxygen sites. 
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Figure 7. Analysis of the effects of different symmetry breaking modes on the electronic 
structure, total energy, band gap and local moment of paramagnetic CoO. We show the projected 
density of states (PDOS) on the transition metal s and d orbitals ( and  components) and 
oxygen p orbitals from (a) level IV, (b) level III, (c) level II and (d) level I ( see Sec.VII.A for 
definition of these symmetry breaking levels) of rock salt CoO . (a), (b) and (c) are calculated in 
a 216-atom cubic rock salt supercell with SQS, while (d) is calculated in a 2-atom rock salt 
primitive cell. All lattice parameters are the same as the one used in Fig. 4(d). 
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