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A novel non-equilibrium thermodynamic model for electron and phonon transport is formulated
based on the steepest-entropy-ascent quantum thermodynamics (SEAQT) framework. This frame-
work, based on the principle of steepest entropy ascent (SEA) (or the equivalent maximum entropy
production (MEP) principle), inherently satisfies the laws of thermodynamics and mechanics and
is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically,
the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit
and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The
heat and mass transport at a temperature discontinuity across a homogeneous interface where the
dispersion and coupling of electron and phonon transport are both considered are then modeled.
Local nonequilibrium system evolution and nonquasi-equilibrium interactions are predicted and the
results discussed.

I. INTRODUCTION

Nonequilibrium phenomena exist at all temporal and
spatial scales and play an important role in deciding de-
vice performance. Many different types of microscopic
and mesoscopic models describing nonequilibrium phe-
nomena have been developed1–10, but they are all lim-
ited with respect to their general applicability to the
non-equilibrium realm. Studying these phenomena at
larger scales with macroscopic continuum models11–16 is
theoretically even more limited. The general procedure
for including nonequilibrium effects in continuum models
consists of two general steps both of which suffer from an
incomplete or inadequate description of the nonequilib-
rium system. The first is to approximate the nonequi-
librium state of the system using a fine mesh of local
systems each of which is assumed to be in a state of
local equilibrium. However, such a mesh is limited in
its ability to describe each actual local state, which is
that of nonequilibrium. The second step is to address
the nonequilibrium effects of the system dynamics, i.e,
transports, via the inclusion of a set of phenomenological
coefficients (e.g.,diffusivity, thermal and electrical con-
ductivities, viscosity, etc.). However, these coefficients
are often based on uncoupled behavior and if not are
still limited to the linear regime and are, thus, not gen-
erally applicable and must be determined independently
via measurements or a microscopic or mesoscopic model.
The latter can be used to provide a set of linear (as op-
posed to non-linear) coefficients based on the energy and
mass flows resulting from a set of master equations (i.e.,
microscopic or mesoscopic equations of motion). How-
ever, the actual transport of interest may be non-linear
and, thus, the coefficients developed via the microscopic
or mesoscopic model inadequate. Furthermore, deter-
mining these coefficients is only possible between two
local equilibrium systems, since the intensive properties

used to determine them are only defined at equilibrium.
A specific illustration of this is found in nonequilibrium
molecular dynamics (NEMDs) where heat transfer at the
interface between two materials is modeled17 by attach-
ing the two sides of the interface to two different thermal
reservoirs. The thermal interface conductance is then de-
termined as a function of the temperatures of the reser-
voirs. Thus, without the local equilibrium assumption
both at the microscopic or mesoscopic level in determin-
ing the phenomenological coefficients and at the macro-
scopic level in solving the equations for mass and energy
transport, the continuum model fails and is unable to
predict how a nonquasi-equilibrium process produces a
non-local equilibrium state.

The incompleteness of the non-equilibrium state de-
scription also exists at the mesoscopic level when the
kinetic theory model is used in the far-from-equilibrium
realm. The reason is that outside of the near-equilibrium
realm, using only the conservation laws is insufficient for
providing a closed system of transport equations for a
system’s properties, which are evaluated via moments of
a probability distribution function10. The closure prob-
lem results from the fact that if system state evolution,
which would theoretically be determined via complex mi-
croscopic interactions represented by collision integrals,
were instead evaluated without these, a closed descrip-
tion would require additional information, in particular
that for entropy generation. An attempt to provide clo-
sure comes from extended thermodynamics14, which uses
the principle of maximum entropy production (MEP). In
doing so, the distribution function is used to calculate
higher-order moments and the entropy production term
is assumed to be that which maximizes the entropy under
the given constraints18,19. However, such an approach
appears to be more of a practical one than a fundamen-
tal one, since it neither provides a general equation of
motion for the nonequilibrium realm nor attempts to in-
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vestigate the entropy generation process in the evolution
of an arbitrary nonequilibrium state.

Of course, complex microscopic interactions can be
used directly to predict the evolution of individual en-
ergy levels via a collision or scattering process based
on Newton’s law or quantum mechanics as is done with
the Boltzmann transport equations (e.g.,20) or with non-
equilibrium Green’s functions (e.g.,3), respectively. The
evolution of system thermodynamic properties can then
be developed within certain limits from the microscopic
process, although it must be emphasized that in the case
of Green’s functions the laws of thermodynamics are not
inherently satisfied and satisfying them is very sensitive
to the level of approximation used, while the applicabil-
ity of BTE to regions other than the near-equilibrium is
limited by its local-equilibrium requirement.

To address all of the above deficiencies, a novel
nonequilibrium thermodyanmics-ensemble based frame-
work called steepest-entropy-ascent quantum thermody-
namics (SEAQT) provides a general thermodynamically
rigorous equation of motion for nonequilibrium system
state evolution. It bases the relaxation of system state
on the conservation laws of thermodynamics and on the
principle of steepest entropy ascent (SEA)21–39. With the
development of the concept of hypoequilibrium state and
the density of states method27–30, SEAQT can be applied
from a practical standpoint at all temporal and spatial
scales. Unlike conventional methods such as the ones de-
scribed above, the SEAQT framework provides an equa-
tion of motion that can be used to investigate the evolu-
tion of local nonequilibrium states from an entropy gen-
eration standpoint. The concept of hypoequilibrium fur-
ther simplifies this nonequilibrium description via the use
of nonequilibrium intensive properties (e.g., temperature
and pressure) and extends the thermodynamic equilib-
rium description (e.g., the Onsager relations, the Gibbs
relation, etc.) into the nonequilibrium realm, even that
far from equilibrium. Thus, using SEAQT, nonequilib-
rium state evolution can be described completely for any
macroscopic or mesoscopic system via a set of extensive
and intensive thermodynamic properties using a closed
system of equations of motion for these properties.

In this paper, the SEAQT framework is applied to the
study of the mass and energy transport of electrons and
phonons at a temperature discontinuity across a homoge-
neous interface (i.e., an interface with the same material
on either side but with each side at a different temper-
ature). Unlike conventional methods40, which in general
rely on either kinetic theory at the mesoscopic scale20

or classical mechanics (NEMD17) and quantum mechan-
ics at the microscopic scale (e.g., atomistic Green’s
functions41 and nonequilibrium Green’s functions3), the
SEAQT description provides details at multiple levels,
i.e., in this case both at the macroscopic and mesoscopic
levels, and emphasizes the general thermodynamic fea-
tures of state evolution without requiring explicit details
of the mechanical interactions (e.g., particle collisions).
This is the case since the history of the intermediate

states of the relaxation process does not depend on the
overall timescale of the evolution (i.e., on the actual dy-
namics and not even on the relaxation time selected when
a single relaxation time is involved). In other words, the
nonequilibrium trajectory predicted is a static path in
thermodynamic state space, which does not depend on
how fast the evolution occurs. Furthermore, by account-
ing for the temperature discontinuity across a homoge-
neous interface only, the influence of material properties
(e.g., lattice mismatch42, band structure alignment43, in-
trinsic defects44,45, and stress46) have purposely been
removed in order to illustrate how the SEAQT frame-
work can be used to predict the universal nonequilib-
rium thermodynamic features of the interfacial mass and
heat transfer with electron-phonon coupling. Nonethe-
less, this framework can be utilized to study the heteroin-
terface structure and properties with input data such as
the system’s eigenstructure calculated with density func-
tional theory (DFT) or NEMD. This, however, is beyond
the scope of the present paper.

The paper is organized as follows. In Section II, the
SEAQT framework is briefly described and the equation
of motion derived from the SEA principle. Section III
provides a brief explanation of the hypoequilibrium con-
cept. Using this concept, the SEAQT equation of motion
can be simplified significantly and solved very practically.
Section IV then follows with a thermodynamically rig-
orous derivation of the SEAQT transport equations for
electron and phonon transport applicable even in the far-
from-equilibrium realm. Moreover, it is shown that these
transport equations can recover the Boltzmann transport
equation in the near-equilibrium realm. Finally, Section
V applies the SEAQT framework to the study of heat and
mass transport at a temperature discontinuity across a
homogeneous interface. The nonquasi-equilibrium pro-
cess at the interface as well as the relaxation of the local
nonequilibrium systems are studied.

II. STEEPEST-ENTROPY-ASCENT

FRAMEWORK

The equation of motion for moving through thermody-
namic state space is derived using the SEA principle25,47.
In the system, there are m single-particle energy eigen-
levels {ǫk, k = a, ...,m} that can be occupied by par-
ticles. A system eigenstate is denoted using the occu-
pation number representation |nanb . . . nm〉 where nk is
the occupation number at the kth single-particle eigen-
level ǫk. nk is valued 0, 1 for fermions and 0, 1, . . . ,∞
for bosons. A system thermodynamic state is selected
from the Hilbert space spanned by the system eigenstates
and can be represented equivalently by a w-dimension
vector {pk(nk)}. The vector element pk(nk) represents
the probability that nk particles are observed at the kth
single-particle eigenlevel where k = a, . . . ,m. The ex-
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plicit form of the w-dimension vector is

fermion: {pa(0), pa(1), pb(0), pb(1), . . . , pm(1)} (1)

bosons: {pa(0), . . . , pa(∞), pb(0), . . . ,

pb(∞), . . . , pm(0), . . . , pm(∞)} (2)

where the total dimension of the vector is w = 2m for
fermions and w = ∞ for bosons.
To facilitate the imposition of the constraints dis-

cussed later, the system thermodynamic state can alter-
natively be denoted by using the square root of the vector
{pk(nk)} such that

γ ≡ vect(
√

pk(nk)), k = a, . . . ,m (3)

The thermodynamic state space of the system, i.e., the
γ space, can then be defined as a manifold whose ele-
ments are all of the w-vectors of the real finite numbers
X = vect(xl) and Y = vect(yl) equipped with an inner
product (·|·) given by

(X |Y ) ≡

w
∑

l=1

xlyl (4)

For a specific thermodynamic state represented by γ,
the system properties can be defined by the functionals
Ã(γ), B̃(γ), ... of γ (or the vector |γ)). The functional

derivatives with respect to γ are δÃ(γ)/δγ. The time
evolution of the thermodynamic state γ(t) follows the
equation of motion in w-vector form given by

|dγ/dt) = |Πγ) (5)

The formalism of |Πγ) is derived from the SEA principle

subject to a set of conservation laws {C̃(γ)} to which the

system yields. These include conservation of energy H̃(γ)

and of particle number Ñ(γ) as well as m probability

normalization conditions Ĩk(γ). Using Eq. (4), the time

evolution of these conserved system properties {C̃(γ)} =

{H̃, Ñ , Ĩa, . . . , Ĩm} and the system entropy S̃(γ) obey the
following equations of motion:

ΠCi
≡ dCi/dt = (Ψi|Πγ) = 0,with |Ψi) ≡ |δC̃i(γ)/δγ)(6)

ΠS ≡ dS/dt = (Φ|Πγ) ≥ 0, with |Φ) ≡ |δS̃(γ)/δγ) (7)

The time evolution of the system |Πγ) corresponds to
a trajectory in thermodynamic state space, which obeys
the SEA variational principle. The corresponding varia-
tional problem consists of finding the instantaneous “di-
rection” of |Πγ), which maximizes the entropy produc-
tion rate ΠS subject to the constraints ΠCi

= 0. To do
so, the state space must be equipped with a metric field
with which to compute the distance traveled during the
evolution and the norm of Πγ . The differential of the
distance traveled along the path in state space is then
expressed as

dl =

√

(Πγ |Ĝ(γ)|Πγ)dt (8)

where Ĝ(γ) is a real, symmetric, positive-definite oper-
ator on the manifold which defines the thermodynamic
state space25. When Ĝ(γ) is the identity operator, the
distance corresponds to the simplest measure, which is
the Fisher-Rao metric. The SEA variational problem is
now solved by maximizing the entropy production rate
ΠS subject to the constraints ΠCi

= 0. The additional
constraint (dl/dt)2 is set equal to some small positive con-
stant so that the norm of Πγ is kept constant, as needed.
The maximization occurs only with respect to its direc-
tion. The solution is found using the method of Lagrange
multipliers where the Lagrangian is written as

Υ = ΠS −
∑

i

βiΠCi
−

τ

2
(Πγ |Ĝ(γ)|Πγ) (9)

and βi and τ/2 are the Lagrange multipliers. Taking
the variational derivative of Υ with respect to |Πγ) and
setting it equal to zero results in

δΥ

δΠγ

= |Φ)−
∑

i

βi|Ψi)− τĜ|Πγ) = 0 (10)

Thus, the SEA equation of motion takes the form

|Πγ) = L̂|Φ−
∑

i

βiΨi) (11)

where L̂ ≡ Ĝ−1/τ is assumed for purposes of this paper
to be diagonal. As is shown below, the diagonal terms
of L̂ {τkj , k = 1, . . . ,m, j = 0, . . . ,∞} are related to the
relaxation times of system single-particle eigenlevels so
that

L̂ = diag{
1

τkj
} (12)

The values of the Lagrange multipliers, the βi, are cal-
culated by inserting Eq. (11) into the conservation laws
expressed by Eq. (6), resulting in

m+2
∑

j=1

(Ψi|L̂|Ψj)βj = (Ψi|L̂|Φ) (13)

These βj can be used to define the measurements of
nonequilibrium system intensive properties (e.g., temper-
ature, pressure, and chemical potential)30.
Substituting the functional derivatives of the system

properties given by Eqs. (A1)-(A4) in Appendix A into
Eq. (11), the equations of motion for the γk and the pkj
of the probability distribution among the single-particle
eigenlevels ǫk can be written as

dγk(nk)

dt
=

1

τkj
(−γk(nk) ln pkj − jǫkγk(nk)βE

−jγk(nk)βN − γk(nk)βk
I ) (14)

dpkj
dt

=
1

τkj
(−pkj ln p

k
j − jǫkpkjβE − jpkjβN − pkjβ

k
I )

(15)
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where k stands for the single-particle eigenlevel index and
j for the occupation number at this level. βE , βN and βk

I

are, respectively, the Lagrange multipliers corresponding
to the generators of the motion Ĥ, N̂ , and Îk .

III. HYPOEQUILIBRIUM STATE

The hypoequilibrium concept developed in27,28,30 can
simplify the expression for the equation of motion and
facilitates the physical interpretation47 of the evolution
in state. It is assumed without loss of any significant
generality (see27) that the particles occupying the same
single-particle eigenlevel ǫ are initially in mutual equilib-
rium with respect to the chemical potential µǫ and tem-
perature T ǫ so that the initial probability distribution pǫi
among the different occupation states is Maxwellian, i.e.,

pǫi =
e−βǫ

N i−βǫ
Eiǫ

Ξǫ
= e−βǫ

I−βǫ
N i−βǫ

Eiǫ (16)

where βǫ
E ≡ 1/kBT

ǫ is defined by the temperature T ǫ,
βǫ
N ≡ µǫ/kBT

ǫ by the chemical potential µǫ, and βǫ
I ≡

ln Ξǫ by the single-particle level partition function given
by:

Ξǫ(βǫ
E , β

ǫ
N ) =

∞
∑

i

e−βǫ
N ie−βǫ

Eiǫ (17)

Such an initial state is called a hypoequilibrium state.

In addition, it is assumed that the different occupation
states of the same single-particle eigenlevel have the same
relaxation time, namely,

τ ǫj = τ ǫ for all j in the same ǫ (18)

which means that each relaxation time is a property of a
given single-particle eigenlevel.

Under these two conditions, it is proven in27,28,30,47

that the system remains in a hypoequilibrium state
throughout the entire time evolution given by Eq. (15).
As a consequence, the time evolution of the system can
be determined via the motion of the state of a single-
particle eigenlevel47 defined by

yǫ = βǫ
N + βǫ

Eǫ (19)

Substituting Eq. (16) into (15), the equation of motion
for yǫ becomes

dyǫ

dt
= −

1

τ ǫ
(yǫ − βEǫ− βN ) (20)

Multiplying Eq. (15) successively by the system exten-
sive properties of particle number, energy, and entropy
and integrating over j, the contributions to these prop-
erties from a single-particle eigenlevel ǫ provide the fol-

lowing evolutions:

d〈N〉ǫ
dt

=
1

τ ǫ
Aǫ

NN (yǫ − βEǫ− βN ) (21)

d〈e〉ǫ
dt

= ǫ
d〈N〉ǫ
dt

(22)

d〈s〉ǫ
dt

= yǫ
d〈N〉ǫ
dt

(23)

where 〈N〉ǫ, 〈e〉ǫ and 〈s〉ǫ are the expectation values of
the particle number, energy, and entropy of the single-
particle eigenlevel. Aǫ

NN is the particle number fluctua-
tion of the single-particle eigenlevel defined as

Aǫ
NN ≡ 〈N2〉ǫ − (〈N〉ǫ)2 =

∂2

∂2βǫ
N

ln Ξǫ = −
∂〈N〉ǫ

∂βǫ
N

=
1

ey ± 1
∓

1

(ey ± 1)2
(24)

where fermions take the plus sign and bosons the nega-
tive.

IV. TRANSPORT EQUATIONS

A. Electron transport equation

In this section, Eq. (15) is applied to the study of
the electron transport between two systems. The set
of single-particle eigenlevels studied {ǫA,k, ǫB,l} is com-
posed of the eigenlevels at location A {ǫA,k} and those
at location B {ǫB,k}. Integrating Eq. (21) over the en-
ergy eigenlevels of location A yields the particle number
evolution at this location given by

d〈N〉A

dt
=

∫

V

τA,ǫ
AA,ǫ

NN (βA,ǫ
E ǫ+ βA,ǫ

N − βEǫ− βN )DA(ǫ)dǫ

(25)

where DA(ǫ) is the density of states per unit volume at
location A determined as outlined in27 and V the volume.
In the near-equilibrium realm, it is assumed that sys-

tem A and B are both approximately in stable equilib-
rium, i.e.,

βA,ǫ
E = βA

E (26)

βA,ǫ
N = βA

N (27)

(and similarly for B) so that for A

d〈N〉A

dt
=

∫

V

τA,ǫ
(βA

Eǫ+ βA
N − βEǫ− βN )AA,ǫ

NNDA(ǫ)dǫ

= (βA
N − βN )

∫

V

τA,ǫ
AA,ǫ

NNDA(ǫ)dǫ

+ (βA
E − βE)

∫

V ǫ

τA,ǫ
AA,ǫ

NNDA(ǫ)dǫ (28)

Moreover, the near-equilibrium assumption permits re-
tention of the zeroth order approximation for the terms
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inside the integrals so that only the first-order approx-
imation of d〈N〉A/dt is retained. In particular, it is
assumed that systems A and B have the same energy
eigenstructure so that the relaxation times and density
of states of A and B are the same, i.e.,

τA,ǫ = τB,ǫ = τ ǫ, DA(ǫ) = DB(ǫ) = D(ǫ) (29)

It is also assumed that the fluctuations of systems A and
B are approximately equal to their mutual equilibrium
value at (βN , βE), namely, that

AA,ǫ
NN = AB,ǫ

NN = Aǫ
NN (βN , βE) (30)

The particle flow from B to A is then found by subtract-
ing from Eq. (28) the corresponding one for system B so
that

d〈N〉A

dt
−

d〈N〉B

dt
= 2

d〈N〉A

dt

= (βA
N − βB

N )

∫

V

τ ǫ
Aǫ

NND(ǫ)dǫ

+ (βA
E − βB

E )

∫

V ǫ

τ ǫ
Aǫ

NND(ǫ)dǫ(31)

where the term to the right of the first equal is the result
of particle conservation, i.e., d〈N〉A/dt + d〈N〉B/dt = 0.
Defining

δ(βE(ǫ + µ)) = (βA
N + ǫβA

E)− (βB
N + ǫβB

E ) (32)

where µ ≡ βN/βE and using Eq. (31), the total particle
flow to A can be written as

AJN ≡ 2
d〈N〉A

dt
=

∫

δ(βE(ǫ + µ))
V

τ ǫ
Aǫ

NND(ǫ)dǫ(33)

Here A is the cross-sectional area of the interface sepa-
rating systems A and B. JN is the particle flux across the
interface between system A and B. If system A is part of
a series of local systems, the flow along a given direction
for A is given by the contributions from two interfaces,
which results in the factor 2 after the first equal sign in
Eq. (34). By using the following variational relation for
every energy level ǫ:

δ(βE(ǫ + µ)) =

(

(ǫ+ µ)
dβE

dx
+ βE

dµ

dx

)

δx (34)

where δx is the distance between the locations A and B,
Eq. (33) can be rewritten as

AJN = δx

∫

V

τ ǫ

(

(ǫ+ µ)
dβE

dx
+ βE

dµ

dx

)

Aǫ
NND(ǫ)dǫ

(35)
When the system is initially in a hypoequilibrium state,
the relationship between the fluctuation Aǫ

NN and the
Fermi distribution f is expressed as

Aǫ
NN = β−1

E

∂f

∂ǫ
, with f =

1

eβEǫ+βN + 1
(36)

The particle flux can then be rewritten as

JN =
V δx

A

∫

1

τ ǫ

(

(ǫ+ µ)
dβE

dx
+ βE

dµ

dx

)

β−1
E

∂f

∂ǫ
D(ǫ)dǫ

= −
V δx

A
(
dE0

f

dx
+ eE)

∫

1

τ ǫ
∂f

∂ǫ
D(ǫ)dǫ

+
V δx

A
β−1
E

dβE

dx

∫

1

τ ǫ
(ǫ − Ef )

∂f

∂ǫ
D(ǫ)dǫ (37)

where Ef = E0
f + Φ = −µ = −βN/βE , E

0
f is the fermi

level without an external field, −dµ = dE0
f + dΦ the dif-

ferential chemical potential, and dΦ/dx = E the external
field.
As a comparison, the Boltzmann transport equation

(BTE) in the low field region results in the following par-
ticle flux expression40:

JN = −
1

3
(
dE0

f

dx
+ eE)

∫

τ ′v2
∂f

∂ǫ
D(ǫ)dǫ

−
1

3T

dT

dx

∫

τ ′v2(ǫ − Ef )
∂f

∂ǫ
D(ǫ)dǫ (38)

where τ ′ is the relaxation time in the BTE given by

∂f

∂t
+

∂r

∂t
· ∇rf +

∂p

∂t
· ∇pf = −

f − f0
τ ′(r,p)

(39)

where r and p are the particle position and momentum
vectors, respectively. f is the particle probability density
function and f0 its local equilibrium value. The SEAQT
and BTE relaxation times τ ǫ and τ ′, respectively, are de-
fined by different equations of motion. When the SEAQT
relaxation times, the τ ǫ, are chosen via the relation

V δx

τ ǫA
=

(δx)2

τ ǫ
∼

τ ′(ǫ)v2

3
= τ ′(ǫ)v2x (40)

i.e.,

τ ǫ = (
δx

vx
)2/τ ′(ǫ) =

3m(δx)2

2ǫτ ′(ǫ)
(41)

the SEAQT equation of motion recovers the BTE in the
low field region and its corresponding particle flux.

B. Phonon transport equation

The SEA transport equation for phonon transfer can
be derived in a similar fashion to what was done for
electron transport. However, there is no particle num-
ber conservation in phonon transport, so a different set
of conservation laws {C̃(γ)} = {H̃, Ĩ1, . . . , ĨK} are used.
Assuming as before an initial hypoequilibrium state, the
time evolution of energy at location A is expressed as

d〈E〉A

dt
=

∫

V

τA,ǫ
ǫ2AA,ǫ

NN (βA,ǫ
E − βE)D

A(ǫ)dǫ (42)



6

In the near-equilibrium realm, it is again assumed that
systems A and B are both approximately in stable equi-
librium. The three relations for phonons, which are the
counterparts to the local equilibrium, energy eigenstruc-
ture, and fluctuation assumptions made for electrons
(i.e., Eqs. (26)(29)(30) above), are as follow:

βA,ǫ
E = βA

E , βB,ǫ
E = βB

E (43)

τA,ǫ = τB,ǫ = τ ǫ, DA(ǫ) = DB(ǫ) = D(ǫ) (44)

AA,ǫ
NN = AB,ǫ

NN = Aǫ
NN (βN , βE) (45)

The energy flow from B to A is then given by subtracting
from Eq. (42) the corresponding one for system B. Thus,

d〈E〉A

dt
−

d〈E〉B

dt
=

V

A
(βA

E − βB
E )

∫

ǫ2

τ ǫ
Aǫ

NND(ǫ)dǫ

=
V δx

A

dβE

dx

∫

ǫ2

τ ǫ
Aǫ

NND(ǫ)dǫ (46)

where the fluctuation Aǫ
NN can be written in terms of

the boson distribution, i.e.,

Aǫ
NN = −

kBT
2

ǫ

∂f

∂T
, with f =

1

eβEǫ − 1
(47)

Again, assuming contributions from two interfaces, the
energy flux can be written as

JE =
V δx

A

dβE

dx

∫

ǫ2

τ ǫ
(−

kBT
2

ǫ

∂f

∂T
)D(ǫ)dǫ

=
V δx

A

dT

dx

∫

ǫ

τ ǫ
∂f

∂T
D(ǫ)dǫ

=
dT

dx

∫

(δx)2

τ ǫ
~ω

∂f

∂T
D(ω)dω (48)

Here the integral argument has been converted from the
energy ǫ into the frequency ω after the last equal sign.
By choosing the relaxation times as before via

τ ǫ = (
δx

vx
)2/τ ′(ǫ) (49)

and defining the specific heat per unit frequency as

Cω = ~ωD(ω)df/dT (50)

one arrives the same expression for the thermal conduc-
tivity k as that given by the BTE40, i.e.,

k =
1

3

∫

τ ′v2Cωdω (51)

C. Electron-phonon coupling

By assuming a constant relaxation time for phonons
τp and one for electrons τe, the SEAQT framework can
recover the two-temperature model (TTM) of electron-
phonon coupling. If phonons and electrons have temper-
atures βp

E and βe
E initially, Eqs. (A14) and (A15) reduce

to

1

τp
Ap

ES +
1

τe
Ae

ES = βE(
1

τp
Ap

EE +
1

τe
Ae

EE)

+βN

1

τe
Ae

EN (52)

1

τe
Ae

NS = βE

1

τe
Ae

EN + βN

1

τe
Ae

NN (53)

where A
e(p)
XY is the total fluctuation in a local electron

(phonon) system. The Lagrange multiplier βE = βE,ep is
solved for a system with only electron-phonon coupling
such that

βE=
βe
E(

Ae
NN

τe

Ae
EE

τe −
Ae

EN

τe

Ae
EN

τe ) + βp
E

Ae
NN

τe

A
p

EE

τp

Ae
NN

τe

Ae
EE

τe −
Ae

EN

τe

Ae
EN

τe +
Ae

NN

τe

A
p

EE

τp

= χβe
E + (1− χ)βp

E (54)

where clearly βE is simply a linear combination of βe
E

and βp
E , and the relation between temperature and fluc-

tuation at equilibrium has been used30, namely,

βp
E =

Ap
ES

Ap
EE

, βe
E =

Ae
NNAe

ES −Ae
ENAe

NS

Ae
NNAe

EE −Ae
ENAe

EN

, (55)

Here, χ is the coefficient multiplying βe
E . Excluding a sys-

tem on the boundary, an electron (phonon) local system
in Fig. 1 has interactions with three local systems, i.e.,
its local upstream system, local downstream system, and
local phonon (electron) system. Li and von Spakovsky30

show that the temperature evolution of a system interact-
ing with multiple systems yields to the SEAQT equation
of motion of extensive properties with adjusted parame-
ters, i.e.,

dβ
e(p)
E

dt
= −

1

τe(p)
(β

e(p)
E − β̃

e(p)
E ) (56)

where every interaction with a neighboring system con-

tributes to one term in the calculation of τ̃e(p) and β̃
e(p)
E

such that30

1

τ̃e(p)
=

1

τe(p)
+

1

τe(p)
+

1

τe(p)
(57)

β̃e
E

τ̃e
=

βup
E,ee

τe
+

βdown
E,ee

τe
+

βE,ep

τe
(58)

β̃p
E

τ̃p
=

βup
E,pp

τp
+

βdown
E,pp

τp
+

βE,ep

τp
(59)

Here Matthiessen’s rule has been used. The subscripts
ee, pp, and ep stand for electron diffusion, phonon dif-
fusion, and electron-phonon coupling, while the super-
scripts stand for the interaction with the upstream and
downstream local system, respectively. Eq. (56) for each
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electron then takes the form

dβe
E

dt
= −

3

τe

(

βe
E −

1

3

(

βup
E,ee + βdown

E,ee + βE,ep

)

)

= −
1

τe
(2βe

E − βup
E,ee − βdown

E,ee )−
1

τe
(βe

E − βE,ep)

=
(δx)2

τe
d2βe

E

dx2
−

1

τe
(βe

E − χβe
E − (1 − χ)βp

E)

dβe
E

dt
=

(δx)2

τe
d2βe

E

dx2
−

(1− χ)

τe
(βe

E − βp
E)(60)

where we have used Eq. (54) in the third equal sign.
Similarly, the temperature evolution of a phonon is given
by

dβp
E

dt
=

(δx)2

τp
d2βp

E

dx2
−

χ

τp
(βp

E − βe
E) (61)

Equations (60) and (61) are equivalent to the two tem-
perature model of electron-phonon coupling48, where the
first term to the right of the equals in both equations
is the heat diffusion and the second term the phonon-
electron coupling.

V. HEAT AND MASS DIFFUSION AT A

TEMPERATURE DISCONTINUITY ACROSS A

HOMOGENEOUS INTERFACE

The SEAQT transport equations derived in the pre-
vious sections are applicable throughout the nonequilib-
rium region even far from equilibrium and as demon-
strated above are completely consistent with the BTE
transport equations, which are limited to the near-
equilibrium realm. In this section, a case study is used to
illustrate the general applicability of the SEAQT frame-
work to the multi-physics of far-from-equilibrium pro-
cesses. The heat and mass diffusion at a temperature
discontinuity across a homogeneous interface are mod-
eled. The system is divided into two distinct regions
with different initial temperatures (i.e., 300K and 500K).
The relaxation of the system allows electron transport,
phonon transport, and electron-phonon coupling. To
solve this example problem, two main difficulties must be
addressed. First, although the local systems initially are
all in local equilibrium states, the local equilibrium condi-
tion does not hold during the system state evolution due
to a different relaxation time associated with each energy
eigenvalue. Thus, it is expected that a particle occupy-
ing a higher energy eigenstate has a smaller relaxation
time and as a consequence a faster rate of diffusion. The
resulting energy dispersion means that particles with dif-
ferent energies are no longer in mutual equilibrium even
in the same local system. Traditional thermodynamic
methods dependent on the local equilibrium assumption,
thus, must fail to accurately predict the correct property
values in a nonequilibrium local system.
The second difficulty is that the interaction at the tem-

perature discontinuity across a homogeneous interface is

FIG. 1. System definition.

not a quasi-equilibrium process. The interface modeled is
a simplification. We assume a small region across which
a very big temperature gradient exists. Traditional ther-
modynamic methods are again limited in studying such a
region, since these methods require the near-equilibrium
assumption. In contrast, the SEAQT framework does
not require it and is able to predict evolutions of both
nonequilibrium systems and nonquasi-equilibrium pro-
cesses consistent with all the thermodynamic require-
ments.
The SEAQT model used here divides the system into

20 locations (10 for each region) as depicted in Fig. 1.
At each location, there are two local systems, one for the
electrons and the other for the phonons. All local sys-
tems are allowed to be in non-equilibrium states. Each
local system is defined by a set of energy eigenlevels as
well as the relaxation time for every single eigenlevel.
Practically, the electron eigenlevels (or band structure)
can be determined from density functional theory calcu-
lations, while the phonon eigenlevels (or dispersion re-
lation) can be found from lattice or molecular dynamic
calculations. However, since the focus here is on illus-
trating the nonequilibrium evolution of state of the sys-
tem, these cumbersome calculations of the eigenstruc-
ture are avoided, and some rather simple models, which
can be found in any solid state physics textbook49, are
used. Furthermore, the SEAQT relaxation time τ ǫ for
each energy eigenlevel (electron or phonon) needed for
the nonequilibrium evolution of state is determined from
the BTE relaxation time τ ′ (see Eqs. (41) and (49)),
which can be derived from the total scattering rate us-
ing Fermi’s golden rule. Since it is the total scattering
rate that determines the SEAQT relaxation time τ ǫ as
a property of a given eigenlevel ǫ, all scattering mecha-
nisms contributing to the time evolution of the occupa-
tion of that single eigenlevel are taken into account when
using the SEAQT equation of motion. This equation,
thus, naturally predicts the relaxation trajectories of all
eigenlevels, accounting for all of the different coupling
mechanisms present.
The electron eigenstructure is calculated from the

model of an electron gas in an infinite potential well with
dimensions 1cm by 1cm by 1cm. The phonon disper-
sion relation is determined from a one-dimensional atom
chain model with two types of atoms, the one providing
an optical branch and the other an acoustic branch. The
masses of the atoms are 20 amu and 10 amu, respectively,
with a separation distance of 5 Å. The relaxation time of
each energy eigenlevel of electrons (or phonons), which is
typically a monotonic decreasing (or increasing) function
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of the eigenenergy covering several orders of magnitude,
is chosen based on (τ ǫ)e ∝ E−0.8 (or (τ ǫ)ph ∝ E1.2) and
with a range covering three orders of magnitude (from
0.006 to 1.3 time-units)50. The initial Fermi level of the
electron is chosen to be 0.7049 eV above the ground state.

To study the relaxation of one of the local systems
of the network shown in Fig. 1, the energy and mass
flows with neighboring local systems at every instant
of time must be determined after which the total rate
of change of the energy and mass in the given local
system can be found. For example, the local system
Electron-2 has three neighbors: Electron-1, Electron-3
and Phonon-2. To calculate the contribution of the to-
tal mass and energy flow from one of the neighbors, e.g.,
Electron-1, to Electron-2, the SEAQT equation of mo-
tion (Eqs. (21) and (22)) are applied to a composite
system consisting of Electron-1 and Electron-2 subject
to a specific set of constraints30,38. The mass and en-
ergy flow is then treated as a result of the relaxation
of the nonequilibrium composite system. The electron
transport is solved subject to the constraints {C̃(γ)} =

{H̃, Ñ , Ĩa, . . . , Ĩm} (Section III.A), while the phonon

transport uses the constraints {C̃(γ)} = {H̃, Ĩa, . . . , Ĩm}
(Section III.B). The energy transport between electron
and phonon at the same location uses the constraints
{C̃(γ)} = {H̃, Ñe, Ĩa, . . . , Ĩm} for which the electron par-
ticle number is conserved but the phonon particle num-
ber is not. Using this procedure, the energy and mass
flows in the local system networks are determined and
the relaxation of the whole network predicted.

Phonon transport without the inclusion of the local
electron systems is considered first. The transient tem-
perature profiles of the local systems is plotted in Fig.
2a. As can be seen, the sharp temperature change at the
interface flattens out very quickly (see the temperature
curves of local systems 10 and 11) at the very beginning
of the transient process. Later on, the energy spreads out
to the two ends far away from the interface. The entropy
evolution reflects a process in which the largest amount
of the entropy generation occurs in the first 5 units of
dimensionless time. It can be understood in the context
of the entropy generation σ expressed in terms of the
conjugate flux (δQ) and conjugate force (∆(1/T )) such
that σ = (δQ)∆(1/T ) and for which the temperature
gradient is very big initially. Moreover, as in the figure,
the trajectories of the optical and acoustic phonons are
different with the acoustic phonon exhibiting the faster
energy transport. Because of the temperature difference
between the optical and acoustic phonons, the optical
phonon is also heated up (or cooled down) by the acous-
tic phonon during the relaxation. Thus, there is con-
siderable entropy generation inside each local system as
well, which cannot be directly described by the relation
σ = (δQ)∆(1/T ). However, a more general dissipation
potential developed in the SEAQT framework provides
an explanation using the hypoequilibrium concept. The
reader is referred to28 for details.

When the local electron systems are included, and
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FIG. 2. (a:top) Transient temperature and (b:bottom) en-
tropy evolutions of the system with phonon flow only. Each
pair of solid and dashed curves in (a) belongs to a particular
local system ordered from top to bottom in the figure by local
systems 1, 5, 10, 11, 15, and 20.

the system is composed of coupled phonon and electron
pathways, the temperature profiles of both the phonons
and electrons are those plotted in Fig. 3. The electron
temperature uses an average temperature approximately
equal to the temperature of the electrons at the fermi
level. Comparing Fig. 3a to Fig. 2a, the optical phonon
and acoustic phonon follow almost the same evolutionary
trajectories in both figures and are also quite similar to
the trajectories of the electrons. However, the coupling
with the electrons reduces the difference between optical
and acoustic phonon transport as seen in Fig. 3a. The
explanation for this is based on the difference in behavior
of fermions and bosons. The Fermi distribution dictates
that only the electrons near the Fermi level make a signif-
icant contribution to the transport process. Since these
electrons are in a rather narrow energy range, all of these
electrons have almost the same energy (Fermi energy)
and, thus, have a smaller dispersion of energy relative
to the electron diffusion speed40. As to the bosons, all
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FIG. 3. Transient temperature evolutions of (a:top) phonons
and (b:bottom) electrons in an electron-phonon coupling sys-
tem. Each pair of solid and dashed curves in (a) and each
solid curve in (b) belongs to a particular local system ordered
from top to bottom in the figure by local systems 1, 5, 10, 11,
15, and 20.

energy eigenlevels participate in the transport process so
that the diffusion speed shows a much larger dispersion
of energy. Furthermore, heat interactions with the elec-
trons serve as another resource or sink for the phonons
so that the temperature difference among phonon modes
is reduced51.

As a check on the temperature profiles predicted by
the SEAQT framework, it can be shown that as expected
from conventional Fourier diffusion theory, a linear tem-
perature profile for large times (i.e., at steady state) is
recovered under conditions of linearity and constant heat
conduction coefficient. A brief discussion with results is
given in Appendix B.

The particle number and energy transport in the sys-
tem are studied via Figure 4. Although the local systems
are at the same initial Fermi level, the initial temper-
ature difference can provide some deviation in the ini-
tial particle numbers of different electron local systems
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FIG. 4. Transient evolutions of (a:top) electron number,
(b:middle) electron energy, and (c:bottom) phonon energy in
(b) and (c) an electron-phonon coupling system. Each curve
belongs to a particular local system ordered from top to bot-
tom in the figure by local systems 1, 5, 10, 11, 15, and 20.
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as shown in Fig. 4(a). In the particle number evolu-
tion, it is observed that the temperature gradient acts
as a diffusion driving force for electron transport, which
causes the non-uniform particle number distributions for
the whole system at 5 time-units. More details about
this phenomenon, including a complete derivation from
the SEAQT framework of the Onsager relations for cou-
pled transport, can be found in28,30. However, only about
0.1% of all of the electrons move between local systems,
which is consistent with the fact that only fermions near
the Fermi level participate in the transport.

As to energy transport, Fig. 4(b) shows that the elec-
tron energy in one local system only changes less than
1 J out of 90 J (the equilibrium energy) from the initial
state to the final equilibrium state and that electron en-
ergy transport happens relatively fast, i.e., in less than
5 time-units. In contrast, the phonon energy changes by
about 25 J out of 60 J (the equilibrium energy) in an
evolution that requires more than 30 time-units. This
comparison supports the fact that phonons, as bosons,
account for most of the energy transport, since all phonon
modes contribute. Although only a small number of the
electrons transport energy, the electron energy transport
is faster; and these electrons heat up (or cool down) the
phonons locally. This is consistent with the observation
above that the electron-phonon coupling can reduce the
dispersion in phonon transport.

VI. CONCLUSIONS

This paper presents a novel framework for study-
ing electron and phonon transport phenomena using
SEAQT. The framework is developed based on thermo-
dynamic principles and is thermodynamically rigorous
throughout the nonequilibrium realm even that far from
equilibrium. The features of the SEAQT framework ex-
tend the applicability of thermodynamics to the study
of local-nonequilibrium systems as well as nonquasi-
equilibrium processes. To illustrate this approach, a case
study of heat and mass transport at a temperature ho-
mogeneous interface where a temperature discontinuity
occurs is presented. As demonstrated, the local equi-
librium assumption fails when energy dispersion in the
transport of different phonon modes is observed. Fur-
thermore, the large entropy generation, which occurs dur-
ing the transport process at the interface, demonstrates
that a quasi-equilibrium description of this process would
also fail. In contrast, the SEAQT model succeeds in pro-
viding a rigorous description and correct prediction of
the nonequilibrium thermodynamic evolution. Moreover,
the coupling of electron and phonon pathways using the
SEAQT model shows that the electrons, which have a
much smaller dispersion during the diffusion, reduce the
dispersion in phonon transport through electron-phonon
interactions.
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A. CALCULATION OF MEASUREMENTS

This appendix explains the process for determining the
nonequilibrium measurements of the intensive properties
(βj) from Eq. (13)30,47. The functional derivatives of the
system properties defined by Eq. (6) take the form

|Ψk) = 2

∞
∑

nk=1

γk(nk)êknk , k = a, . . . ,m (A.1)

|ΨH) = 2

m
∑

k=a

∞
∑

nk=1

nkǫkγk(nk)êknk (A.2)

|ΨN) = 2
m
∑

k=a

∞
∑

nk=1

nkγk(nk)êknk (A.3)

|Φ) = 2

m
∑

k=a

∞
∑

nk=1

γk(nk) ln pk(nk)êknk (A.4)

where êk
nk is the unit vector in thermodynamic state

space (the space of γ). By defining the probability, en-
ergy, particle number, entropy, and fluctuation of the
single-particle energy eigenlevels as

1 =
∞
∑

nk=1

pk(nk)∀k = a, . . . ,m (A.5)

〈N〉k =

∞
∑

nk=1

nkpk(nk), k = a, . . . ,m (A.6)

〈e〉k =
∞
∑

nk=1

nkǫkpk(nk), k = a, . . . ,m (A.7)

〈s〉k =

∞
∑

nk=1

pk(nk) ln pk(nk), k = a, . . . ,m (A.8)

Ak
XY = 〈XY 〉k − 〈X〉k〈Y 〉k (A.9)
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the m+2 conservation laws (Eq. (13)) can be represented
as

(Ψk|L̂|Φ) =
4

τk
〈s〉k =

m+2
∑

j=1

(Ψk|L̂|Ψj)βj (A.10)

=
4

τk
(βk

I + βE〈e〉k + βN 〈N〉k) k = 1, . . . ,m

(ΨH |L̂|Φ) =

m
∑

k=a

4

τk
〈es〉k =

m+2
∑

j=1

(ΨH |L̂|Ψj)βj (A.11)

=

m
∑

k=a

4

τk
(βk

I 〈e〉k + βE〈ee〉k + βN 〈eN〉k)

(ΨN |L̂|Φ) =
m
∑

k=a

4

τk
〈Ns〉k =

m+2
∑

j=1

(ΨN |L̂|Ψj)βj (A.12)

=
m
∑

k=a

4

τk
(βk

I 〈N〉k + βE〈eN〉k + βN 〈NN〉k)

Moreover, for any additive extensive properties C, (in-
cluding e, s, N , AXY ), if the system average temperature
is relatively high, the summation can be replaced by an
integral such that

∑

k

1

τk
〈C〉k =

∑

ǫ

1

τk
〈C〉ǫ

∆n

∆ǫ
∆ǫ = V

∫

dǫ
1

τ ǫ
〈C〉ǫD(ǫ)

(A.13)

where D(ǫ) is the density of state per energy per volume.
By subtracting Eq. (A10) from Eq. (A11) and (A12),

one arrives at

m
∑

k=a

1

τk
Ak

ES= βE

m
∑

k=a

1

τk
Ak

EE + βN

m
∑

k=a

1

τk
Ak

EN(A.14)

m
∑

k=a

1

τk
Ak

NS= βE

m
∑

k=a

1

τk
Ak

EN + βN

m
∑

k=a

1

τk
Ak

NN(A.15)

from which βE and βN can be determined. Then, βk
I can

be found by Eq. (A10).

B. RECOVERING CONVENTIONAL FOURIER

DIFFUSION THEORY

Results for the steady states of two systems linked
to two different combinations of reservoirs are shown in
Fig. B1. If the temperature difference between the two

reservoirs is large (such as in the case of Fig. B1a with
300 K and 500 K for the reservoirs, respectively), the
steady state temperature profile is close to linear, but
not quite since the SEAQT framework intrinsically ac-
counts for a temperature dependent heat conduction co-
efficient. Higher temperatures result in higher (nonlin-
ear) heat conduction so that the temperature profile is
concave as shown in Fig. B1a. On the other hand, if
the reservoir temperatures are close (such as in the case
of Fig. B1b with 300 K and 305 K for the reservoirs,
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FIG. B.1. From the initial transient state to steady state of
the phonons. Reservoir temperatures are (a:top) (300 K, 500
K) and (b:bottom) (300 K, 305 K). The dashed line is linear.

respectively), the temperature profile is linear as seen in
Fig. B1b.
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the same temperature will interact with phonons locally.
In this case, a phonon-electron-phonon interaction and a
phonon-phonon interaction exist at the same time and re-
sult in a faster energy transfer locally between phonons

than would be the case if only a phonon-phonon interac-
tion were present.


