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An efficient and accurate basis comprised of Volkov states is implemented and tested for time-
dependent simulations of interactions between strong laser pulses and crystalline solids. The Volkov
states are eigenstates of the free electron Hamiltonian in an electromagnetic field and analytically
represent the rapidly oscillating time-dependence of the orbitals, allowing significantly faster time
propagation than conventional approaches. The Volkov approach can be readily implemented in
plane wave codes by multiplying the potential energy matrix elements with a simple time-dependent
phase factor.

New subfemtosecond pump probe experiments have
brought “an era of control of the quantum world”
enabling scientists to observe electron dynamics in
molecules and solids directly on their natural length
(Angstrom) and time (attosecond) scales [1, 2]. The
availability of super-intense laser pulses [3, 4] allows for
direct control of electric and optical properties of materi-
als. New experimental approaches—for example coherent
extreme-ultraviolet pulse production with high harmon-
ics generation [5, 6] and attosecond streaking [7]—lead
to enhanced control over lightmatter interactions.

These unprecedented capabilities call for vigorous the-
oretical and computational studies of the dynamics of
laser-matter interactions in the strong field regime. Semi-
classical approaches describing the coupled light-field in-
duced interband and intraband dynamics in the frame-
work of the optical Bloch equations are very popular in
interpreting experimental results [8–10]. More recently,
time-dependent density functional theory (TDDFT) [11]
coupled with classical electromagnetic fields has also been
used to simulate the effect of laser pulses in electron and
nuclear dynamics [12–17].

In this work we introduce the Volkov states as an ef-
ficient and accurate basis for time-dependent simulation
of interaction between strong laser pulses and solids. To
simulate the effect of strong, rapidly oscillating electric
fields one needs a very fine time mesh to represent the
temporal change of the wave function. The Volkov state,
the eigenstate of a free electron in electromagnetic field,
absorbs the oscillatory time-dependence in a phase fac-
tor and allow for the use of a coarser time grid. Using
the TDDFT Hamiltonian description of solids, we will
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show that using the Volkov state basis allows for revsig-
nificantly faster time propagation than conventional rep-
resentations.

The Volkov states may be expressed as

φV
k (r, t) =

1√
Ω
eik·re−iΦ

k(t) = φPW
k (r)e−iΦ

k(t), (1)

where φPW
k (r) is a plane wave, Ω is the normalizing vol-

ume of the computational space and the time-dependent
Volkov phase is described by

Φk(t) =

∫ t

0

1

2
[k + A(τ)]

2
dτ. (2)

These states satisfy the time-dependent Schrödinger
equation (TDSE) for a free electron subject to an ex-
ternal vector potential, A:

i
∂

∂t
φV
k (r, t) = HV(t)φV

k (r, t), HV(t) =
1

2
[p + A(t)]

2

(3)
(atomic units (a.u.) of ~ = me = e = 1/4πε0 = 1 are
used throughout).

Defining the Hamiltonian as

H = HV(t) + V (r, t) =
1

2
[p + A(t)]

2
+ V (r, t), (4)

where V (r, t) may be the Kohn–Sham potential in
TDDFT calculations, the TDSE takes the form

i
∂

∂t
ψ(r, t) =

[
HV(t) + V (r, t)

]
ψ(r, t). (5)

Using the Volkov states as the basis,

ψ(r, t) =
∑
k

ck(t)V φVk (r, t), (6)
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the TDSE, in matrix representation, becomes

iċV(t) = VV(t)cV(t). (7)

Here, the matrix elements of VV are defined as

V V
kk′(t) = 〈φV

k (t)|V (t)|φV
k′(t)〉, (8)

and the notation of column vector cV =
(cVk1

(t), cVk2
(t), · · · , cVkN

(t)) has been employed. It is
useful at this point to compare Eq. (7) to the plane
wave representation of the TDSE:

iċPW(t) = HPW(t)cPW(t) (9)

where

HPW
kk′ (t) = 〈φPW

k (t)|H|φPW
k′ (t)〉. (10)

The difference between the two equation is that in the
Volkov basis representation the matrix elements of the
potential governs the evolution, while in the case of the
plane wave representation the driving term is the whole
Hamiltonian.

In the Volkov basis representation, the stiff
1
2 [p + A(t)]

2
operator is removed from the Hamil-

tonian and absorbed into the basis as a phase factor.
This phase factor is illustrated for a sample external
vector potential in Fig. 1. It is shown that this
time-dependent behavior of the expansion coefficients
occurs on a timescale which may be much shorter than
that of the causal vector potential. The advantage of
the Volkov expansion, then, is clear as this phase factor
may be analytically included rather than numerically
propagated.

In the case of a differential equation of the form found
in Eqs. (9) and (7),

iċ(t) = H(t)c(t), (11)

one may determine a formally exact solution for the ex-
pansion coefficients at some desired time, c(t), as

c(t) = U(t, 0)c(0), (12)

where U(t, 0) is known as the time evolution operator

U(t, t0) = T exp

{
−i
∫ t

0

H(t′)dt′
}

(13)

which includes time-ordering, T . A common method for
approximating this operator is to take discrete small time
steps, ∆t, which allow the Hamiltonian to remain nearly
constant, i.e. H(t) ≈ H(t+∆t). In this way, the integral
and time-ordering may be satisfied approximately. One
may, thus, rewrite Eq. (12) as

c(t) ≈

[
Nt∏
n=0

Un

]
c(0), (14)
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FIG. 1. Time-dependent phase factors at k = 3.9 a.u. (top)
and k = 0.8 a.u. (middle) included in the analytic solution
of the TDSE using the Volkov Hamiltonian with electric field
amplitudes of E0 = 0.1 a.u. and E0 = 0.5 a.u, respectively.
The shape of the vector potential is presented for arbitrary
units (bottom).

where

Un = e−iH(tn)∆t. (15)

This matrix exponential may be approximated using pop-
ular techniques such as Taylor expansion or the Crank–
Nicolson method.

To illuminate the difference between time propaga-
tion on the Volkov state and plane wave representa-
tions, we present a model calculation of one-electron in
a one-dimensional, periodic Mathieu potential, V (x) =
−V0[1 + cos(2πx/L)], subject to an oscillating external
electric field in Fig. 2. The parameters of the potential
were set to be V0 = 0.37 Hartree and L = 8 Bohr. The
electric field used followed the form

E(t) =

 E0 sin(
πt

2Tr
) sin(ωt), if 0 ≤ t ≤ Tr,

E0 sin(ωt), otherwise,

(16)

which provided a vector potential determined by the re-
lationship

A(t) = −
∫ t

0

E(t′)dt′. (17)

Figures 2a and 2b indicate the oscillatory nature of
the expansion coefficients by plotting the metric 〈ċ〉 =∫
〈|Re{ċk}|〉tdk for a range of field strengths and frequen-

cies. This metric is related to the time-averaged rate of
change of these coefficients over time which is indicative
of the difficulty in using Eq. (15) to numerically propa-
gate the wave function.

In this case, where the Hamiltonian is of the form
HV + V , the Volkov state expansion is expected to per-
form best when the frequency, and, thus, the energy, of
the external field is high enough so that the perturbation
of the Mathieu potential becomes negligible. This is due
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FIG. 2. (a,b) Time-averaged, k-integrated expansion coefficients and (c,d) density difference for both plane wave and Volkov
state representations over a range of laser frequencies and amplitudes. The influence of the static Mathieu potential results in
resonances corresponding to the E0 → E1 and E1 → E2 transitions at 0.428 a.u. and 0.154 a.u., respectively, and the E0 → E2

double photon transition at 0.291 a.u. In plots (a) and (b), a time step size of 0.005 a.u. has been used, while plots (c) and
(d) show the density difference between runs using 0.05 a.u. and 0.005 a.u.

to the fact that, in this region, the solution approaches
being analytically described by this representation. Simi-
larly, for the plane wave representation, higher frequency
fields are easier to describe as the additional complexity
of including a perturbation is minimized. For both cases,
higher field strengths result in more oscillatory expan-
sion coefficients indicating a heightened difficulty when
attempting to propagate the wave function. Most im-
portantly, the Volkov state coefficients are seen to vary
significantly more smoothly overall which speaks to that

representation’s advantage.
Instead, via inductive reasoning, one may also assess

the two representations by comparing the resulting final
densities, ρ(x) = |ψ(x, tfinal)|2 , of large time step simu-
lations to the small time step, converged solutions by the
metric ∆ρ ≡

∫
|ρconverged(x)−ρ(x)|dx. These results are

presented in Figs. 2c and 2d for the same range of field
strengths and frequencies and provide a more straight-
forward depiction of the Volkov state expansion’s ability
to better represent laser-induced dynamics. The trends
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match those found by analyzing the average change in co-
efficients. We conclude that the advantage of the Volkov
state basis is best realized for field strengths above ∼0.3
a.u., corresponding to ∼1.5 V/Å or, equivalently, an in-
tensity of ∼3.0× 1013 W/cm12.

Next, we present results for the real-time TDDFT
propagation of laser excited diamond using the Volkov
state basis for a variety of laser intensities and frequen-
cies. For this case, we solve the time-dependent Kohn–
Sham equation

i
∂φk(r, t)

∂t
=

[
1

2
[−i∇+ A(t)]

2
+ V KS[ρ](r)

]
φk(r, t),

(18)
where

V KS[ρ](r) = V H[ρ](r) + V XC[ρ](r) + V ion(r). (19)

Here, V H is the Hartree potential,

V H[ρ](r) =

∫
ρ(r′)
|r− r′|

dr′, (20)

V XC is the exchange-correlation potential, described in
this work by the adiabatic local density approximation,
and V ion represents the potential due to the nuclei and
core electrons, described using norm-conserving Troul-
lier and Martins pseudopotentials [18]. In each simula-
tion, the vector potential is simultaneously propagated
via the Verlet algorithm as explained in Ref. 19. The
external vector potential was evaluated at each time step
using the analytical integral of the electric field, Eq. (17),
which was defined using a squared sine envelope with
pulse length T :

E(t) = E0 sin

(
πt

T

)2

sin (ωt) . (21)

The results were compared to benchmark real-space
grid calculations employing a Taylor expansion for the
discrete time step time propagator, Eq. (14). Note that
the upper limit of the time step in Taylor propagation
is about ∆t = 0.005 a.u.—larger time steps make the
approach unstable. Other time propagation approaches,
e.g. Crank–Nicolson, are prohibitively expensive in grid
based approaches. The Volkov state basis propagation,
in each of the following simulations, was employed via
the split operator description discussed in Ref. 20. The
potential exponential was split in order to treat the non-
local pseudopotential term in the fashion described by
Ref. 21.

For each Volkov state basis simulation, the initial state
was prepared self-consistently using conjugate gradient
method for the plane wave basis Kohn–Sham Hamilto-
nian, as opposed to converging the ground state using a
real-space finite difference approach and Fourier trans-
forming to a plane wave basis once finished. This detail
is important as the nonlinearity of the Kohn–Sham equa-
tions leads to enhanced sensitivity to the choice of initial
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FIG. 3. Energy and current results for real-space grid and
Volkov state bases corresponding to laser energy 6.05 eV, in-
tensity 1× 1014 W/cm2, and width 30 fs. The real-space grid
representation has been propagated using the Taylor expan-
sion of the discrete time step propagator and a time step size
of 0.005 a.u. (black). Volkov state basis results are shown
for time step sizes of 0.005 a.u. (blue) and 0.05 a.u. (cyan).
Insets highlight oscillation in early energies and later currents
for Volkov propagations. These calculations were performed
using an 8× 8× 8 k-point mesh.

state, and by preparing our system in this manner, we
avoid a small perturbation at t = 0 attributed to the two
different representations of the kinetic energy operator.

In the example calculation, we choose a high intensity
laser, I > 3×1013 W/cm2, because in this regime one ex-
pects the Volkov state basis propagation to display signif-
icant accuracy improvement as compared to full Hamilto-
nian discrete time step propagation methods. In the case
of intense lasers applied to systems using pseudopoten-
tials to describe frozen core electrons, the upper bound
on the range of considered intensities should be around
1015 W/cm2 [22]. In the following tests, the diamond
unit cell is impacted by a laser pulse of intensity 1×1014

W/cm2.
The Volkov state propagated energy and current,

shown in Fig. 3, behave well for large time step sizes.
The results for both 0.005 a.u. and 0.05 a.u. time step
sizes nearly overlap. While the overall features of these
results are well represented by the Volkov propagation,
one notices the effect of nonlinear elements occurring
in the Hamiltonian, namely the Hartree and exchange-
correlation potentials. These terms lead to unavoidable
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FIG. 4. High harmonic generation results for both real-space
grid and Volkov state bases corresponding to the current re-
sults shown in Fig. 3. The employed window function is the
pulse envelope.

small oscillations in the early energy. While these non-
physical features cannot be completely eliminated, they
are significantly diminished by choosing a smaller time
step size, see the energy inset of Fig. 3. These oscilla-
tions lead to growing noise in the resulting current, shown
in the current inset of Fig. 3.

Here, the increased magnitude of the current lessens
the impact of the oscillations related to the Volkov state
basis propagation. Figure 4 shows the spectral response
in which the first few harmonic resonance peaks are pro-
nounced. Even when using a time step size of 0.05, the
Volkov state basis propagation is capable of distinguish-
ing modes related to the third and fifth harmonics. This
example illustrates that for high intensities, the Volkov
state basis representation is capable of accurately de-
scribing complex electron density dynamics using time
step sizes roughly an order of magnitude greater than
that of the real-space Taylor propagation method.

It is important to note that the Volkov potential matrix
elements are easily related to the plane wave potential
matrix elements by the relation

V V
kk′ = V PW

kk′ ei(Φ
k−Φk′

), (22)

where V PW
kk′ (t) represents 〈φPW

k |V (t)|φPW
k′ 〉 and does not

carry any direct contributions from the vector potential.
This representation makes clear the simplicity of calcu-
lating Volkov state matrix elements. One may transform
existing plane wave basis programs into Volkov state ba-
sis programs in a straightforward manner by calculating
the Volkov phase difference via integration of the vec-
tor potential and applying the resulting phase factor to
existing plane wave potential matrix elements which are
readily available and employed in many popular codes—
examples include VASP [23], ABINIT [24], and Quan-
tum ESPRESSO [25]. Furthermore, due to the fact that
this Volkov phase difference equals zero at t = 0, one may
calculate the time-independent field-free ground state by
use of existing plane wave basis methods. Note, however,
that plane wave codes typically cut off the plane waves
above a preset kinetic energy value in order to suppress
the basis dimension. In time-dependent calculations of
systems subjected to strong laser pulses, the inclusion of
high kinetic energy plane waves may be necessary.

In conclusion, the Volkov state basis was implimented
and tested for representing periodic structures in both
one- and three-dimensional cases against the plane wave
basis and real-space grid representations, respectively. In
either scenerio, the Volkov state basis propagation was
capable of besting the conventional methods by allowing
for a significant increase in time step size when describing
interactions with fields of intensity greater than 3× 1013

W/cm2. For the case of representing bulk diamond, the
Volkov state basis propagation successfully produced cur-
rent oscillation modes related to the third and fifth har-
monics, even at large time step sizes. This approach may
be easily implimented within existing plane wave codes
by the straighforward calculation of the time-dependent
Volkov phase factors.
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