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Odd-frequency superconductivity describes a class of superconducting states where the super-
conducting gap is an odd-function in relative time and Matsubara frequency. We present a group
theoretical analysis based on the linearized gap equation in terms of Shubnikov groups of the second
kind. By discussing systems with spin-orbit coupling and an interaction kernel which is symmetric
under the reversal of relative time, we show that both, even- and odd-frequency gaps are allowed to
occur. Specific examples are discussed for the square lattice, the octahedral lattice and the tetrago-
nal lattice. Whereas for irreducible representations that are even under time-reversal, the common
combinations of s- and d-wave spin singlet and p-wave spin triplet are revealed, irreducible repre-
sentations odd under time-reversal give rise to s- and d-wave spin triplet and p-wave spin singlet
gaps. Furthermore, we discuss the construction of a generalized Ginzburg-Landau theory in terms
of the associated irreducible representations. The result complements the established classification
of superconducting states of matter.

Unconventional superconductors such as the heavy
fermion systems, e.g., CeCu2Si2 [1, 2], Sr2RuO4 [3]
or UPt3 [4, 5]; the cuprates, e.g., YBa2Cu3O7 [6],
HgBa2CuO4+δ [7]; and the organic superconductors like
the BEDT-TTF-based charge transfer salts [8–12] exhibit
symmetries of the superconducting gap beyond the con-
ventional BCS s-wave [13]. In this connection, a group
theory analysis based on the underlying symmetry of the
pairing potential is crucial in establishing an unified clas-
sification of the arising superconducting states of matter
[14–19]. In general, the pairing wave-function of two elec-
trons has to be anti-symmetric under particle interchange
leading to the Pauli-principle. Thus, at equal times, and
by neglecting orbital degrees of freedom two cases can
occur. First, a gap odd in spin and even in parity, such
as spin singlet s- and d-wave, and, second, a gap even in
spin and odd in parity, such as spin triplet p- and f -wave.

However, as pointed out by Berezinskii [20] and Abra-
hams et al [21] a pairing of particles beyond the conven-
tional ones is possible, if the particle-particle correlator
is zero at equal times but non-zero otherwise. This is
achieved when the superconducting gap is an odd func-
tion in time, leading to the notion of odd-time or odd-
frequency superconductivity, respectively. Among oth-
ers, odd-frequency contributions were reported to occur
in connection to diffusive ferromagnet/superconductor
junctions [22, 23], normal-metal/superconductor junc-
tions [24], topological insulators [25], heterostructures
of transition metal dichalcogenides and s-wave supercon-
ductors [26], multi-band superconductors [27], and driven
systems [28, 29]. Also, odd-frequency states were dis-
cussed in connection to time-reversal topological super-
conductivity in double Rashba wires, were it was found
that odd-frequency pairing is strongly enhanced in the
topological state [30]. For some of the above mentioned

systems, the respective signatures of odd-frequency cor-
relations could also be verified experimentally [31–34].
An extensive discussion of edge-states and topology in
superconductors including odd-frequency gap functions
was communicated by Tanaka, Sato and Nagaosa [35]. A
comprehensive review on odd-frequency superconductiv-
ity with the overview of possible realizations is given in
[36].

In general, odd-frequency superconductivity can only
occur when retardation is explicitly taken into account.
Close to the superconducting transition temperature, the
underlying gap equations can be linearized leading to the
so-called linearized gap equation or Bethe-Salpeter equa-
tion [37]. By solving for the eigenvalues of the Bethe-
Salpeter equation, odd-frequency solutions were found
numerically, for example, in the repulsive Hubbard model
[38, 39] and also in organic charge transfer salts [40].
In such models with strong on-site repulsion, pairs can
avoid the repulsion by either exhibiting a pair wave func-
tion with zero on-site amplitude, i.e., with nonzero angu-
lar momentum, or by establishing an odd-ω dependence
which implies a vanishing equal-time pair amplitude.

Here, we extend the formalism of Ref. [14–19] and
show how a symmetry analysis of the Bethe-Salpeter
equation can be performed by explicitly incorporating
time-reversal symmetry in terms of the so-called Shub-
nikov groups of the second kind. Since a solution of
the Bethe-Salpeter equation, i.e., a superconducting gap
function, transforms as one of the irreducible represen-
tations of the underlying symmetry group, it gener-
ally breaks certain symmetries of the pairing potential.
Therefore, gap functions odd under time-reversal sym-
metry can naturally occur even if the pairing potential
itself is time-reversal symmetric.

The paper is structured as follows. First, we intro-
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duce the formalism by introducing the Bethe-Salpeter
equation and the transformation behavior of the su-
perconducting gap. Then, we summarize the construc-
tion of Shubnikov groups, together with the construc-
tion of faithful representations needed for the calcula-
tion of their character tables. Afterwards, we show pos-
sible superconducting gap symmetries for the examples
of the square lattice, the cubic lattice as well as the non-
centrosymmetric tetragonal lattice. In the last part, we
discuss the generalized Ginzburg-Landau theory for even-
and odd-frequency superconductors.

LINEARIZED GAP EQUATION AND
TRANSFORMATION BEHAVIOR OF THE

SUPERCONDUCTING GAP

For a standard BCS approach, the superconduct-
ing gap is taken as frequency independent. Since the
anomalous Green function vanishes at zero time for odd-
frequency superconductivity [41, 42] we have to choose
a formalism incorporating a summation over time or fre-
quency, respectively. Therefore, we stick to the Eliash-
berg formalism which is valid in the the strong coupling
regime [43]. In general, the underlying Eliashberg equa-
tions which need to be solved self-consistently are non-
linear. However, in the region close to the supercon-
ducting transition temperature T ≈ Tc, a corresponding
linear equation can be formulated, which is called the
linearized Eliashberg or Bethe-Salpeter equation. In the
most general form it can be written as follows [37, 39, 40],

v∆αβ(~k, iωn) = − T
N

∑

γ,δ

∑

~k′

∑

m

Γαβγδ(~k,~k
′, iωm, iωn)

×Gγ(~k′, iωm)Gδ(−~k′,−iωm)∆γδ(~k
′, iωm). (1)

Here, Γαβγδ denotes the interaction kernel, whose specific
form depends on the system under consideration, e.g.,
electron-phonon interaction or a Berk-Schriefer-like in-
teraction mediated by spin-fluctuations [44, 45], to name
but a few. Furthermore, Greek indexes denote the spin
components, Gα is the Green function for a particle with
spin α, ∆α,β the superconducting gap, and N denotes
the total number of momenta in the Brillouin zone. The
eigenvalue ν corresponds to a generalization of the lin-
earized Eliashberg formalism allowing for multiple solu-
tions of equation (1), where a physical interpretation is
only valid when the largest eigenvalue equals ν = 1, in-
dicating a superconducting transition exhibiting the re-
spective superconducting gap corresponding to ν. Yet,
the knowledge of the competing eigenvalues even if not
physically realized in the system of interest gives an im-
portant insight into the allowed superconducting insta-
bilities. Additionally, even in the non-linear regime the
symmetry of the solutions of the linearized equation can
be used to study admixed phases as described in Ref.

[18, 46, 47]. As equation (1) is a linear eigenvalue equa-
tion, it can be written as v∆ = V̂ ∆, where V̂ denotes
the kernel

Vαβγδ(~k,~k
′, iωm, iωn) = Γαβγδ(~k,~k

′, iωm, iωn)

×Gγ(~k′, iωm)Gδ(−~k′,−iωm). (2)

It is assumed that the symmetry of the crystal is reflected
in the kernel V and described by the symmetry group G.
Each eigenvector of (1) transforms as a basis function of
an irreducible representation Γp of G and the degeneracy
of the corresponding eigenvalue is determined by the di-
mension of Γp, which will be denoted by dp. Hence, the
linearized gap equation can be reformulated as

vp,ν∆̃p,ν
m = V̂ ∆̃p,ν

m , (3)

where m = 1, . . . , dp and ν = 1, 2, . . . counts over the
multiple non-equivalent subspaces transforming as the
same irreducible representation. A superconducting in-
stability with a gap transforming as an irreducible repre-
sentation Γp occurs, if the corresponding eigenvalue vp,ν

reaches 1. Even though the pairing potential is invari-
ant under every symmetry transformation of the group
G, the dominating gap function itself is only invariant
under a subgroup, represented by one of the irreducible
representations of G.

It is assumed that the gap function transforms simi-
larly to a pairing wave function. Considering spin-orbit
coupling, each rotation in space (proper or improper) is
connected to a specific rotation in spin space. Due to
spin-orbit coupling, the single-particle states cannot be
eigenstates of the spin operator in general, but can be la-
beled as pseudo-spin-states in a similar manner [18]. The
pseudo-spin-state is generated from a spin eigenstate by
turning on the spin-orbit interaction adiabatically, lead-
ing to a one-to-one correspondence between the original
spin state and the pseudo-spin-state. Here we discuss the
situation of having two states (↑, ↓) similarly to the ordi-
nary spin, where the transformations in the pseudo-spin
space (or just spin-space in the following) are generated
by the Pauli matrices.

Applying the transformation operator ĝ associated to
a specific symmetry transformation g ∈ G gives

ĝ∆̃(~k) = ũT (g)∆̃
(
R̃−1(g)~k

)
ũ(g). (4)

Here, R̃(g) ∈ O(3) denotes a three-dimensional rotation
matrix and ũ(g) ∈ SU(2) the corresponding rotation
matrix in spin space. The concept of odd- and even-
frequency gaps relates to the gap function being an odd-
or even function of relative time or Matsubara frequency.
Since the average time does not contribute, we generally
refer to reversing the relative time as time-reversal in the
following. The time-reversal operator T̂ acts by inverting
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the time as t→ −t. An alternative but similar represen-
tation of T̂ is found by applying a combination of complex
conjugation, multiplication with σ̃y and ~k → −~k,

T̂ ∆̃(~k) = σ̃y∆̃∗
(
−~k
)
σ̃y. (5)

Doing so, the action of T̂ can be discussed without ex-
plicitly taking into account t as a parameter.

With respect to the interchange of the spin indexes
within the gap function, mediated by the operator Ŝ, the
gap function can be considered to be odd (singlet) or even
(triplet). The resulting form of the gap in these cases is
given by the antisymmetric matrix

∆̃(~k) = iΨ(~k)σ̃y, (6)

for the spin singlet and by the symmetric matrix

∆̃(~k) = i
(
~d(~k) · ~σ

)
σ̃y, (7)

for the spin triplet. Following equations (4) and (5), the
transformation under group elements ĝ and under time-
reversal T̂ can be expressed in terms of transformations
of Ψ and ~d via

ĝΨ(~k) = Ψ
(
R̃−1(g)~k

)
, (8)

T̂Ψ(~k) = Ψ∗(−~k), (9)

and

ĝ ~d(~k) = det
(
R̃(g)

)
R̃(g)~d

(
R̃−1(g)~k

)
, (10)

T̂ ~d(~k) = −~d∗(−~k). (11)

The gap function has to be odd under the application of a
combination of the parity operator (P̂ ), spin interchange
(Ŝ) and time-reversal (T̂ ) [28],

P̂ ŜT̂ = −1. (12)

Therefore, by considering an even behavior under time-
reversal T̂ ∆̃ = ∆̃, a spin singlet gap (odd under spin
interchange) restricts the gap function to be even under
parity, whereas a spin triplet gap (even under spin inter-
change) has to come with an odd parity. We now know,
by allowing for an odd-time (or odd-frequency) depen-
dence of the gap function, T̂ ∆̃ = −∆̃, the options of con-
structing an odd-parity spin singlet and an even-parity
spin triplet gap arise. We proceed to show how the lin-
earized gap equation allows for odd-frequency solutions.

SHUBNIKOV POINT GROUPS

Superconductivity is mediated by a pairing of electrons
in ~k-space. In three dimensions it is possible to define 7
crystal systems and 32 crystal classes. The latter are

connected to the 32 point groups. Whereas point groups
only describe the spatial symmetries of the system they
can be extended to incorporate time-reversal symmetry.

According to (5), time-reversal is a symmetry element
of order 2, i.e., T̂ 2 = 1̂. To include T̂ as a symmetry
element, we follow the Shubnikov construction for colored
groups. Denoting the point group of the system by G,
three kinds of Shubnikov groups can be defined (Fig. 1).
The Shubnikov group of the first kind is given by the
point group itself,

GI = G. (13)

Shubnikov groups of the second kind are introduced by
combining each element of G with T̂ ,

GII = G + T̂G. (14)

Since each symmetry element occurs twice, once in con-
nection to time-reversal and once without, these groups
are also referred to as gray groups. Shubnikov groups
of the third kind describe systems without a global time-
reversal symmetry, e.g., magnetic structures. Here, time-
reversal symmetry is only connected to a few elements.
Starting from an invariant subgroup N ⊂ G of index 2
(ordG/N = 2), Shubnikov groups of the third kind are
constructed via

GIII = N + T̂ (G −N ). (15)

If the pairing potential in (1) is time-reversal symmet-
ric, it is invariant under a group GII. Hence, to discuss
odd- and even-frequency gaps for time-reversal symmet-
ric pairing potentials, Shubnikov groups of the second
kind are considered. In comparison to Shubnikov groups
of the first kind and Shubnikov groups of the third kind,
this approach allows for an explicit distinction between
representations odd and even under time-reversal, as will
be explained within the next section.

For Shubnikov groups of the second kind it follows from
(14) that ordGII = 2 ordG. Furthermore, T̂ commutes

with every element of GII. Thus,
{
E, T̂

}
is an Abelian

invariant subgroup. It follows that GII can be written as

a semi-direct product of G and
{
E, T̂

}
, and, by induc-

tion [48], that twice as many irreducible representations

(a) first kind (b) second kind (c) third kind

FIG. 1: Illustration of the Shubnikov point group
construction.
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occur for GII in comparison to G. If Γi is an irreducible
representation of G, then Γ+

i and Γ−i are irreducible rep-
resentations of GII, where the characters are given by

χ+
i (T̂ g) = χi(g), (16)

χ−i (T̂ g) = −χi(g), (17)

(18)

for all g ∈ GII.
Since the linearized gap equation (3) is an eigenvalue

equation, where the operator V̂ is invariant under all
transformations of a symmetry group GII, each eigenfunc-
tion transforms as one of the irreducible representations.
Hence, each eigenfunction or gap function is an eigen-
function of the character projection operator P̂p, given
by

P̂p =
∑

g∈G
(χp(g))

∗
ĝ. (19)

Here, χp(g) denotes the character (the trace of the repre-
sentation matrix) of the element g within the irreducible
representation Γp of G. Due to the orthogonality of irre-
ducible representations P̂p has the property

P̂q∆̃p,ν
m = δpq ∆̃p,ν

m . (20)

Applied to an arbitrary gap function ∆̃, the character
projection operator P̂p projects out the part of ∆̃ trans-
forming as the irreducible representation Γp, denoted by
∆̃p,

P̂p∆̃ =
∑

ν

dp∑

m=1

∆̃p,ν
m = ∆̃p. (21)

Vice versa, taking into account all N inequivalent irre-
ducible representations Γp of a symmetry group G and
summing over all ∆p obtained by mutual application of
P̂p to ∆ the original gap function has to be revealed,

∆̃ =

N∑

p=1

∆̃p. (22)

With these remarks we are now ready to analyze the self-
consistent solution for gap functions.

COMPUTATIONAL DETAILS

The group theoretical analysis was performed by ap-
plying the Mathematica group theory package GTPack
[48, 49] (http://gtpack.org). As a faithful representa-
tion of the point group elements, rotation matrices of the
group O(3) are used. Since GII from (14) is isomorphic
to the direct product group G ⊗{1,−1}, a faithful repre-
sentation for the Shubnikov point group is found by the

4× 4-matrices

D̃(g) =

(
R̃(g) 0̃

0̃ 1

)
, and D̃(T̂ g) =

(
R̃(g) 0̃

0̃ −1

)
.

(23)
Character tables were calculated by applying the Burn-
side algorithm [50] which is a reasonable choice due to
the small order of the crystallographic point groups. For
the generalized Ginzburg-Landau theory, representation
matrices of the irreducible representations and the corre-
sponding Clebsch-Gordan coefficients were calculated by
applying the algorithm of Flodmark and Blokker [51] and
van Den Broek and Cornwell [52], respectively. The su-
perconducting gap can be expanded in terms of tesseral
harmonics Slm (real spherical harmonics) as

Ψ(~k) =
∑

l

l∑

m=−l
clmS

l
m(x, y, z), (24)

and

~d(~k) =
∑

l

l∑

m=−l

~dlmS
l
m(x, y, z). (25)

Throughout the paper the Slm are discussed in Cartesian
form.

SQUARE LATTICE (DII
4h)

To give a specific example of the emergence of even-
and odd-frequency superconducting states we choose a
specific group. In the following, a square lattice having
the point group D4h is discussed. The group is generated
by the elements {C4z, C2y, I}, where C4z denotes a four-
fold rotation about the z-axis, C2y a two-fold rotation
about the y-axis and I the inversion. In total, D4h has
16 elements. Consequently, the corresponding Shubnikov
group of the second kind DII

4h has 32 elements and is con-
structed according to (14). The character table of DII

4h

is shown in Table I. For the irreducible representations
the Mulliken notation is used [53, 54]. Additionally, they
are labeled with a superscript indicating an even (+) or
odd (-) behavior with respect to time-reversal according
to (16) and (17).

For the spin singlet gaps, the allowed irreducible rep-
resentations occurring for a certain angular momentum
l can be determined by decomposing the representations
of the orbital part only (compare Appendix A). These
are given by

s-wave : D0
g,+ ' A+

1g, (26)

p-wave : D1
u,− ' A−2u ⊕ E−u , (27)

d-wave : D2
g,+ ' A+

1g ⊕ B+
1g ⊕ B+

2g ⊕ E+
g . (28)
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E 2C′2 2σv 2C′′2 2σd 2S4 2C4 I C2 σh T̂ 2T̂C′2 2T̂ σv 2T̂C′′2 2T̂ σd 2T̂ S4 2T̂C4 T̂ I T̂C2 T̂ σh

A+
1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

A+
2g 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1

B+
1g 1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1

B+
2g 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1

E+
g 2 0 0 0 0 0 0 2 -2 -2 2 0 0 0 0 0 0 2 -2 -2

A+
1u 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1

A+
2u 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B+
1u 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1

B+
2u 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1

E+
u 2 0 0 0 0 0 0 -2 -2 2 2 0 0 0 0 0 0 -2 -2 2

A−1g 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
A−2g 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1
B−1g 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 -1
B−2g 1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1 1 -1 -1 -1
E−g 2 0 0 0 0 0 0 2 -2 -2 -2 0 0 0 0 0 0 -2 2 2
A−1u 1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 1
A−2u 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1
B−1u 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1
B−2u 1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1
E−u 2 0 0 0 0 0 0 -2 -2 2 -2 0 0 0 0 0 0 2 2 -2

T̂ -even

T̂ -odd

TABLE I: Character table of the Shubnikov group DII
4h.

Analogously, for the spin triplet gaps the allowed irre-
ducible representations are found by decomposing the di-
rect product belonging to the orbital part with D1

g,−, rep-
resenting the transformation properties of the spin triplet
state,

s-wave : D0
g,+ ⊗D1

g,− ' A−2g ⊕ E−g , (29)

p-wave : D1
u,− ⊗D1

g,− ' A+
2u ⊕ B+

2u ⊕ B+
1u ⊕ 2A+

1u ⊕ 2E+
u ,

(30)

d-wave : D2
g,+ ⊗D1

g,− ' A−1g ⊕ 2A−2g ⊕ 2B−1g ⊕ 2B−2g ⊕ 4E−g .
(31)

The obtained terms in (26)-(31) are in agreement with
equation (12). They reflect the options:

• spin singlet, even parity, even time: (26) and (28)

• spin singlet, odd parity, odd time: (27)

• spin triplet, odd parity, even time: (30)

• spin-triplet, even parity, odd time: (29) and (31)

Specific terms for gap symmetries are obtained by apply-
ing the character projection operator to equations (24)
and (25). The results are illustrated in Table I and dis-
cussed subsequently for two examples.

s-wave spin triplet

As a first example, we consider a s-wave supercon-
ductor. Whereas the conventional BCS theory [13] de-
scribes a s-wave spin singlet pairing which is even un-
der time-reversal, it is possible to construct a s-wave

spin triplet that is odd under time-reversal (29). Un-
der full rotational symmetry, a spin triplet transforms as
the three-dimensional representationD1

g,− as discussed in
Appendix A. However, for the square lattice, the triplet
state splits into A−2g and E−g as illustrated in Figure 2a.
Since the z-axis is chosen as principal axis, two linearly
independent solutions belonging to E−g are transforming

as ~k2~ex and ~k2~ey. Solutions belonging to A−2g transform

as ~k2~ez. The resulting gap functions are given by

∆̃
E−g
1 (~k) = −~k2σ̃z, (32)

∆̃
E−g
2 (~k) = i~k2σ̃0, (33)

and

∆̃
A−2g
1 (~k) = ~k2σ̃x. (34)

As expected, all the three matrices are symmetric and
thus even under spin interchange. They are even under

D1
g,−

E−
g

A−
2g

O(3)×
{
E, T̂

}
DII

4h

(a) spin triplet, s-wave

D1
u,−

E−
u

A−
2u

O(3)×
{
E, T̂

}
DII

4h

(b) spin singlet, p-wave

FIG. 2: Splitting of pairing states for a pairing
potential with DII

4h symmetry.
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even-frequency

s-wave: A+
1g Ψ ' const, k2x + k2y + k2z

p-wave: A+
1u

~d ' kx~ex + ky~ey + kz~ez
A+

1u
~d ' 2kz~ez − kx~ex − ky~ey

A+
2u

~d ' ky~ex − kx~ey
B+

1u
~d ' kx~ex − ky~ey

B+
2u

~d ' ky~ex + kx~ey
E+

u
~d ' kx~ez
~d ' ky~ez

E+
u

~d ' kz~ex
~d ' kz~ey

d-wave: A+
1g Ψ ' 2k2z − k2x − k2y

B+
1g Ψ ' (k2x − k2y)

B+
2g Ψ ' kxky

E+
g Ψ ' kxkz

Ψ ' kykz
odd-frequency

s-wave: A−2g
~d ' (k2x + k2y + k2z)~ez

E−g ~d ' (k2x + k2y + k2z)~ex
~d ' (k2x + k2y + k2z)~ey

p-wave: A−2u Ψ ' kz
E−u Ψ ' kx

Ψ ' ky
d-wave: A−1g

~d ' kykz~ex − kxkz~ey
A−2g

~d ' kxkz~ex + kykz~ey

A−2g
~d ' (2k2z − k2x − k2y)~ez

B−1g
~d ' kykz~ex + kxkz~ey

B−1g
~d ' kxky~ez

B−2g
~d ' kxkz~ex − kykz~ey

B−2g
~d ' (k2x − k2y)~ez

E−g ~d ' kxky~ex
~d ' kxky~ey

E−g ~d ' kzky~ez
~d ' kzkx~ez

E−g ~d ' (2k2z − k2x − k2y)~ex
~d ' (k2x − k2y)~ex

E−g ~d ' (2k2z − k2x − k2y)~ey
~d ' (k2x − k2y)~ey

TABLE II: Even- and odd-frequency gap symmetries
for the square lattice (DII

4h), considering s-, p- and
d-wave superconductivity.

parity since they contain ~k2. But, they are odd with
respect to the time-reversal introduced in (5).

p-wave spin singlet

Another unconventional odd-frequency pairing is given
by the p-wave spin singlet. Here, the three-dimensional
odd-parity representation D1

u,− splits into the irreducible

representations A−2u and E−u . The gap transforms as kx
and ky for E−u and as kz for A−2u. The resulting super-

conducting gaps behave as

∆̃
E−u
1 (~k) = ikxσ̃y, (35)

∆̃
E−u
2 (~k) = ikyσ̃y, (36)

and

∆̃
A−2u
1 (~k) = ikzσ̃y. (37)

Clearly, the three matrices are anti-symmetric and odd
under spin, odd under parity and also odd under time-
reversal according to (5).

even-frequency

s-wave: A+
1g Ψ ' const, k2x + k2y + k2z

p-wave: A+
1u

~d ' kx~ex + ky~ey + kz~ez
E+

u
~d ' kx~ex − ky~ey
~d ' 2kz~ez − kx~ex − ky~ey

T+
1u

~d ' ky~ex − kx~ey
~d ' kz~ey − ky~ez
~d ' kx~ez − kz~ex

T+
2u

~d ' ky~ex + kx~ey
~d ' kz~ey + ky~ez
~d ' kx~ez + kz~ex

d-wave: E+
g Ψ ' (k2x − k2y)

Ψ ' (2k2z − k2x − k2y)
T+

2g Ψ ' kxky
Ψ ' kykz
Ψ ' kxkz

odd-frequency

s-wave: T−1g
~d ' (k2x + k2y + k2z)~ex
~d ' (k2x + k2y + k2z)~ey
~d ' (k2x + k2y + k2z)~ez

p-wave: T−1u Ψ ' kx
Ψ ' ky
Ψ ' kz

d-wave: A−2g
~d ' kykz~ex + kxkz~ey + kxky~ez

E−g ~d ' kykz~ex − kxkz~ey
~d ' 2kxky~ez − kykz~ex − kxkz~ey

T−1g
~d ' kxky~ex + kykz~ez
~d ' kxkz~ex + kykz~ey
~d ' kxky~ey + kxkz~ez

T−1g
~d ' (2k2x − k2y − k2z)~ex
~d ' (2k2y − k2z − k2x)~ey
~d ' (2k2z − k2x − k2y)~ez

T−2g
~d ' kxky~ex − kykz~ez
~d ' kxkz~ex − kykz~ey
~d ' kxky~ey − kxkz~ez

T−2g
~d ' (k2y − k2z)~ex
~d ' (k2z − k2x)~ey
~d ' (k2x − k2y)~ez

TABLE III: Even- and odd-frequency gap symmetries
for cubic lattices with octahedral symmetry (Oh),
considering s-, p- and d-wave superconductivity.
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OCTAHEDRAL SYMMETRY (OII
h )

Similarly to DII
4h,the gap symmetry is analyzed for OII

h .
As mentioned before, due to the semi-direct product
structure of Shubnikov groups of the second kind each
irreducible representation of a point group occurs twice
(compare Table I for DII

4h). Therefore, we stick to the
standard nomenclature of the irreducible representations
of Oh as can be found, e.g., in [48, 55, 56]. As in the ex-
ample of DII

4h, superscripts + and − distinguish between
the even and odd symmetric representations with respect
to time-reversal. For OII

h , the occurring irreducible rep-
resentations for spin singlet and triplet gaps are given
by

s-wave : D0
g,+ ' A+

1g, (38)

p-wave : D1
u,− ' T−1u, (39)

d-wave : D2
g,+ ' E+

g ⊕ T+
2g, (40)

and

s-wave : D0
g,+ ⊗D1

g,− ' T−1g, (41)

p-wave : D1
u,− ⊗D1

g,− ' A+
1u ⊕ E+

u ⊕ T+
1u ⊕ T+

2u, (42)

d-wave : D2
g,+ ⊗D1

g,− ' A−2g ⊕ E−g ⊕ 2T−1g ⊕ 2T−2g,
(43)

respectively. The specific forms of the even- and odd-
frequency gap symmetries are shown in Table III.

s-wave spin triplet

For octahedral symmetry the three-dimensional repre-
sentation D1

g,− does not split and thus a three-fold degen-
erate eigenvalue occurs transforming as the irreducible
representation T−1g. Similarly to equations (32)-(34), the
resulting gaps transform as

∆̃
T−1g
1 (~k) = −~k2σ̃z, (44)

∆̃
T−1g
2 (~k) = i~k2σ̃0, (45)

∆̃
T−1g
3 (~k) = ~k2σ̃x. (46)

The three matrices are even under spin interchange, even
under parity and odd under time-reversal. The relation-
ship between the s-wave spin triplet for OII

h and DII
4h

symmetry is shown in Fig. 3.

d-wave spin triplet

Another option of having a spin-triplet, even parity,
but odd-time pairing is given by the d-wave spin triplet.
According to equation (43) and Table III, the d-wave

T−
1

T−
1g

E−
g

A−
2g

TII
d OII

h DII
4h

FIG. 3: s-wave spin triplet pairing for a pairing
potential with T II

d , OII
h and DII

4h symmetry.

spin triplet pairing is mediated by 15 eigenvectors be-
longing to 6 subspaces. As an example we consider the
two subspaces belonging to T−2g. The corresponding gaps
transform as

∆̃
T−2g
1 (~k) = −kxkyσ̃z − kykzσ̃x (47)

∆̃
T−2g
2 (~k) = −kxkzσ̃z − ikykzσ̃0 (48)

∆̃
T−2g
1 (~k) = ikxkyσ̃0 − kxkzσ̃x (49)

(50)

and

∆̃
T−2g
1 (~k) = −(k2y − k2z)σ̃z, (51)

∆̃
T−2g
2 (~k) = i(k2z − k2x)σ̃0, (52)

∆̃
T−2g
3 (~k) = (k2x − k2y)σ̃x. (53)

Both sets of matrices belong to two different eigenvalues
within the linearized gap equation (3). Due to the ab-
sence of σ̃y, all matrices are symmetric and thus represent
a gap even under spin interchange. Second order terms
in ~k guarantee for the even behavior under parity. Nev-
ertheless, following (5) they are odd under time-reversal.

NON-CENTROSYMMETRIC TETRAGONAL
LATTICE (T II

d )

Even for non-centrosymmetric groups, i.e., groups that
do not contain the inversion, it is possible to keep the no-
tion of parity within the gap function. The point group
Td describes the point group of a tetragonal lattice hav-
ing no inversion symmetry. However, as a subgroup of
Oh, the irreducible representations of both groups can
be related to each other. In the context of the Shub-
nikov group of the second kind T II

d ⊂ OII
h , the following

correspondences can be found,

A±1g,A
±
2u → A±1 , (54)

A±2g,A
±
1u → A±2 , (55)

E±u ,E
±
g → E±, (56)

T±1g,T
±
2u → T±1 , (57)

T±2g,T
±
1u → T±2 . (58)
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Hence, the specific gap symmetries for T II
d can be taken

from Table III. The occurring irreducible representations
are given by

s-wave : D0
g,+ ' A+

1 , (59)

p-wave : D1
u,− ' T−2 , (60)

d-wave : D2
g,+ ' E+ ⊕ T+

2 , (61)

and

s-wave : D0
g,+ ⊗D1

g,− ' T−1 , (62)

p-wave : D1
u,− ⊗D1

g,− ' A+
2 ⊕ E+ ⊕ T+

2 ⊕ T+
1 , (63)

d-wave : D2
g,+ ⊗D1

g,− ' A−2 ⊕ E− ⊕ 2T−2 ⊕ 2T−1 . (64)

The discussion of examples follows the line of OII
h in the

previous section. The relationship between T II
d , OII

h and
DII

4h for s-wave spin triplet pairing is shown in Fig. 3.

GINZBURG-LANDAU THEORY

The transition to a superconducting state occurs when
the largest eigenvalue of the Bethe-Salpeter equation (1)
is equal to ν = 1. This relation also uniquely defines
the superconducting transition temperature Tc. The gap
related to the first superconducting state arising immedi-
ately below Tc can be constructed as a linear combination
of the eigenfunctions of the Bethe-Salpeter equation ∆̃i

m,
m = 1, . . . , di,

∆̃i =

di∑

m=1

ηm∆̃i
m. (65)

The generalized Ginzburg-Landau free energy [18] can be
entirely expressed in terms of the ηm,

F (T, ~η) = FLandau(T, ~η)+FGradient(~η)+

∫
dx3

~B2

8π
. (66)

We start the discussion with the Landau term, given by

FLandau(T, ~η) = F0(T )

+ V

[
Ai(T )

di∑

m=1

|ηm|2 + f
(
~η4
)
]
. (67)

Here, f
(
~η4
)

denotes all fourth order terms in ηm and it’s
complex conjugate η∗m. Since F (T, ~η) has to be real, only
products containing the same number of ηm and η∗m are
allowed. Furthermore, F (T, ~η) has the same symmetry
as the system itself and thus transforms as the identity
representation.

Since the gap and the anomalous Green Function van-
ish at equal times (effectively t = 0) the order parameter
for odd-frequency superconductivity is widely discussed,
e.g., by considering a composite order of a Cooper pair

and a charge or spin fluctuation [36, 41, 42, 57]. Since
the minimum of (67) is achieved for a particular value
of the time-independent vector ~η, it can be regarded as
a generalized order parameter covering both odd- and
even-frequency superconductivity.

The forth order terms in (67) only depend on the di-
mension of the irreducible representation but not on the
specific characteristics. The number of different invari-
ant terms can be determined by decomposing the di-
rect product [Γ]

4
= Γ∗ ⊗ Γ ⊗ Γ∗ ⊗ Γ. Here, we intro-

duce the short-hand notation [Γ]
4

for convenience, e.g.,[
A+

1g

]4
= (A+

1g)∗ ⊗ A+
1g ⊗ (A+

1g)∗ ⊗ A+
1g. For the groups

DII
4h and OII

h it follows

[
A±ix
]4 '

[
B±ix
]4 ' A+

1g, (68)
[
E±x
]4 ' 4A+

1g ⊕ 4A+
2g ⊕ 4B+

1g ⊕ 4B+
2g (69)

and

[
A±ix
]4 ' A+

1g, (70)
[
E±x
]4 ' 3A+

1g ⊕ 3A+
2g ⊕ 5E+

g , (71)
[
T±ix
]4 ' 4A+

1g ⊕ 3A+
2g ⊕ 7E+

g ⊕ 10T+
1g ⊕ 10T+

2g, (72)

respectively. The abbreviations i = 1, 2 and x = g, u
were used. The analogous terms for T II

d can be derived
using (54)-(58).

The gradient term FGradient of the free-energy incorpo-
rates a gauge-invariant coupling of the order parameter
to a magnetic field via the gradient vector ~D = ∇−2i ec

~A.

As ~D transforms as the vector representation ΓV of the
underlying point group, the contributions of FGradient are
obtained from decomposing the direct product

Γ∗V ⊗ Γ∗ ⊗ ΓV ⊗ Γ = [Γ]V . (73)

Similarly to [Γ]
4
, [Γ]V is an abbreviation for the direct

product in (73), e.g.,
[
A+

1g

]
V

= (ΓV )
∗ ⊗

(
A+

1g

)∗ ⊗ ΓV ⊗
A+

1g. The vector representation of DII
4h is given by ΓV =

A+
1u ⊕ E+

u and the vector representation of OII
h is ΓV =

T+
1u. The corresponding Clebsch-Gordan sums for the

decomposition of the gradient terms are

[
A±ix
]
V
'
[
B±ix
]
V
' 2A+

1g ⊕A+
2g ⊕ B+

1g ⊕ B+
2g ⊕ 2E+

g ,

(74)
[
E±x
]
V
' 5A+

1g ⊕ 5A+
2g ⊕ 5B+

1g ⊕ 5B+
2g ⊕ 8E+

g (75)

for DII
4h and

[
A±ix
]
V
' A+

1g ⊕ E+
g ⊕ T+

1g ⊕ T+
2g, (76)

[
E±x
]
V
' 2A+

1g ⊕ 2A+
2g ⊕ 4E+

g ⊕ 4T+
1g ⊕ 4T+

2g, (77)
[
T±ix
]
V
' 4A+

1g ⊕ 3A+
2g ⊕ 7E+

g ⊕ 10T+
1g ⊕ 10T+

2g (78)

for OII
h .
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With respect to the second order, fourth order and
gradient terms within the Ginzburg-Landau free energy
functional (67) it turns out that the explicit forms of the
invariant polynomials only depend on the dimension of
the irreducible representation involved. This statement
follows from equations (74)-(78). However, we want to
exemplify the derivation of the invariant terms for the
example of a tetragonal symmetry (DII

4h) and an odd-
frequency p-wave gap transforming as the irreducible rep-
resentation E−2u. Hence, the superconducting gap is ex-
pressed as

∆̃(~k) = η1∆̃1(~k) + η2∆̃2(~k), (79)

where ∆̃1 and ∆̃2 transform as basis functions of

E−2u. As
[
E−2u
]4 '

(
A+

1g ⊕A+
2g ⊕ B+

1g ⊕ B+
2g

)
⊗(

A+
1g ⊕A+

2g ⊕ B+
1g ⊕ B+

2g

)
, we start with forming a direct

product basis in ηi and η∗i , i = 1, 2, for the direct product
representations E−∗2u ⊗E−2u ' A+

1g⊕A+
2g⊕B+

1g⊕B+
2g. This

can be done straightforwardly from the Clebsch-Gordan
coefficients which were calculated using GTPack. Prod-
ucts of these basis functions span the invariant basis of
the fourth order terms. It turns out that only three inde-
pendent fourth order polynomial terms remain in total,
which are given by

1∑

m=1

f
(
~η4
)

= β1

[
|η1|4 + |η2|4

]
+ β2

[
η2∗1 η

2
2 + h.c.

]

+ β3

[
|η1|2 |η2|2

]
. (80)

These expressions are similar to the ones reported by
Sigrist and Ueda [18], by setting β1 = β′1, β2 = 4β′1 −
4β′2 + β′3, and β3 = β′3, where β′i denote the coefficients
chosen in [18]. For the gradient terms we follow a similar
procedure as for the fourth order terms. The basis of the
vector representation is chosen to be Dx and Dy for E+

u

and Dz for A+
2u. The resulting terms are

FGradient = γ1

[
|Dxη1|2 + |Dyη2|2

]

+ γ2

[
|Dyη1|2 + |Dxη2|2

]
+ γ3

[
Dxη1D

∗
yη
∗
2 + c.c.

]

+ γ4
[
Dxη2D

∗
yη
∗
1 + c.c.

]
. (81)

Explicit expressions of fourth order invariant terms for
D4h and Oh were reported before and discussed in great
detail [14–19].

Additional terms resulting from external fields can be
included into the Ginzburg-Landau theory leading to fur-
ther contributions to the free-energy functional. With
respect to odd-frequency superconductivity, fields which
transform as an irreducible representation odd in time-
reversal or Matsubara frequency, respectively, might be
of special interest.

CONCLUSION

We presented a general formalism for the classification
of superconducting states of matter incorporating time-
reversal symmetry. We find it necessary to extend the
standard symmetry analysis to keep track of the time-
reversal properties by analyzing colored, i.e. Shubnikov
groups. The specific approach that is conducive to an-
alyze the pairing instabilities is the Shubnikov group of
the second kind that keeps the time-reversal as an ex-
plicit symmetry element. We thus develop an approach
in terms of Shubnikov groups of the second kind that
allows us to identify odd- and even-frequency solutions
within the Bethe-Salpeter equation. In doing so we ex-
tended the previous ground-laying work by Gorkov and
Volovik [14, 15], Ueda and Sigrist [17, 18] and Blount
[16]. Since the combination of spin interchange, parity
and time-reversal has to be odd for a pair of electrons,
the found odd-frequency gap symmetries are either both,
even under spin and even under parity or odd under spin
and odd under parity. Consequently, for an experimental
identification of the symmetry of a bulk superconducting
gap in simple single-band systems, it is required to mea-
sure at least two of the three above mentioned informa-
tion, e.g., as performed in Ref. [34]. Even though signals
for the experimental verification of odd-frequency states
are often discussed in connection to systems which ex-
plicitly break time-reversal symmetry [31–33], our inves-
tigation reveals that odd-frequency solutions do not re-
quire a time-reversal breaking potential. Odd-frequency
solutions can arise naturally for a time-reversal symmet-
ric interaction as a symmetry breaking ground state of
a many-particle system with time-reversal invariant in-
teractions. Although exhibiting a dynamical order, the
phenomenon of odd-frequency superconductivity as such
is similar to other symmetry breaking transitions.
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APPENDIX A: IRREDUCIBLE
REPRESENTATIONS OF SO(3), O(3) AND

O(3)×
{
E, T̂

}
The group SO(3) contains all proper three-dimensional

representation matrices, i.e., orthogonal matrices with
determinant +1. The spherical harmonics Y lm represent
a set of basis functions for all irreducible representations
of SO(3). To each angular momentum quantum number
l belongs a dl = 2l + 1-dimensional irreducible represen-
tation Dl. Representation matrices D̃l(g) for an element
g ∈ SO(3) can be found from the transformation behav-
ior of the spherical harmonics via

ĝY lm =

l∑

m′=−l
Dl
m′m(g)Y lm′ . (82)

The Dl
m′m(g) are also denoted as Wigner-D-functions.

The group O(3) contains all orthogonal matrices with
determinant ±1. Hence, it incorporates all proper and
improper rotations, i.e., rotations, reflections and the in-
version I. The inversion acts on the spherical harmonics
as

P̂ (I)Y lm = (−1)lY lm′ . (83)

However, since O(3) can be written as the semi-direct
product O(3) = SO(3) × {E, I}, we can construct odd
(u) and even (g) representations with respect to inversion
via

Dl
g(g) = Dl

u(g) = Dl(g), (84)

Dl
u(Ig) = −Dl(Ig), (85)

Dl
g(Ig) = Dl(Ig), (86)

where g denotes a proper rotation, i.e., g ∈ SO(3) ⊂
O(3). The spherical harmonics are basis functions of Dl

g

for even values of l and basis functions of Dl
u for odd

values of l. Incorporating the time-reversal, a similar
strategy can be applied to construct representations of

O(3) ×
{
E, T̂

}
. It follows for an element h ∈ O(3) ⊂

O(3)×
{
E, T̂

}
,

Dl
x,+(h) = Dl

x,−(h) = Dl
x(h), (87)

Dl
x,−(Tg) = −Dl

x(Tg), (88)

Dl
x,+(Tg) = Dl

x(Tg), (89)

where x = u, g.
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