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We introduce a novel class of aperiodic arrays of electric dipoles generated from the distribution
of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quater-
nion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances
using the vectorial Green’s matrix method. In these systems we demonstrate several distinctive
spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical
statistics of level spacings, and the existence of critical modes, which are extended fractal modes
with long lifetimes not supported by either random or periodic systems. Moreover, we show that
one can predict important physical properties, such as the existence spectral gaps, by analyzing the
eigenvalue distribution of the Green’s matrix of the arrays in the complex plane. Our results unveil
the importance of aperiodic correlations in prime number arrays for the engineering of novel gapped
photonic media that support far richer mode localization and spectral properties compared to usual
periodic and random media.

INTRODUCTION

The study of classical and quantum waves in com-
plex and disordered scattering media unveiled fascinat-
ing analogies between the behavior of electronic and
optical wave excitations [1]. Anderson localization of
light [2], which leads to a breakdown of wave propaga-
tion in strongly scattering media, is probably the best
known example. However, the applications of random
media to optical engineering are presently quite limited
due to the lack of simple design rules for deterministic
optimization. As an alternative, aperiodic optical me-
dia, including quasi-periodic crystals constructed by fol-
lowing deterministic mathematical rules [3], recently at-
tracted significant interest in the optics and electronics
communities because of their simplicity in design and
fabrication, as well as compatibility with current mate-
rial deposition and device fabrication technologies [4–10].
In particular, a substantial amount of recent experimen-
tal and theoretical studies in the fields of nanophotonics,
plasmonics and metamaterials have focused on under-
standing structure-property relationships in complex me-
dia with aperiodic order for the demonstration of novel
optical functionalities [11–18]. Deterministic aperiodic
structures support distinctive optical properties that are
absent in either periodic or random systems, such as frac-
tal mode spectra with controllable anomalous transport
behavior [19–22], and a rich spectrum of optical modes
that show various degrees of spatial localization, known
as critical modes [23–25]. Critical modes feature highly
fragmented multi-fractal envelopes with a power-law de-
cay that found recent applications in aperiodic lasing, op-
tical sensing, photo-detection, and nonlinear optical de-
vices [10, 16, 26–28]. Moreover, topologically protected
edge-states were recently discovered in the pseudo-gap
spectra of quasicrystals [29–31], significantly broadening

our understanding of topological phases in optical media.
However, the vast majority of previous studies focused on
quasicrystalline structures that are constructed by local
matching rules, such as the Penrose lattice, or on deter-
ministic scattering arrays generated by binary inflation
rules, of which the Fibonacci, Thue-Morse, and Rudin-
Shapiro sequences are the primary examples [19, 26, 29–
35].

In this paper, based on the distinctive aperiodic distri-
bution of prime numbers in complex quadratic fields and
quaternion rings, referred to as Complex Primes Arrays
(CPAs), we introduce a new class of highly-diffractive
arrays with non-crystallographic rotational symmetries,
i.e., structures characterized by spatial Fourier spec-
tra that support countably infinite discrete components.
These structures exhibit a rich interplay between struc-
tural regularity, both at the local level and long-range,
and unpredictability in the distribution of prime num-
bers that has roots in the most fundamental questions
of number theory [36, 37]. Remarkably, Fourier spec-
tral methods applied to the prime number distribution
unveiled a noise spectrum with self-similarity described
by a power-law scaling [38]. This behavior characterizes
self-organized critical states of dynamical systems that
do not possess any characteristic length scale [39].

Here we apply the vector Green’ s matrix method,
which has been extensively utilized for the the study of
scattering resonances in open random media [40–46], to
a comprehensive investigation of the spectral statistics of
scattering resonances in CPAs of electric dipoles, namely
the Eisenstein, Gaussian, Hurwitz, and Lifschitz prime
arrays. Specifically in these structures we systematically
study the diffraction spectra, the eigenvalue distribution
of the Green’s matrix, the Density of States, the level
spacing distribution, the decay rate statistics, and the
spatial extent of the supported eigenmodes. By means
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FIG. 1. (a) N = 1050 Eisenstein prime array, (b) N = 1068 Gaussian prime array, (c) N = 1093 Hurwitz prime array, and (d) N
= 1081 Lifschitz prime array. (e) to (h) are the diffraction patterns (5th root taken to enhance contrast) of the corresponding
array on top of each panel.

of extensive numerical calculations of large-scale arrays
we demonstrate several unique spectral properties, such
as the absence of level repulsion in the strongly scatter-
ing regime, critical level spacing statistics, and the exis-
tence of critical modes, i.e, extended fractal modes with
long lifetime. In addition, we show that one can make
predictions about the the existence of spectral gaps in
CPAs solely by analyzing the eigenvalue distribution of
the Green’s matrix in the complex plane. This work in-
troduces novel gapped photonic media with far richer
localization and spectral properties compared to usual
periodic and random structures.
Our paper is organized as follows. In the first section

the structural properties of CPAs are analyzed whereas
the spectra of the Green’s matrix that describe light
propagation in such structures is discussed in the sec-
ond section. Level statistics and the spatial properties of
the eigenmodes are treated in third and fourth sections,
respectively. The last section draws our conclusion.

THE STRUCTURE OF COMPLEX PRIMES

ARRAYS

The aperiodic CPAs structures considered in this work
are constructed based on extensions of the familiar prime
number concept from the natural integers to the com-
plex plane, where particles coordinates are made to corre-
spond to the real and imaginary parts of complex primes.
Specifically, we focus on the prime elements of complex
quadratic fields such as the Eisenstein and Gaussian in-
tegers as well as on the irreducible elements of Hurwitz

and Lifschitz quaternions. Eisenstein integers are com-
plex numbers of the form a+bω, where a and b are natural
integers and ω = (−1 + i

√
3)/2 is one of the cubic roots

of one (i is the imaginary unit). Eisenstein integers are
members of the imaginary quadratic field Q(

√
−3) which

is a commutative ring often denoted Z[ω]. The field of
Eisenstein integers has six units, namely ±1, ±ω, and
±ω2, which when multiplied by prime elements form the
so-called prime associates (i.e., equivalent primes). Gaus-
sian integers are complex numbers of the form a+bi where
a and b are integers. They are members of the imaginary
quadratic field Q(

√
−1) and form a ring often denoted

Z[i] with units ±1 and ±i. The Eisenstein integers form
a triangular lattice in the complex plane while the Gaus-
sian integers form a square lattice.
It is known from algebraic number theory that Eisen-

stein and Gaussian integers are also unique factorization
domains (UFDs) in which every non-zero and non-unit
element can be written as a product of prime elements
(or irreducible elements), uniquely up to rearrangement,
complex conjugation and associates (i.e., unit multiples),
analogously to the fundamental theorem of arithmetic for
the natural integers. Simple characterizations can be uti-
lized to construct Eisenstein and Gaussian prime arrays.
In particular, an Eisenstein integer a + bω is an Eisen-
stein prime if and only if either of the following mutually
exclusive conditions hold: (i) z is equal to the product
of a unit and a natural prime of the form 3n − 1; (ii)
|z|2 = a2 + ab+ b2 is a natural prime. Similarly, a Gaus-
sian integer a+ bi is a Gaussian prime when (i) one of a,
b is zero and the absolute value of the other is a prime
number of the form 4n + 3; (ii) both are nonzero and



3

a2 + b2 is a prime number.

A number of unsolved problems and conjectures are
related to the aperiodic distributions of Eisenstein and
Gaussian primes in the complex plane and to the nature
of percolation on primes in imaginary quadratic fields
[47, 48].

We will now discuss in more detail the structural prop-
erties of the proposed CPAs. Figures 1(a) and 1(b) show
a representative Eisenstein prime array with N = 1050
elements and a representative Gaussian prime array with
N = 1068 elements. Since multiplication by a unit and
complex conjugation both preserve primality, the arrays
exhibit characteristic 6×2 = 12 fold rotational symmetry
and 2×2 = 8 fold symmetry, which are incompatible with
translational symmetry (i.e., crystallographically forbid-
den). Moreover, the arrays display a regular structure
that nevertheless coexists with their complete lack of pe-
riodicity. The unique interplay between symmetry and
aperiodicity in these systems is captured by a rigorous
result recently established by Tao [49].

A second class of CPAs can be constructed based
on two-dimensional cross-sections of the irreducible el-
ements of quaternions. Quaternions are numbers of the
form z = a + bi + cj + dk = (a, b, c, d) where j, j, k are
symbols satisfying i2 = j2 = k2 = ijk = −1. Inte-
ger quaternions form a noncommutative ring that un-
fortunately fails to be a unique factorization domain.
However, Hurwitz [50] realized that one can obtain a
Euclidean domain when including half units, and de-
fined the Hurwitz integers as quaternions of the form
(a, b, c, d) ∈ Z4 + 1/2(1, 1, 1, 1) with integer Euclidean
norm N(z). Therefore, Hurwitz quaternions (or Hurwitz
integers) are quaternions whose components are either all
integers or all half-integers. Moreover, Hurwitz primes
are a subset of Hurwitz quaternions with an Euclidean
norm (N(z) = a2 + b2 + c2 + d2) that is equal to an inte-
ger prime number. Furthermore, the prime elements of
the half-integers Hurwitz quaternions are referred to as
Lipschitz primes. Geometrically, Hurwitz and Lipschitz
integers can be viewed as the integer and the half-integer
lattice points on a sphere of radius

√
N(z) in R4. A two-

dimensional section of the Hurwitz primes is shown in
Fig. 1(c), consisting of the 1093-element array obtained
by projecting Hurwitz primes into the complex plane
(considering only the coordinates a and b of each Hur-
witz primes and associating the real and imaginary com-
ponents with the Cartesian coordinates of the scattering
dipoles). Similarly, a Lifschitz prime array is shown in
Fig. 1(d) where only the subset of Hurwitz primes with
integer coordinates have been considered [51].

In order to more rigorously characterize the diffraction
properties of the CPAs we studied their spatial Fourier
spectra, which are obtained by computing the structure

FIG. 2. The H(k) of (a) Eisenstein prime, (b) Gaussian prime,
(c) Hurwitz prime, (d) Lifschitz prime.

factor, shown in Figs. 1 (e-h), computed as [52]:

SN (k) =
1

N

N∑

n=1

N∑

m=1

e−jk·(rn−rm) (1)

where N is the total number of particles in the array.
The high degree of structural regularity of the CPAs is
manifested in the rotational symmetry of the spectra in
Figs. 1 (e-h), which is a consequence of the correspond-
ing number of associates, as well as in the presence of
sharp diffraction peaks. At a closer inspection, these
diffraction patterns reveal a hierarchical structure that
encodes spatial correlations at multiple length scales. A
similar behavior occurs in traditional quasicrystals, e.g.
the Penrose lattice, where highly diffractive Bragg peaks
densely fill the reciprocal space in a non-periodic and self-
similar fashion. However, in addition to singular com-
ponents (i.e., sharp diffraction peaks) in the diffraction
spectra, we also notice in Figs. 1 (e-h) the presence of
a weaker continuous component, or a diffuse background
that is typically associated to structural disorder in com-
plex media. This is particularly evident for the Eisen-
stein prime array in Fig. 1 (e) and for the Gaussian
prime array in Fig. 1 (f), whose structures are more
complex than the ones of Hurwitz and Lifschitz prime
arrays shown in Figs. 1 (g,h), respectively. Aperiodic
structures whose diffraction spectra display a coexistence
of singular and continuous spectral components are re-
ferred to as singular-continuous, and our numerical re-
sults provide evidence that the proposed CPAs belong
to this category. Singular-continuous spectra are often
discovered in complex systems with chaotic dynamics,
fractal structures, and are commonly observed in tradi-
tional quasicrystals [3]. Singular continuous spectra are
often associated to multi-fractal systems. Due to their
long-range correlated nature, the investigated CPAs fea-
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ture a characteristic size-dependence mostly attributed
to the continuous component of their spectra. However,
as the size of the arrays is increased from few hundred
particles, their spectral features are already very stable
and robust with respect to size scaling. In particular,
the physical properties of CPAs demonstrated in our pa-
per for systems with approximately N = 1000 particles
remain qualitatively unchanged as N is increased.

The nature of the Fourier spectra of CPAs can be more
accurately understood by studying the behavior of the
Integrated Intensity Function (IIF) [53]:

HN (k) =

∫ k

0

∫ k

0

|SN (k′x, k
′

y)|dk′xdk′y (2)

For two-dimensional arrays this function characterizes
the distribution of the diffracted intensity peaks con-
tained within a 2D square region, centered at the origin,
with maximum size 2k × 2k in the reciprocal space. It
should be realized that the exact nature of the diffraction
spectrum is only determined by the asymptotic limit of
equation (2) for a system of infinite size (N → ∞) and
only heuristic information can be extracted for finite-size
structures. The behavior of the IIF can be understood
as follows. In both periodic and quasiperiodic structures
there are regions where H(k) vanishes due to the dis-
crete nature of their spectra. Therefore, over those re-
gionsH(k) must remain constant and it will present jump
discontinuities every time an isolated Bragg peak is in-
tegrated. On the other hand, for structures with contin-
uous Fourier spectra the function H(k) is smooth (i.e.
continuous and differentiable). In the case of structures
with singular-continuous spectra the Bragg peaks are no
longer well-separated but cluster into a hierarchy of self-
similar contributions giving rise to a continuous compo-
nent in the spectrum that smoothly increases the value
of H(k) in between the plateaus.

In Fig. 2 we show the calculated H(k) for each of the
CPAs. The results demonstrate a characteristic aperiodic
staircase with a fractal behavior highlighted by comput-
ing H(k) over a much smaller scale, as shown in the in-
sets of Figure 2. In Fig. 2(a) we show the H(k) of the
Eisenstein prime array, which demonstrates clear jump
discontinuities in correspondence of the bright diffrac-
tion peaks shown in Fig. 1(e). Moreover, the presence
of the continuous components is manifested by the vary-
ing slopes that smoothly connect each plateau of H(k),
unveiling the singular-continuous nature of the spectra.
Qualitatively similar features are also observed for all
the other CPAs. However, the respective contribution

of the continuous components weaken progressively from
Eisenstein and Gaussian primes, shown in Figs. 2(a,b),
to Hurwitz and Lifschitz structures shown in Figs. 2(c,d).
This behavior is consistent with the much more regular
structure displayed in real space by the Hurwitz and Lif-
schitz arrays. Our heuristic analysis leads to conjecture a
surprising connection between the distribution of primes
in complex quadratic fields and the singular-continuous
spectra of two-dimensional quasicrystals. We can regard
this scenario as a two-dimensional generalization of Free-
man Dyson’s conjecture on the quasi-crystalline nature
of the the Fourier spectrum of the zeta-function zeros on
the critical line, which encode information on the distri-
bution of the natural prime numbers [54].

GREEN’S MATRIX SPECTRAL PROPERTIES

The Green’s matrix method is a powerful approach to
study wave propagation in random media. The method
relies on the analysis of the spectra of the Green’s ma-
trix, which belongs to the important class of the so-called
Euclidean random matrices that appear in Random Ma-
trix Theory (RMT) [46, 55]. The elements of a Euclidean
random matrix are determined by a function of the po-
sitions of pairs of randomly distributed points in Eu-
clidean space. The interest on non-Hermitian random
matrices such as the Green’s matrix has significantly in-
creased in recent years due their applications in the the-
oretical description of open systems. When applied to
random media, the study of the spectra of Green’s ma-
trices unveiled important information about scattering
resonances [40, 41, 46]. Moreover, an analytical the-
ory has also been developed for the eigenvalue density of
randomGreen’s matrices, providing fundamental insights
into light-matter interactions in disordered media [46].
However, the applications of the Green’s matrix method
has been mostly restricted to random media so far. Re-
cently, we have applied this approach to deterministic
aperiodic arrays ranging from quasiperiodic to pseudo-
random and shed some light on the distinctive structure-
property relationships that govern the optical behavior
of large systems of scattering particles with controllable
degree of aperiodic order [52, 56].
The vectorial Green’s matrix method describes light

propagation in a medium composed of identical, point-
like dipoles arbitrarily positioned inside a homogeneous
backgroundmedium (typically in vacuum). The elements
of the 3N × 3N Green’s matrix follow from the general
electromagnetic dyadic Green’s function calculated based
on the relative positions of the N dipoles as [57]:

Gnm(k, rnm) =

{
− exp(ikr

nm
)

i4πr
nm

{
[U− r̂

nm
r̂
nm

]−
(

1
ikr

nm

+ 1
(kr

nm
)2

)
[U− 3r̂

nm
r̂
nm

]
}

for n 6= m

0 for n = m,
(3)
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FIG. 3. (Color online) Eigenvalue distributions of Eisenstein prime arrays with ρλ2 = (a) 100, (b) 10, (c) 1, (d) 0.1, (e) 0.01,
(f) 0.001. The color-coding shows the log10 values of IPR for the eigenmode corresponding to each eigenvalue.

where Gnm is the 3 × 3 block element of the dyadic
Green’s matrix, integer indices for particles n,m ∈
1, 2, 3, ..., N , k is the wavenumber, U is a 3 × 3 iden-
tity matrix, r̂

nm
is the vectorial position from the nth to

mth particle, and its magnitude is r.
By studying the distribution of complex eigenvalues

Λ of Green’s matrix in the complex plane, important
physical information on the scattering system can be ex-
tracted. In fact, it has been established that the real and
imaginary parts of Λ are approximately equal to the rela-
tive widths (Γ−Γ0)/Γ0 and frequency (E−E0)/Γ0 of the
scattering resonances of a scattering system, respectively
[40].
In Figs. 3 and 4 we show the eigenvalue distributions

for different values of the optical density ρλ2 (with ρ
the number of particles per unit area and λ the optical
wavelength) for Eisenstein prime and Hurwitz prime ar-
rays, respectively. Qualitatively similar results are also
obtained for Gaussian primes and Lifschitz structures,
which are shown in the Supplemental Material Fig. S1
and S2 [58].
All the complex eigenvalues shown in Figs. 3 and 4

are color-coded based on the log10 value of Inverse Par-
ticipation Ratio (IPR) of the corresponding eigenvectors,
defined as [46]:

IPRp =

∑N

i=1 |Rp(ri)|4

[
∑N

i=1 |Rp(ri)|2]2
, (4)

where Rp is the p-th eigenvector of the Green’s matrix,
and ri are N scatterers’ positions. The IPR measures
the degree of spatial localization of the eigenvectors. An

eigenvector that extends over all the N scatterers is char-
acterized by a low value of IPR ≃ 1/N , while an eigen-
vector localized at a single point has IPR = 1. We notice
in Fig. 3(a) that when the optical density is the largest
(i.e. ρλ2 = 100), the spectrum collapses around the re-
gion ReΛ = −1 which correspond to long-lived modes (i.
e., the decay rate Γ ≈ 0). Furthermore, we observe that
the corresponding eigenstates display larger IPR values,
i .e. more spatial localization, towards larger values of
|ImΛ|. Among the eigenvalues with ReΛ ≃ −1, those
with larger absolute values in the imaginary part have
increasingly higher IPR values. In random systems prox-
imity resonances (ReΛ ≈ −1, ImΛ ≫ 1, and IPR = 0.5)
spatially localized over pairs of particles very close to-
gether, may exist even for weakly scattering systems, far
from the regime of Anderson localization [40]. In con-
trast, two-particle proximity resonances are generally ab-
sent in the investigated aperiodic systems, where eigen-
states localized over small clusters of particles, similar
to Efimov-type of resonances, occur more frequently due
to locally symmetric particle clusters distributed across
these structures. It is also interesting to notice in Fig.
3(a) that a spectral gap opens in the complex plane be-
tween ImΛ = 0 and 100. This feature, which does not
occur in random arrays, reflects the role of spatial cor-
relations in the Eisenstein prime array, and can also be
observed in all the other aperiodic arrays at large enough
density.

On the other hand, when the optical density decreases
the sub-radiant eigenmodes at ReΛ ≈ −1 gradually dis-
appear from the spectra as shown in Figs. 3(b) to
3(f) and the complex eigenvalue distributions eventually
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FIG. 4. (Color online) Eigenvalue distributions of Hurwitz prime arrays with ρλ2 = (a) 100, (b) 10, (c) 1, (d) 0.1, (e) 0.01, (f)
0.001. The color-coding shows the log10 values of IPR for the eigenmode corresponding to each eigenvalue.

FIG. 5. The DOS for (a) Eisenstein prime, (b) Gaussian prime, (c) Hurwitz prime, (d) Lifschitz prime, at ρλ2=100; (e)
Eisenstein prime, (f) Gaussian prime, (g) Hurwitz prime, (h) Lifschitz prime, at ρλ2=10.(i) Eisenstein prime, (j) Gaussian
prime, (k) Hurwitz prime, (l) Lifschitz prime, at ρλ2=0.001.The arrows indicate the presence of spectral gaps in the DOS.
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FIG. 6. The 1st-neighbor level statistics of complex eigenvalues for (a) Eisenstein prime, (b) Gaussian prime, (c) Hurwitz
prime, (d) Lifschitz prime, at ρλ2=100; (e) Eisenstein prime, (f) Gaussian prime, (g) Hurwitz prime, (h) Lifschitz prime, at
ρλ2=0.001. The fittings are Poissionian for (a)-(d), as well as Ginibre (dashed curve in (e)-(h)) and critical (solid curve in
(e)-(h)) distributions. The mean-square error (MSE) of fittings is less than 0.01.

evolve into a more homogeneous domain in the complex
plane centered near Λ = 0 (Fig. 3(d) to (f)). This spec-
tral evolution reflects the occurrence of an increasing pro-
portion of short-lived eigenstates with low IPR extend-
ing over a larger number of particles and characterized
by a larger decay rate. Besides, the IPR values are more
uniformly distributed across the different eigenvalues at
low optical densities showing that these states are very
similar in both energy and decay characteristics. Impor-
tantly, the low-density distribution of eigenvalues for all
the investigated CPAs does not approach a circular dis-
tribution in the complex plane, as it would be the case for
a uniform random medium [40, 45, 46, 52], even at very
low optical density of 0.001 particle per λ2. This indi-
cates a persistent correlation effect, which is present even
at very small optical densities, where the average inter-
particle separation is more than one order of magnitude
larger compared than the wavelength.

In Figs. 4(a) to 4(f), we summarize the evolution of
eigenvalue distributions at the six representative optical
densities for a N = 1093 Hurwitz prime array. Unlike
in the case of Eisenstein prime array, the distribution
of eigenvalues for the Hurwitz prime array at ρλ2 = 100
does not feature large sub-radiant components, and it ex-
hibits two large circular gap regions in the high-density
spectrum that originates from its more significant struc-
tural regularity. This behavior is very similar to the
eigenvalue distribution of a periodic square array at such
large optical density (see Fig. S3 of Supplemental Mate-
rial [58]). As the optical density decreases from Figs.
4(b) to 4(f), the eigenvalues eventually cluster into a
smaller region of the complex plane around Λ = 0. Simi-
lar to the case of the Eisenstein prime array, the presence

of correlation effects prevent the eigenvalue distribution
to approach, even at the smallest density values, the cir-
cular disk distribution expected for uniform random sys-
tems.

We notice that in all the investigated CPAs the value
ρλ2 ≈ 1 appears to separate a highly structured eigen-
value distribution, where spatial correlations plays a
dominant role, from a diffuse eigenvalue distribution with
weaker correlations at low density.

The formation of spectral gaps in CPAs when increas-
ing the optical density is best demonstrated in Figure 5
by the density of states (DOS) computed for all the in-
vestigated structures based on the imaginary part of the
Green’s matrix eigenvalues. In Fig. 5, we plot the DOS
for all the structures at three representative optical den-
sities, ρλ2 =100, 10, and 0.001, and plot them versus the
normalized energy. Our numerical study indicates open-
ing of gaps at values of the optical density ρλ2 & 10.
This density regime corresponds to a linear particle sep-
aration approximately equal to the wavelength, resulting
in a strong diffractive response of the CPA structures.
In particular, in Fig. 5(e), Eisenstein prime array has a
gap near (E − E0)/Γ0 = 1, whereas in Fig. 5(h), Hur-
witz prime array has multiple gaps near (E − E0)/Γ0 =
0, 1, and 2. On the other hand, at the lowest optical
density ρλ2 = 0.001 the scattering strength is too weak
to open optical gaps in all the investigated structures,
as demonstrated in Figs. 5(i-l). While this paper has
primarily focused on N ≃ 1000 CPAs here, the results
are more general and ready to be extended to scatter-
ing systems with larger N (see Fig. S4 of Supplemental
Material [58]).
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FIG. 7. . The decay rate statistics for ((a) Eisenstein prime, (b) Gaussian prime, (c) Hurwitz prime, (d) Lifschitz prime, at
ρλ2=100; (e) Eisenstein prime, (f) Gaussian prime, (g) Hurwitz prime, (h) Lifschitz prime, at ρλ2=10.(i) Eisenstein prime, (j)
Gaussian prime, (k) Hurwitz prime, (l) Lifschitz prime, at ρλ2=0.001.

SPECTRAL STATISTICS OF COMPLEX PRIMES

Level statistics provides important information about
electromagnetic propagation in both closed and open sys-
tems, and from RMT one can to identify the wave trans-
port regime (extended or localized) in closed systems.
For open systems that are not random, level statistics
remains not very well understood especially at low opti-
cal densities. In our previous work, we have applied the
Green’s matrix method to study open systems that are
either random, or aperiodic, and have shown the transi-
tion from the absence to the presence of level repulsion
as the optical density decreases [52]. In open systems the
Green’s matrix is non-Hermitian, so that for each Λi the
nearest eigenvalue Λj is identified as the eigenvalue that
minimizes the distance between the two eigenvalues in
the complex plane |∆Λ| = |Λi − Λj |
In closed random systems, an established result from

RMT predicts the suppression of level repulsion in the
presence of localizes states [55, 59]. In this case two spa-
tially separated, exponentially localized states hardly in-
fluence each other, so that distinct modes with infinitely
close energies are possible. In the strong localization
regime the distribution of level spacings is described by
the Poisson distribution [59]:

p(s) ∝ exp (−s) , (5)

where we consider the nearest-neighbor level spacing nor-

malized to the average spacing as s = |∆Λ|/〈|∆Λ|〉. For
inhomogeneous systems, as it is the case of CPAs, special
care needs to be exercised in order to eliminate degener-
ate energy states caused by the geometrical symmetries
inherent to the structure of the arrays.
In Fig. 6, we show the two most extreme cases (high-

est and lowest optical densities) of level spacing statis-
tics for each of the four CPA structures. In particular,
Figs. 6(a) to 6(d) show the first-neighbor level statistics
of the Eisenstein prime, Gaussian prime, Lifschitz prime,
and Hurwitz prime arrays, respectively, at ρλ2 = 100.
The black lines in Figs. 6(a) to 6(d) are best fitting
curves using a Poisson distribution model. The results
demonstrate that level spacing with Poisson statistics has
been achieved in the proposed CPAs for high optical den-
sities, in complete analogy with the localization regime
observed in uniform random media.
In contrast, a well-known result of RMT is the phe-

nomenon of level repulsion in the extended regime of wave
transport in closed systems [55, 59]. In open systems, the
concept of eigenvalue repulsion can be generalized to non-
Hermitian matrices. Indeed, for the Ginibre’s ensemble
of random matrices, the probability density function of
normalized eigenvalue spacing is [59]

p(s) =
34π2

27
s3 exp(−32π

24
s2), (6)

which has been successfully applied to describe the sta-
tistical properties of eigenmodes in random optical me-
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dia [60]. For all aperiodic media considered, we demon-
strate the emergence of level repulsion, i .e.P(0 ) = 0 , at
low optical densities of ρλ2 = 0.001, as shown in In Figs.
6(e) to 6(h). However, in contrast to random media, the
distribution of level spacing predicted by the Ginibre’s
ensemble in equation (6) (represented by dashed lines in
Fig. 6) does not accurately describe the spectral statis-
tics of CPAs. Instead, a good fit to the level statistics
can be obtained only using the derivative of interpolation
function, called critical cumulative probability, proposed
in [61]:

I(s) = exp[µ−
√
µ2 + (Acs)2], (7)

where I(s) is the cumulative level spacing distribution
function, µ and Ac are fitting parameters. The fit of our
data using this model is shown by the black lines in Figs.
6(e) to 6(h). The critical statistics model has been intro-
duced to account for the level spacing at the Anderson
transition in random media [61], where the wavefunctions
feature multifractal scaling, and it has been proposed as
a third universal level statistics valid at the Metal Insu-
lator Transition (MIT) of aperiodic media.
Our findings demonstrate the applicability of critical

statistics to the weakly scattering regime of CPAs. In-
deed, the critical nature of the CPAs level spacing statis-
tics can be traced back to their singular-continuous spec-
tra that support critically localized eigenmodes with self-
similar scaling at all optical densities. Differently from
random media, where criticality is only achieved at the
localization threshold, which occurs for a specific optical
density in 3D, the critical behavior of CPAs occurs for a
broader range of optical densities for planar, weakly scat-
tering systems, and it is inherent to the fractal nature of
their geometries and critical eigenmodes.
In Fig. 7 we show the decay rate statistics P (Γ) for

different CPAs and for for three distinct values of the
optical density, where decay rates were obtained form
the Green’s matrix eigenvalues, Γ/Γ0 ≈ ReΛ + 1. [40]
In particular, in Figs. 7(a-d) we plot the statistics of
the normalized decay rates in a double-logarithmic scale,
for the four prime-based aperiodic arrays at the highest
optical density ρλ2 = 100. In this regime, we have con-
clusively found that the data follow a linear decay, which
unveils an algebraic power law scaling P (Γ) ≃ 1/Γ. This
power law behavior of the decay rate statistics, which has
been reported in disordered systems [41, 46], is a result
of multiple scattering [46]. Figures 7(a-d) indicate that
the power law of P (Γ) ∼ Γ−1 also occurs for more gen-
eral open aperiodic systems such as the CPAs for high
optical densities (ρλ2 = 100). As it occurs in random
systems [41], the range of this algebraic decay increases
for increasing optical densities for which multiple scatter-
ing effects are stronger, as it can be seen by comparing
Figs 7(a-d) with Figs 7(e-h), for which the optical density
is lower, (ρλ2 = 10). Finally we note that, differently
from uniformly random systems, the tails with very large
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FIG. 8. (Color online) A comparison of maximum IPR values
among (1) Eisenstein prime, (2) Gaussian prime, (3) Lifschitz
prime, and (4) Hurwitz prime arrays, at each representative
optical density. (5) square, (6) triangular and (7) uniform
random arrays are included for references. The red dashed
line indicate the proximity resonance of two particles with
IPR = 0.5.

decay rate in the statistics of CPAs shown in Figs. 7(a)
to 7(d) do not feature any prominent peak due to Dicke
superradiant modes, which would manifest as a peak at
P (Γ) at Γ = 2Γ0) with IPR=0.5 [62, 63]. This result,
together with the absence of proximity resonances with
small decay rates unveiled in Fig. 3, show that collective
effects involving pair of scatterers (subrandiance and su-
perradiance), do not occur in the investigated CPAs. We
believe that this behavior can be attributed to the highly
correlated nature of CPAs, which prevents the formation
of such modes.

SPATIAL DISTRIBUTION OF EIGENSTATES

In order to further understand the spatial distribution
of eigenmodes in aperiodically ordered structures, in Fig.
8 we show the maximum IPR value among all CPA eigen-
states for different values of the optical density. For com-
parison, we also show the results obtained for a uniform
random array of dipoles as well as for periodic square
and triangular arrays. We have found that among all
the investigated geometries the uniformly random array
support eigenstates with the largest IPR values for all
optical densities considered, as shown in Fig. 8. Indeed,
these modes with largest IPR = 0.5 correspond to prox-
imity resonances that involve only two neighboring par-
ticles and, as Fig. 8 reveals, can occur even for weakly
scattering systems (low optical densities) [40]. Figure 8
demonstrates that these proximity resonances cannot be
supported by CPAs under the conditions investigated.
Besides, the largest values of IPR for CPAs are signif-
icantly larger than the corresponding ones of periodic
arrays of dipoles. Based on the value of maximum IPR,
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FIG. 9. (Color online) The IPR statistics for (a) Eisenstein prime, (b) Gaussian prime, (c) Hurwitz prime, (d) Lifschitz prime,
at ρλ2 = 100; The mode with the highest IPR values are for each of the structures at this density are shown respectively from
(e) to (h).

FIG. 10. (Color online) At ρλ2 = 10, (a) to (d) are the most localized (highest associated IPR value) eigenmode for Eisenstein
prime, Gaussian prime, Hurwitz prime and Lifschitz prime arrays, respectively. (e) to (h) are corresponding structure’s critical
mode, which has the lowest IPR and small ReΛ (low decay rate). (i) to (l) are spectral-gap edge-modes of each corresponding
structure.

we can estimate the number of particles over which the
most spatially localized states are distributed.

In particular, at high optical densities, Efimov reso-
nances [64], typically distributed over few dipoles, are
more likely to occur in structures such as Eisenstein
prime and Gaussian prime arrays.

In Figs. 9(a) to 9(d) the statistical distributions of
IPRs are shown for CPAs in the strongly scattering

regime, achieved at the largest optical density consid-
ered, ρλ2 = 100. It can be seen that the IPR distribu-
tions for Eisenstein prime and Gaussian prime arrays are
considerably broader than the ones of the correspond-
ing Hurwitz and Lifschitz primes structures. This result
reflects the fact Hurwitz and Lifschitz prime arrays are
much more regularly distributed in real space than the
Eisenstein and Gaussian prime arrays, consistent with
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the results for the Integrated Intensity Function shown
in Fig. 2. Figures 9(a) to 9(d) also confirm that the
probability of finding Efimov resonances, spatially local-
ized over a small number M of scattering particles (with
corresponding larger IPRs ≃ 1/M), is smaller for more
regular CPAs, such as the Hurwitz and Lifschitz primes
arrays. In Figs. 9(e-h) we show the intensities of the
eigenvectors with largest IPR at the positions’ of the scat-
tering particles at optical density ρλ2 = 100 for different
CPAs. The spatial distribution of the mode with largest
IPR strongly depends on the particular spatial structure
of the CPA in the real space. For instance, in the Eisen-
stein and Lifschitz prime arrays the mode with largest
IPR is highly localized over a small cluster of dipoles in
the center of structure, as Fig. 9(e) and (h) reveal. On
the other hand, Fig. 9(g) demonstrates that for the Hur-
witz prime array the highest-IPR eigenstate is symmetri-
cally localized at the edge of the structure over T-shaped
particle clusters.
In Fig. 10 we provide a more complete survey of the

spatial extent of distinctive eigenstates that can be sup-
ported by different CPAs, namely the one with highest-
IPR (panels (a) to (d)), the critical modes (panels (e)
to (h)), and the ones localized at the edge of the struc-
tures (panels (i) to (l)) at ρλ2 = 10. Again, the spatial
distribution of intensities of the highest-IPR mode cru-
cially depends on the particular structure of the CPA in
the real space. Indeed, Figs. 10 (a) to (d) demonstrate
that, for a given optical density, the highest-IPR mode
may be either extremely localized at the center of the
array, as it is the case of Gaussian prime array, or more
radially spread around the center of the structure, as in
the Lifschitz prime array. The critical modes, which have
been recently identified as the ones with long-lived reso-
nances (small decay rates) with low IPR values [52], are
depicted in Figs. 10(e-f). These modes, which are spa-
tially extended over the whole array, are unique to deter-
ministic aperiodic systems and cannot be supported by
either random or periodic systems. Figs. 10(e-h) unveil
the very rich spatial distribution and distinctive critical
nature of eigenmodes for all CPAs considered. Finally,
we also discovered in the CPAs mode spectrum long-lived
modes that are spatially localized close to the edge of
the structures, as shown in Figs. 10(i-l). Such surface-
localized modes could be analogous to the recently dis-
covered topological edge-states in quasiperiodic systems
[29]. However, further studies beyond the scope of this
work are needed to established the exact physical nature
of edge-states in the investigated CPAs.

CONCLUSIONS

In conclusion, we have investigated the structural,
spectral and localization properties of aperiodic arrays
generated from the distribution of prime numbers in com-

plex quadratic fields (Eisenstein, Gaussian) and quater-
nion rings (Hurwitz, and Lifschitz primes arrays) and
studied their distinctive scattering resonances using the
vector Green’s matrix method. We systematically study
the Fourier spectra, the eigenvalue distribution of the
Green’s matrix, the Density of States, level spacing dis-
tribution, the decay rate statistics, and the spatial ex-
tent of eigenmodes in all these structures. Our findings
demonstrate several unique spectral properties, such as
the absence of level repulsion for strongly scattering sys-
tems, critical level statistics, and the existence of critical
modes, extended fractal modes with long lifetime that
cannot be supported by either random and periodic sys-
tems. From the distribution of eigenvalues of Green’s
matrix in the complex plane, we are able to predict the
existence spectral gaps. Our results unveil the impor-
tance of aperiodic correlations for the engineering of novel
gapped photonic structures that support far richer spec-
tral properties compared to traditional periodic and ran-
dom media.
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