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Abstract 

In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide 

as a function of temperature and oxygen partial pressure. Migration barrier of each 

type of oxygen defect was obtained by first-principles calculations. Random-walk 

theory was used to quantify the diffusivities of oxygen interstitials by using the 

calculated migration barriers. Kinetic Monte Carlo simulations was used to calculate 

diffusivities of oxygen vacancies by distinguishing the three-fold and four-fold 

coordinated lattice oxygen. By combining the equilibrium defect concentrations 

obtained in our previous work together with the herein calculated diffusivity of each 
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defect species, we present the resulting oxygen self-diffusion coefficients, and the 

corresponding atomistically resolved transport mechanisms. The predicted effective 

migration barriers and diffusion pre-factors are in reasonable agreement with the 

experimentally reported values. This work provides insights into oxygen diffusion 

engineering in ZrO2 related devices and parameterization for continuum transport 

modeling.  

 

I. Introduction 

Oxygen self-diffusion in zirconium oxide has been a topic of interest for long[1-4] in 

studying the oxidation kinetics of zirconium alloys, which are used as cladding of 

nuclear fuel in light water cooled nuclear reactors.[5] Zirconium oxide is also widely 

used in heterogeneous catalysis[6, 7] , and more recently examined for high-k 

dielectrics in metal-oxide-semiconductor field-effect transistor (MOSFET) devices[8, 

9] as well as resistive switching devices[10, 11]. In all of these technologically 

important applications, understanding the defect chemistry and transport properties is 

key to better material design, device engineering and performance modeling. In 

particular, such knowledge could guide design by means like aliovalent doping and 

controlling operating environmental conditions. Experimental [12-14] and 

computational [15-20] studies have been carried out to atomistically resolve the 

structure, valence states and defect chemistry in ZrO2. Zirconium-oxygen system 

phase stability has been examined by first-principles studies, and a range of sub-oxide 

structures with oxygen dissolved into the metal phase have been identified.[20] To 
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date, many aspects of ZrO2 remain unexamined atomistically in the multi-dimensional 

space of temperature, oxygen partial pressure, extrinsic doping, strain and 

microstructure. In our previous work, we have predicted oxygen self-diffusion 

kinetics in tetragonal-ZrO2 (t-ZrO2) by combining first-principle calculations with 

random-walk theory[21], resulting in good agreement with experimental 

measurements. Monoclinic-ZrO2 (m-ZrO2) is the stable phase below 1440 K[22] and 

is also relevant in the applications mentioned above. In m-ZrO2, the oxygen 

sub-lattice is distorted compared to the tetragonal phase, leading to two inequivalent 

sites for oxygen in the unit cell: one bonds with four zirconium atoms (O4) and one 

bonds with three zirconium atoms (O3). This inequivalence of oxygen sites makes 

random-walk model inapplicable. There exists first-principle studies of oxygen 

defects migration barriers in HfO2, which bears the same structure as m-ZrO2.[23] 

However, no comprehensive work predicting overall oxygen diffusion coefficients has 

been performed for oxides of this structure. 

 

In this study, we present a systematic examination of oxygen transport properties in 

bulk, near-stoichiometric monoclinic-ZrO2 under different thermodynamic conditions. 

In previous work, by combining first-principles based point defect calculations with 

statistical thermodynamics, we were able to predict equilibrium defect concentrations 

at various temperatures and oxygen partial pressures both in tetragonal[24] and 

monoclinic ZrO2[16]. Here we calculated the migration barriers of different oxygen 

defect types and migration paths by first principles calculations. The results show that 
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migration barriers corresponding to different oxygen vacancy migration paths 

categorized by O4 and O3 sites could differ by more than 1 eV. In order to distinguish 

this inequivalence of lattice oxygen sites, we quantified the oxygen vacancy 

diffusivity with kinetic Monte-Carlo (kMC) simulations. On the other hand, random 

walk theory was sufficient to obtain the oxygen interstitial diffusivities. We arrive at 

the total oxygen self-diffusion coefficients by combining the defect equilibria and 

diffusivity for each of these oxygen defects over a wide range of temperature and 

oxygen partial pressure.  

The predicted diffusion coefficient profiles show a valley shape as a function of 

oxygen pressure at different temperatures. Oxygen interstitial dominates in the high 

oxygen partial pressure regime and oxygen vacancy in the low oxygen partial pressure 

regime, leading to a diffusion minimum at intermediate oxygen partial pressures. Our 

predicted values are in good agreement with experimentally measured diffusion 

coefficients under relevant thermodynamic conditions. Finally, we discuss the 

implications of this study on engineering oxygen transport in zirconium oxide.     

   

II. Methods 

The climbing image nudged elastic band (CI-NEB) method[25] was used to calculate 

migration barriers using three to five intermediate images as implemented in 

Transition State Tools (VTST)[25]. Energies of each image were calculated by density 

functional theory (DFT) with Vienna Ab initio Simulation Package (VASP)[26-29] 

with 2×2×2 supercell and 2×2×2 k-point gird. The generalized gradient approximation 
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(GGA) with Perdew-Burke-Ernzerhof (PBE) functional[30, 31] is used. 4s24p64d25s2 

electrons for zirconium and 2s22p4 for oxygen are treated as valence electrons. The 

plane-wave cutoff energy was set to 450 eV. Details of calculating the defect 

formation energies and equilibrium defect concentrations can be found in Ref. [24] , 

[16] and [32]. 

For oxygen interstitials, DFT calculations were performed with different initial 

guesses for the interstitial sites. Oxygen vacancies can take either O4 or O3 sites. On 

the other hand, the interstitial oxygen always occupies the same type of site in the 

relaxed, low-energy configurations. This finding validates the applicability of the 

random-walk theory for oxygen interstitials, as we reported earlier for oxygen 

diffusion in t-ZrO2[21]. In principle, random-walk theory produces the same outcome 

as kinetic Monte Carlo simulations for oxygen interstitials, given that there is no 

inequivalent sites for them in m-ZrO2. Therefore, the diffusivity for each oxygen 

interstitial species was calculated by the random-walk model[33] with  

 2 exp( )
i

q k
O k

k B

ED d
k T

ν= −∑  , (1) 

where attempt frequency ν  is taken as 5 THz. q  represents the different charged 

states of oxygen interstitials (0, -1 and -2). kE  and kd  are the migration barrier and 

hopping distance for the corresponding migration path. Bk is the Boltzmann constant 

and T  is temperature. Kröger-Vink notation for defects is used throughout this 

paper. 

The calculated migration barriers for oxygen vacancies were fed into an on-lattice 

kinetic Monte Carlo model [34] to account for the three-fold and four-fold 
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coordinated oxygen site network. Simulations were performed at each temperature for 

106 kMC steps. The simulation cell has one defect in ZrO2 lattice with periodic 

boundary condition, starting from a random initial configuration. The diffusivity is 

calculated from the mean square displacement with Einstein’s theory of Brownian 

motion [35], 

 2( ) 6
O

q
Vt D t=r .  (2) 

Here ( )tr  is the position of the defect referenced to the initial site at time t, and 
O

q
VD  

is the calculated diffusivity for the specific defect species q
OV  at that temperature. 

The calculation of 
O

q
VD  from the kMC trajectory involves the following. For each 

defect species, one trajectory of N steps is obtained from kMC run. This single 

trajectory is broken into N/n trajectories with n steps. For each n-step trajectory, an 

associated diffusivity Dn is calculated by 2 / 6n n nD r t= Δ , where 2
nrΔ  represents the 

total mean squared displacement of this trajectory and nt  represents the total time. 

Due to the nature of kMC, nt  is different for each n-step trajectory. The final 

diffusivity is calculated by averaging Dn from the (N/n) trajectories. In this work, N = 

106 and n = 5 × 103 was used. Convergence of the simulations with these parameters 

are shown in the supplemental material [37]. Defect-defect interactions are ignored in 

all calculations under the assumption of dilute limit which is reasonable for undoped 

monoclinic ZrO2 which does not exhibit significant deviation from stoichiometry [16, 

36]. 

By combining the contribution to diffusion by oxygen vacancies from kMC 

calculations and by oxygen interstitials from random-walk theory, we obtain the total 
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oxygen self-diffusion coefficient at different partial pressures and temperatures 

 
O iV O[V ] [O ]q q q q

tot O i
q q

D D D= +∑ ∑  . (3) 

 

Here [d] is the concentration of respective defect. Dtot defined here is the isotropic 

diffusion coefficient of oxygen averaged over all crystallographic directions. This 

value is then compared with experimental values in the results section. 

 

III. Results and discussion 

The considered pathways of oxygen vacancy migration are shown schematically in 

Fig. 1. Two types of oxygen sites exist in monoclinic ZrO2, one type bonded with four 

zirconium ions (O4) and the other with three (O3). The migration paths are further 

categorized by the number of zirconium ions that simultaneously share bonds with the 

two oxygen sites between which the migration takes place. Details of each migration 

path and the corresponding migration barriers are summarized in Table 1 and the 

energy profiles in Figure 2. For each migration path, the barrier for oxygen vacancies 

with 0, +1 and +2 charges are calculated. 
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Figure 1. Migration paths for oxygen vacancies in m-ZrO2. Large, green spheres 
represent Zr ions. Small red and grey spheres represent three-fold-coordinated and 
four-fold-coordinated oxygen ions, respectively. This figure is generated with 
visualization software VESTA.[38]   

  

Table 1. The calculated migration paths and migration barriers (in units of eV) of 
oxygen vacancies in m-ZrO2. The indices of each migration path are labeled in Fig. 
Figure 1. The paths are categorized by O4 and O3 oxygen sites, and how many Zr 
ions the two O sites share bond with. For paths between O4 and O3 sites, forward and 
backward barriers are different due to asymmetry of the initial and final configuration. 
For O4-O4 and O3-O3 paths, forward and backward barriers are equal. For O4-O4 
paths, migration on ab plane and c direction are further distinguished.   

Path From-To Shared 
Zr ion 

 
OV ×   OV •  OV ••  

1 O4 - O3 
2 forward 1.94 0.91 0.06 

backward 1.84 1.28 0.78 

2 O4 - O3 
1 forward 2.23 1.64 1.01 

backward 2.12 2.00 1.80 
3 O4 - O4, c 2  2.48 1.54 0.86 
4 O4 - O4, ab 2  2.03 1.20 0.33 
5 O3 - O3 2  2.20 1.58 0.77 
6 O3 - O3 1  1.32 1.11 0.73 
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Figure 2. Energy profiles for oxygen migration paths labeled in Figure 1. Red dots are 
images calculated by the CI-NEB method. Fitted spline curves are produced with the 
VTST tools.[25] 

 

Based on the calculated migration barrier, it is clear that for each migration path, 

the higher-charge-state oxygen vacancies have lower migration barriers. This can be 

rationalized by the fact that the diffusive jump of OV × involves the transport of the two 

electrons associated with the vacant site in a direction opposing the jump of the oxide 

ion. This opposition is accompanied with Coulombic repulsion and elevation of the 

activation barrier. In the case of OV • ，there is only one electron opposing the migrating 

oxide ion and finally in OV ••  there are no electrons to oppose the oxide ion. Similar 

trend has also been observed in tetragonal ZrO2[21] and other oxides[39]. It is also 

notable that the forward migration barrier for O4-O3 sharing bonds with Zr ions is as 
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low as 0.06 eV, which seemingly indicates very fast oxygen diffusion. However, it is 

shown from kMC simulations that, although oxygen hopping between these two types 

of sites is frequent, oxygen atoms need to go through other high-barrier migration 

paths in order to complete long-range diffusion.  

For oxygen interstitials, octahedral interstitial sites were found to be the 

low-energy sites.[16] DFT calculations show that all octahedral oxygen interstitials 

are energetically equivalent in the ZrO2 unit cell. Migration barriers for direct 

exchange mechanism were found to be too high (> 5 eV) and therefore only 

interstitialcy migration hops were considered.[40] The calculated migration barriers 

are 0.672 eV, 0.365 eV, and 0.530 eV respectively for iO×  , iO ′  , and iO ′′ . These 

results indicate oxygen interstitials have higher mobility compared to oxygen 

vacancies, consistent with previous experimental observation[1]. 

Equilibrium defect concentrations as a function of 
2OP  at 600 K and 1200 K are 

reproduced in Fig. 3 (a)(b). Details of how these profiles are constructed can be found 

in Ref. [16]. At 600 K, the dominant oxygen-related defect is oxygen interstitial over 

the entire 
2OP  range, with the dominant charge state changing from -2 to 0 at 1 atm. 

At 1200 K, the dominant oxygen defect transitions from oxygen vacancy with 

different charge states for 
2

1210 atmOP −<  to doubly-charged oxygen interstitial Oi
′′  

at higher, more oxidizing
2OP .  
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Figure 3. Equilibrium concentrations of electronic and ionic defects, [d] at (a) 600 K 
and (b) 1200 K, as a function of oxygen partial pressure. Oxygen self-diffusivity, D, 
calculated for each oxygen defect species and total diffusion coefficient, Dtot, with 
varying oxygen partial pressure at (c) 600 K and (d) 1200 K. 

 

The total oxygen self-diffusivity profiles as well as contributions of individual 

oxygen defect species at the two temperatures display different features (Figure 3(c) 

and 3(d)), following the defect transitions noted above. In the low-temperature case, 

2OP dependence can be categorized into two regimes. In the low 
2OP  regime (< 10-20 

atm), the dominant charged defects are holes compensated by electrons. This results 

in a 1/2 slope of for the concentration of the dominant oxygen defect Oi
′′ , and 
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consequently the same slope for log10Dtot profile. In the high 
2OP  regime (>10-10 atm), 

holes are charge-balanced by zirconium vacancies ZrV ′′′′ . Here the defect reaction is 

2
1 1( ) 2
2 2O ZrO g O V h× •′′′′→ + + , leading to 

2

1/51[ ] [ ]
4 Zr Oh V P• ′′′′= ∝ . The concentration 

of Oi
′′  is related to [ ]h•  via defect reaction 2

1 ( ) 2
2 iO g O h•′′→ + and thus exhibits 

the 1/10 slope as shown in the log10Dtot curve.  

At high-temperature, the intermediate 
2OP  regime (10-15 – 10-10 atm) has the 

same electron-hole compensation mechanism and the same dominant oxygen defect 

Oi
′′ as discussed above, and thus, log10Dtot exhibits 1/2 slope. However, in low 

2OP  

regime, the two dominating types of charged defect are electrons and 

positively-charged oxygen vacancies. A -1/6 log10Dtot slope is predicted by the law of 

mass action under the approximate charge neutrality 2[ ]c On V ••≈ , but a small 

discrepancy from this prediction was present in the calculated curve. This is because 

of the fact that OV •  also contributes non-negligibly to the charge neutrality condition. 

At very low 
2OP , OV •  and OV ×  predominate over OV •• in concentration, but the 

diffusivity is still contributed mainly by OV ••  due to its lower migration barrier. In 

the high 
2OP  regime, 2[O ]v ip ′′≈ . 2

1 ( ) 2
2 iO g O h•′′→ +  is the dominant defect 

reaction and a 1/6 slope is shown as predicted by law of mass action.  
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Figure 4. Calculated total oxygen self-diffusion coefficient plotted as a function of 
oxygen partial pressure and temperature. Dotted lines in (b) show experimentally 
measured values from references [1] (0.92 atm), [2] (0.39 atm), and [3] (0.13 and 0.03 
atm).   
 

To examine the gradual transition from the low-temperature behavior to the 

high-temperature behavior, we plot the 
2OP dependence of total self-diffusion 

coefficient at different temperatures in Fig. 4(a). There is clear appearance of a 

diffusion coefficient minima, or valley, as marked by the dashed line. This marks the 

transition between the OV •• -dominated regime to the iO ′′ -dominated regime. At low 

temperatures (<700 K), the entire 
2OP  range is dominated by oxygen interstitials. At 

higher temperatures, there is a transition between OV •• -dominated regime at low 
2OP

and iO ′′ -dominated regime at high 
2OP . The oxygen partial pressure at which this 

transition happens, increases with increasing temperature.  
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To compare with experiments, the high temperature data are replotted in Fig. 4(b) as 

isobaric diffusion coefficient curves as a function of 1/T. At high 
2OP (>10-5 atm), the 

isobaric curves are perfectly Arrhenius. This is because the entire profile is sampled in 

regimes where oxygen interstitials are compensated by holes. At intermediate 
2OP

(10-10 - 10-5 atm), non-Arrhenius behavior starts to appear, where the compensation 

mechanism transitions to electrons compensated by holes. At even lower 
2OP , the 

Arrhenius behavior is restored again because now the entire region is within the 

vacancy-dominated regime.     

 

Symbols in Fig. 4(b) represent experimentally measured values at different oxygen 

partial pressures as noted in the legend. [1-3] It is clear from Fig. 4(b) that 

experimental measurements have considerable disagreement between each other. In 

particular, the trend of Dtot varying with oxygen partial pressure is not consistent when 

comparing values from different studies. Here we discuss a few factors that possibly 

lead to this discrepancy. First, all experimental studies listed here were not conducted 

on single-crystal ZrO2. Ref. [1] and [2] measured conductivity by 18O diffusion 

experiment on ZrO2 spheres, and Ref. [3] by measuring the oxidation rate of 

non-stoichiometric ZrO2 powder to stoichiometric ZrO2. It is hard to eliminate the 

contribution of voids, grain boundaries or other types of extended defects. Second, all 

diffusion models used to fit experimental profiles and obtain Dtot assume that the 

rate-limiting step in the oxygen exchange/oxidation process is oxygen diffusion. This 

simplified assumption may lead to errors in the fitted result. This point is partially 



15 
 

verified by Ref. [1], where the authors found that diffusivities obtained at equivalent 

oxygen partial pressure by CO/CO2 mixture and O2 gas are not consistent, indicating 

that surface exchange kinetics also influence the result. Third, none of these studies 

considers the contribution to oxygen diffusion under electric field in intrinsically 

formed space charge layer at oxide surface. Our study shows that the major 

contribution to diffusion coefficient comes from charged defects and the space charge 

effect should be taken into consideration.[32]  

Last, it is worth mentioning that experimental specimens must contain aliovalent 

cation impurities. For example, Al3+ and Nb5+ are two common impurity species, one 

is an acceptor and the other is a donor. These aliovalent cations could compensate 

with each other and make the oxide behave closer to intrinsic. However, even a small 

amount of n-type or p-type doping could change the dependence of defect chemistry 

to oxygen partial pressure. In particular, the compensating mechanism transition 

pressure could change due to the impurity dopants. In other words, the same defect 

chemistry could be achieved at different 
2OP  with different impurity contents. This 

could in part explain the inconsistency of 
2OP  dependence between prior 

experimental studies. The trend in diffusivity change from 0.03 to 0.13 atm in Ref. [3] 

is more reliable considering the measurements were performed on samples with the 

same impurity level. In Ref. [3] we see that Dtot increases with oxygen partial pressure, 

which hints to an oxygen interstitial dominated mechanism and is in agreement with 

our prediction.    

To quantitatively compare with experimentally measured values, we calculate the 
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effective activation energies Q  and effective pre-factors *D  by fitting the total 

self-diffusivity totD  to * exp( / )tot BD D Q k T= − . The outcome values are plotted in 

Fig. 5 and summarized in Table 2. It is not a coincidence that both the activation 

energy and the diffusion pre-factor curves display a valley at intermediate oxygen 

partial pressure. This valley again corresponds to the same transition from OV ••

-dominated regime at low 
2OP to iO ′′ -dominated regime at high 

2OP . The effective 

activation barrier predicted at 
2OP = 1 atm is 2.04 eV. This is in reasonable agreement 

with experimentally measured values (1.96 eV[1], 2.43 eV[2] and 2.46 eV[3] 

respectively). This consistency indicates that all the values we are comparing with 

from experiments should be in the same iO ′′ -dominated regime as we predicted. This 

is because the formation energy of  OV ••  alone exceeds 3.5 eV in this 
2OP  range and 

even higher activation barrier should be expected if OV ••  were the dominant species. 

When it comes to diffusion pre-factors, the difference between this work and 

experimental values, and the difference among the reported experimental values, is 

more pronounced. *D  predicted in this study is 6.50×10-3 cm2/s at 
2OP = 1 atm and 

4.76×10-3 cm2/s at 
2OP = 0.1 atm. The calculated value in Ref [1], [2] and [3] are 

2.34×10-2 cm2/s at 0.92 atm, 9.73×10-3 cm2/s at 0.39 atm, 1.82 cm2/s at 0.13 atm and 

9.00×10-2 cm2/s at 0.03 atm. However, we can also see from Fig. 5(b) that *D  

changes over orders of magnitude with varying oxygen partial pressures. This 

observation is consistent with the different impurity argument we discussed above. 

Acceptor-type impurity could increase the concentration of iO ′′  and hence create the 

discrepancies among *D .       
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Figure 5. (a) Activation energies and (b) diffusion pre-factors at different oxygen 

partial pressures fitted to * exp( / )tot BD D Q k T= − by using the simulated data in the 

high temperature regimes in Fig. 4(b).  

 

Table 2. Activation energies and diffusion pre-factors comparison between this work 
and experimental measurements. 

 This 
work 

This 
work 

This 
work 

Ref. 1 Ref. 2 Ref. 3 Ref. 3 

2OP  

(atm) 

1 0.1 0.01 0.92 0.39 0.13 0.03 

Q (eV) 2.04 2.05 2.05 1.96 2.43 2.46 2.46 

D* 
(cm2/s) 

6.50 

×10-3 

4.76 

×10-3 

3.16 

×10-3 

2.34 

×10-2 

9.73 

×10-3 

1.82 9.00 

×10-2 

    

Lastly, we comment on the implication of these findings on the oxidation rate of 

zirconium metal. Oxygen diffusion through the oxide passive film is known as one of 

the rate limiting steps in the oxidation process.[41] To design corrosion-resistant 

zirconium alloys, lower oxygen diffusivity is desirable. Looking at the isothermal 

curves in Fig. 4 (a), the lowest oxygen diffusion coefficient is always achieved in 
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intermediate pressure range where the dominating species are electrons and holes. 

Going to the high/low end of oxygen partial pressure, oxygen interstitial/oxygen 

vacancy becomes the dominant defect species that compensate with holes/electrons, 

and thus increases total oxygen conductivity. This leads to the conclusion that, to 

engineer oxygen transport through the oxide film, it is desirable to suppress the 

dominant oxygen defect. Doping is one of the possible means to achieve this goal. In 

the high 
2OP region, +3 dopant could compensate with hole, reducing oxygen 

interstitial concentration and thus suppressing oxygen transport. +5 dopant has similar 

effect in the low 
2OP  region in compensating with electrons and reducing oxygen 

vacancy. This finding provides guiding rules for different alloying elements that can 

dissolve into the growing oxide and change the oxygen defect equilibria in the 

relevant temperature and oxygen partial pressure space. 

 

In light of our findings, we offer a few possible improvements on the modeling 

method used in this work. First, we ignored defect-defect interactions throughout this 

study. If we look at Fig. 3(b), the calculated defect concentrations are generally below 

10 ppm, which shows that this approximation is reasonable within the thermodynamic 

regime considered here. However, if high concentration of extrinsic doping or higher 

temperature and lower oxygen pressure regime is of interest, it will be important to 

include defect-defect interactions. Second, extended defects in the oxide structure can 

significantly change its transport properties, for example, as we have demonstrated 

recently for secondary phase particles embedded in ZrO2 matrix.[32] The effects of 

surface, grain boundaries and interfaces on oxygen diffusion are also worth exploring, 
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and this is necessary for constructing accurate higher-level transport models as well as 

informing microstructure engineering for oxide materials. 

 

IV. Conclusion 

In this study, we modeled oxygen self-diffusion in monoclinic-ZrO2 by combining 

density functional theory calculations, random walk theory, and kinetic Monte Carlo 

simulations. Oxygen diffusion coefficient shows a clear transition between an oxygen 

vacancy dominated transport regime at low oxygen partial pressure to an oxygen 

interstitial dominated regime at high oxygen partial pressures. The results demonstrate 

a diffusivity minima, a valley at the transition point. The effective migration barriers 

and diffusion pre-factors are in reasonable agreement with those found from 

experimental studies. This study provides atomistic understanding of oxygen diffusion 

mechanism in monoclinic ZrO2, and the findings can guide the design of zirconium 

oxide for different applications where oxygen transport properties at different 

functional conditions are of interest.   
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