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Coordination-related, two-dimensional (2D) structural phase transitions are a fascinating and
novel facet of two-dimensional materials with structural degeneracies. Nevertheless, a unified
theoretical account of these transitions remains absent, and the following points are established
through ab-initio molecular dynamics and 2D discrete clock models here: Group-IV monochalco-
genide (GeSe, SnSe, SnTe, ...) monolayers have four degenerate structural ground states, and a
phase transition from a three-fold coordinated onto a five-fold coordinated structure takes place
at finite temperature. On unstrained samples, this phase transition requires lattice parameters to
evolve freely. A fundamental energy scale J permits understanding this transition, and numerical
results indicate a transition temperature Tc of about 1.41J . Numerical data provides a relation
among the experimental (rhombic) parameter 〈∆α〉 [Science 353, 274 (2016)] and T of the form

〈∆α〉 = ∆α(T = 0) (1− T/Tc)β , with a critical exponent β ' 1/3 that coincides with experiment.
It is also shown that 〈∆α〉 is temperature-independent in Phys. Rev. Lett. 117, 097601 (2016), and
thus incompatible with experiment. Tc and the orientation of the in-plane intrinsic electric dipole
can be controlled by moderate uniaxial tensile strain, and a modified discrete clock model describes
the transition on strained samples qualitatively. An analysis of out-of-plane fluctuations, and a
discussion of van der Waals corrections are given too. These results provide an experimentally-
compatible framework to understand structural phase transitions in 2D materials and their effects
on material properties.

I. INTRODUCTION

Besides well-understood out-of-plane corrugations,1–4

there are exquisite and intriguing physical effects on 2D
materials at finite temperature. For instance, some atom-
istic membranes can change their (average) atomistic co-
ordination, without melting in the process.

Studies of structural phase transitions in two dimen-
sions have a long and celebrated history5–7 and find ap-
plications in ferromagnetism, biological and other types
of membranes that may be dynamically or statically
corrugated and can also conformally adapted onto a
substrate, polymer networks, and other soft materials.8

Two-dimensional (2D) materials are (atom-thick) mem-
branes too, but not much has been said concerning
structural phase transitions that are not driven by stan-
dard mechanisms such as crystal nonuniformities, de-
fects, grain boundaries, impurities, electron irradiation,9

but solely by structural degeneracies in these materials
yet. This may be so because the most studied 2D mate-
rials, graphene10,11 and transition-metal dichalcogenide
monolayers on the 2H structure (2H-TMDMs)12 have
a single (and hence non-degenerate) highly-symmetric
structural ground state.

But graphene and 2H-TMDMs may rather be an ex-
ception in terms of structural degeneracies in 2D ma-
terials. Indeed, despite of its structural similarity to
graphene, hexagonal boron nitride monolayers13 display
a two-fold degeneracy by the exchange of boron and ni-
trogen atoms in their unit cells, silicene14–16 has a two-
fold degeneracy that is revealed by the exchange of upper
and lower atoms in its buckled structure,17,18 TMDMs

on the 1T phase are degenerate with upon reflection
with respect to the 2D plane, and TMDMs in the 1T’
phase (having in-plane lattice vectors that form an angle
smaller than sixty degrees) are three-fold degenerate.19

Unlike square5,7 or honeycomb lattices,1 and as seen in
Fig. 1(a), rectangular unit cells are degenerate too, by
the exchange of long and short lattice constants, and dis-
play an anharmonic elastic energy profile that pushes the
unit cell away from an unstable square configuration onto
one out of two rectangular shapes with either a1 > a2 or
a1 < a2. Therefore, 2D materials with rectangular unit
cells such as black phosphorus (BP) and some group-
IV monochalcogenide monolayers (GeSe, SnSe, SnTe, ...)
are structurally degenerate as well. The initial two-fold
degeneracy of the rectangular unit cell is aggravated by
the disposition of basis atoms, and a reflection with re-
spect to the axis perpendicular to the longest lattice vec-
tor yields an additional two-fold degeneracy, resulting in
the four degenerate structural ground states20–22 shown
in Fig. 1(b).

Previous paragraph implies that reduced structural
symmetries are, in fact, a rather pervasive feature of 2D
materials18,20–23 beyond graphene. We demonstrate in
this manuscript that these structural degeneracies neces-
sarily alter the way to think of thermal effects on atom-
thick membranes: these structural degeneracies are the
prime ingredient for observing 2D structural phase tran-
sitions that are quite intriguing and not a mainstream
topic within the 2D materials community yet. Among
other phenomena, structural degeneracies lead to non-
harmonic phonon modes,24 softened elastic constants,
and to structural transitions that tune properties by tem-
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FIG. 1. (a) Zero-temperature energy landscape E(a1, a2) of
the unit cell of a SnSe monolayer. (b) Minimal energy path-
way E(r(a1, a2)) on landscape, joining degenerate structural
ground states A→ and A← (both located at r = 0.134 Å) to
B↑ and B↓ (at r = −0.134 Å), through the saddle point c.

perature (T ).
BP monolayers cannot undergo 2D structural transi-

tions and melt directly,20 making structural degeneracies
a necessary but insufficient condition for realizing such
structural phase transitions.

Although many group-IV monochalcogenide mono-
layers do undergo experimentally-verified coordination-
related structural transitions,20,23,25 the present under-
standing of these materials at finite temperature remains
work in progress. A sign of the early stage of these in-
vestigations is the huge spread in theoretical estimations
of the transition (Curie, critical) temperature Tc

23,26 for
identical group-IV monochalcogenide monolayers, and
the relation among a fundamental scale J to be soon
defined, and Tc –either Tc ' 1.17J23 or Tc ' 6J26–
that ought to be addressed. Beyond these estimates,

the thermal behavior of these two-dimensional materi-
als provides connections among hard- and soft-condensed
matter, making these results of interest to a broad audi-
ence.

To achieve a unified description of 2D structural phase
transitions in group-IV monochalcogenide monolayers,
the three overarching conditions for the existence of 2D
structural phase transitions are enunciated in Section II.

Then, the differences among the two existent theoretical
models describing the ferro-to-paraelectric phase transi-
tion in group-IV monochalcogenide monolayers are indi-
cated in Section III; one of them (called Model 1 hence-
forth) is based on the NPT ensemble20,23 (constant num-
ber of atoms, pressure, and temperature), while the other
(Model 2) is based on a NVT ensemble26 (constant num-
ber of atoms, volume, and temperature). It is shown
that the volume constraint on the latter model yields
temperature-independent lattice parameters a1 and a2

that are inconsistent with experiment, thus leading to an
overestimation of Tc, as can be gathered from an analy-
sis of the relevant energy scale of these structures (J) in
Section IV. In Sections V and VI, the tunability of Tc by
uniaxial tensile strain is shown, which also permits orient-
ing the direction of the in-plane intrinsic electric dipole
after a threshold amount of strain is applied. Section
VII showcases a two-parameter model that describes all
observed details of these transitions qualitatively. The
results provided here are aimed to unify and to guide
what are at the moment conflicting theoretical accounts
of these structural transitions.23,26 Conclusions are pro-
vided afterwards.

Considering readability for a wide audience, a delib-
erate effort is made to highlight physical behavior over
numerics. Basically, we report DFT calculations employ-
ing the SIESTA code27 with van der Waals corrections28

on a SnSe monolayer unit cell in Figs. 1 to 2 that per-
mit defining an elastic energy landscape with degenerate
minima, and an intrinsic energy scale J . Afterwards, the
evolution of order parameters is studied through ab initio
molecular dynamics on 8 × 8 and 16 × 16 supercells on
the NPT ensemble. The use of different supercell sizes
permits assessing the dependence of Tc on system size.
The manuscript ends by describing the effects of uniaxial
strain on Tc qualitatively, employing 8× 8 supercells for
that purpose. All ab initio calculations are performed on
structures that have a separation of 20 Å among peri-
odic vertical images. Results of model calculations that
were computed with Monte Carlo methods are presented
along the way. Detailed and additional descriptions of
computational methods –that permit reproducing these
results– are given in Appendix A.

Although the material chosen here is SnSe, the results
here are meant to describe the general behavior of group-
IV monochalcogenide monolayers with rectangular unit
cells at zero temperature.

II. CONDITIONS FOR THE OCCURRENCE OF
2D STRUCTURAL PHASE TRANSITIONS

To create 2D structural phase transitions, the degen-
eracies indicated in previous Section must be comple-
mented by two additional conditions that are illustrated
on a SnSe monolayer next:

1. In the elastic energy landscape29 E(a1, a2) shown
in Fig. 1(a), an energy pathway must exist that is
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FIG. 2. (a) Structural order parameters that signal 2D phase transitions. Zero-temperature evolution of (b) structural (elastic)
energy, order parameters (c) ∆α, (d) angles α1, α2, α3, (e) θ, δ, (f) interatomic distances d1, d2, d3 and (g) electric dipole as
a function of r, for the four possible unit cells. All order parameters on subplots (b-g) depend on r and therefore, on a1 and
a2 predominantly evolving along the low-energy path drawn in Fig. 1.

highlighted as r(a1, a2) in Fig. 1(b) and joins pairs
of degenerate ground states. The joining paths are
labeled A→ ↔ B↑, A→ ↔ B↓, A← ↔ B↑, or
A← ↔ B↓ and proceed against an energy barrier
J ≡ (Ec − EA→) < kBTm at point c, where Tm
is the material’s melting point, kB is Boltzmann’s
constant, and Ec is the smallest structural energy
along the a1 = a2 line (Ec = min{E(a1, a1)}) on
a structure lacking electric polarization (hence the
omission of arrows on Ec). Horizontal (vertical)
arrows indicate a net dipole moment along the x−
(y−)direction.20 Unit cells switch among any of the
four degenerate structures once the barrier J is
overcome.5,20

2. Thermodynamic equilibrium requires degenerate
ground states to be evenly sampled, and this im-
plies that macroscopic domains representing the
four degenerate ground states will be visible on a
sample. Therefore, the second condition is that suf-
ficiently large domains exist below Tc. This condi-
tion is verified by experiment.25

When structural degeneracies exist and conditions (1-2)
are satisfied, 2D structural phase transitions alter the
properties of 2D materials in ways that are only begin-

ning to be studied.20,22,23,26

As displayed in Fig. 2(a), ∆α is a geometrical variable
motivated by experiment25 that signals a departure from
a square unit cell (∆α = 0 and a1 = a2) onto a rhom-
bus (∆α 6= 0 and a1 6= a2). In Fig. 2(a), the long and
short diagonals of the rhombus are orthogonal, and have
magnitudes 2a1 and 2a2, respectively.

Experimentally, the 2D structural transition was
linked to a sudden collapse of ∆α to zero25 which, in turn,
requires a sudden change of lattice parameters at the
Curie temperature Tc onto a1/a2 = 1,20,23 (see Fig. 2(a)
and Appendix B):

a1(r)

a2(r)
=

1 + sin ∆α(r)

cos ∆α(r)
(' 1 + ∆α(r) for ∆α(r) ' 0).

(1)
According to Eqn. (1), ∆α = 025 implies a1 = a2

20,23

and r = 0 in Fig. 1(b). The reader must note that no
other theory exists at this moment that reproduces this
experimental fact.

Besides ∆α, the four local basis atoms at any given
unit cell (bi, i = 1, 2, 3, 4) confer this 2D material with
additional structural order parameters: distances d1 =
|b3 − b2|, d2 = |b4 − b2|, and d3 = |b4 − b2 + a1|;
angles α1 = ∠(b2 + a1,b4,b2 + a1 + a2), α2 = ∠(b2 +
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a1 + a2,b4,b2 + a2), α3 = ∠(b2 + a2,b4,b2) and α4 =
∠(b2,b4,b2+a1); the angle θ = acos [(b4 − b1) · ẑ/ |b4−
b1|],26; and δ = (b1 − b4) · a1

|a1| , the projection of the

b1−b4 vector onto the local x−axis. ẑ is the local normal
to the corrugated 2D material.30–33

Considering structure A→ for reference, the interde-
pendence of δ and θ on a1(r), d1(r), and α1(r) in Fig. 2
is as follows:

δ =
a1

2
− d2 cos

(α1

2

)
, and θ = arcsin

(
δ

d1

)
. (2)

In order for the dipole moment to point along the pos-
itive x−direction, the chalcogen atom (1 and 3) has
an x−coordinate smaller than the x−coordinate of the
group-IV atom (b1x < b3x, and b2x < b4x).

E(r) in Fig. 2(b) is a one-dimensional cut of the elastic
energy landscape, Fig. 1(a), along the minumum energy
line r(a1, a2) displayed as Fig. 1(b), that emphasizes the
four degenerate ground states (A→, A←, B↑ and B↓).
This energy profile has a direct dependence on a1 and
a2, as it requires both lattice parameters to vary. Neg-
ative values of r in Fig. 1(b) –occurring for values of a1

and a2 such that a2 > a1– correspond to structures with
an electric dipole oriented along the vertical direction,
while positive values of r –taking place when a2 < a1–
describe structures with a horizontal electric dipole. E(r)
displays a cusp-like feature at r = 0 (point c in Fig. 1(b)),
representing a square structure with a zero net electric
dipole. The existence of two minima points A and B in
Figs. 1(a) and 1(b)) implies that the elastic energy profile
is anharmonic.34

When discussing the stability of 2D materials, Fa-
solino, Loss and Katsnelson argue that anharmonic con-
tributions to the elastic energy, that are absent in the
Mermin-Wagner theorem,7 are crucial to understand
long-range order in 2D materials. The anharmonic
contribution in graphene is due to the coupling of in-
plane (stretching) and out-of-plane (bending) vibrational
modes.1 As shown in Fig. 2(b), group-IV monochalco-
genide monolayers have an anharmonic elastic profile
even without considering out-of-plane bending, that may
render Mermin-Wagner theorem unapplicable as well.
(The extent of out-of-plane bending of SnSe monolayers
at finite temperature will be discussed later.)

In Figs. 2(c) to 2(f), the dependence of order parame-
ters on r are shown for the four possible structures that
were labeled with colored arrows, while Fig. 2(g) displays
the dependence of the in-plane electric dipole on r.

Numerical details aside, the points from Fig. 1 are
as follows: (a) there are four degenerate ground states
on group-IV monochalcogenide monolayers and (b) a
single characteristic energy barrier J to describe this
2D transition;20 (c) the in-plane structural transition is
driven by a sudden collapse of a1/a2 to unity.20,23

III. NPT ENSEMBLE AND THE FERRO- TO
PARA-ELECTRIC TRANSITION

A. Thermal evolution of out-of-plane corrugations,
order parameters, and configuration energy

The zero-temperature evolution of order parameters
as a function of r in Figs. 2(c) to 2(g) provides insight
into the structural properties of this material family at
finite temperature as long as r (and hence a1 and a2)
varies with T : molecular dynamics (MD) calculations at
finite temperature carried out within the NPT ensem-
ble (constant number of particles, constant pressure, and
constant temperature) allow the lattice parameters and
hence r to adapt with T .20 In fact, allowing a1 and a2

to vary is standard practice in studies of 2D materials at
finite temperature.1

One employs condition 2 from Sec. 1 and builds 8× 8
and 16×16 supercells with atoms on the ground state A→
configuration; i.e., domain A→ is set as the initial struc-
ture at zero Kelvin. The ab initio MD trends for the 8×8
supercell (256 atoms and 20,000 fs time duration) can be
obtained in three months, while the trends for the 16×16
supercell (1024 atoms and 20,000 fs) are completed in
nine months. Further details of MD calculations can be
found in Appendix A. From now on, parameters within
angular brackets represent thermal averages.

Membrane corrugations are global distortions that can
be characterized by the largest height difference ∆z at
each supercell time-frame. Given the material tickness
of z0 = 2.801 at T = 0, and the shortest side of the
supercell Lmin on the same time-frame, the (percent)
vertical deviation shown in Fig. 3(a) given by (∆z−z0)×
100/Lmin is consistent with result reported on other 2D
materials1–4 for the two supercells in present calculations.

Besides the height of out-of-plane oscillations, it is pos-
sible to define local structural variables too. For example,
using the precepts from Ref. 33, a local discrete geom-
etry was introduced to describe the local shape of 2D
crystals in Refs. 30–32. In a similar manner, all variables
in Fig. 2(a) are defined at individual unit cells and are
hence local.

Figure 3(b) displays the thermal evolution of 〈r〉 to-
wards zero past Tc. The larger path in Fig. 3(b) when
contrasted with the value of r at point A in the zero-
temperature plot (Fig. 1(b)) has to do with the thermal
expansion of the unit cell at finite temperature.

Using Eqn. (1), 〈a1〉 and 〈a2〉 obtained from MD runs
for SnSe monolayers and bilayers are recast onto the 〈∆α〉
versus temperature plot in Fig. 3(c), which constitutes
one of main results of this manuscript. The evolution of
〈∆α〉 on few-layer SnTe in Ref. 25 leads to a Curie’s tem-
perature Tc that is determined by (i) a sudden collapse
of 〈∆α〉 to zero, and (ii) Tc increases with the number of
layers. Experimental features (i) and (ii) are generic to
few-layer monochalcogenides, and captured in Fig. 3(c)
for SnSe monolayers and bilayers. This structural transi-
tion takes place within 800 fs in our MD calculations, an
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ultra-fast time that is even consistent with experimental
switching times on ultrathin chalcogen-based materials.35

Structural variables θ and δ in Fig. 2(a) and Eqn. (4)
turn the in-plane electric dipole off at point c (r = 0)
at Tc, which represents a square unit cell. In a similar
fashion, 〈θ〉 and 〈δ〉 in Figs. 3(d) and 3(e) correlate with
the vanishing of 〈r〉 in Fig. 3(d) when thermally driven
on MD runs.

The structural contribution 〈U〉 to the total energy in
the MD calculation is a result of the structural evolution,
and it is displayed in Fig. 3(f), showing a sudden increase
at Tc which implies, by virtue of Figs. 1(a) and 2(b), the
expected transition onto a square structure.

Indeed, starting on a structure originally consistent
with the A→ structural ground state, Fig. 3(f) demon-
strates that temperature drives the structural energy 〈U〉
up, making all other three structures (B↑, B↓, and ac-
cordingly A←) accessible, and thus driving the 2D struc-
tural transition. 〈U〉 is listed per unit cell in order to

write it in units of temperature, which is an intensive
quantity. The (yellow) boxes in Fig. 3 highlight the mag-
nitude of Tc obtained in MD calculations of SnSe mono-
layers without uniaxial strain, which increased with sys-
tem size, as shown in the figure.

To emphasize, materials without structural degenera-
cies will not develop a sudden structural change as the
one described by the local variables in Fig. 3(b-e): these
structural changes occur once the material –originally set
at one of the four degenerate structural ground states–
has sufficient energy to explore all four degenerate struc-
tures, thus turning onto a structure with an increased
structural symmetry, on average. In his celebrated book,
Volovik argues for symmetry breaking at low tempera-
tures, and the (average) enhancement of symmetry at a
critical temperature Tc,

36 is consistent with such funda-
mental physical insight.

In our calculations with standard out-of-plane fluc-
tuations, the local magnitudes of a1 and a2 are inter-
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atomic distances among identical basis atoms located at
the nearest neighboring unit cells. In Fig. 4, the rela-
tion between ∆α and a1/a2, Eqn. (1), leads to a thermal
behavior of 〈∆α〉 of the following form:

〈∆α〉 = ∆α(T = 0)

(
Tc − T
Tc

) 1
3

, (3)

with Tc = 212±7 K. The results here contained not only
reproduce the experimental collapse of 〈∆α〉 to zero. Re-
markably, and as a statement to their accuracy and sig-
nificance to experiment, they also reproduce the experi-
mental critical exponent, β = 1/3.

B. Phenomenological model to understand the
transition qualitatively

The trendlines are the result from Potts model, which
takes J as its only (fitting) parameter, and whose
methodology will be described now.

A phenomenological order-disorder model for two-
dimensional phase transitions in two-dimensional crystals
with four nearest-neighbors interactions and four degen-
erate ground states was developed some time ago.5 Draw-
ing an analogy between in-plane electric dipoles pointing
along four discrete orientations and spins, Tc can be es-
timated from a discrete 2D clock model to be:5,20

Tc = 1.1(4)J/kB . (4)

(Potts writes 2J
kBTc

= 1.76 for the r = 4 structural ground

states in the present problem.)
In our case, and as depicted in Fig. 3, Tc = 175 ±

11K on the 8 × 8 supercell, and 212 ± 7K on the 16 ×
16 supercell, amounting to Tc = 1.17J/kB , and Tc =
1.41J/kB for a better converged estimation, respectively.
This way, Potts model provides a phenomenological lower
limit for the relation among Tc and J due to its simplified
nature.

C. Constant 〈∆α〉 with temperature on Fei et al.
model

While the results in Fig. 3(e) do reproduce the experi-
mental drop of 〈∆α〉 to 0 at Tc, the thermal behavior of
a structure with temperature-independent lattice param-
eters, Model 2,26,37 is described by the NVT ensemble,
where the area of the 2D material is kept fixed during
the thermal evolution.

Independency of lattice parameters with
temperature26 yields ∂(〈a1a2 〉)/∂T = 0 and, using

Eqn. (1):

∂〈∆α〉/∂T = 0, (5)

which is inconsistent both with experimental
observation25 and this and previous20,23 work. In
Figs. 3(d-e), 〈r〉 and 〈∆α〉 in Model 2 take constant,
temperature-independent values that are emphasized by
straight (blue) lines.

In addition to having a temperature-independent 〈∆α〉
(and hence no critical exponent relating 〈∆α〉 and T ei-
ther), the relation among Tc and J is overestimated in
Model 2. Working with SnSe as a representative exam-
ple, the best estimate for Tc obtained from ab initio MD
calculations in this work (Model 1) is 212 K, but Tc = 326
K in Model 2.26 Such discrepancy may hamper further
work on the area, as both estimations were made with the
same underlying numerical approach (pseudopotential-
based density functional theory), and deserves careful
attention.

The discrepancy on Tc is resolved by first reaching an
agreement on the intrinsic energy scale that triggers the
structural transition. This appears necessary, as even
reported values of a1 and a2 display a large scatter of
4.35–4.70 and 4.24–4.40, respectively38–44 that affects es-
timates of J directly and of Tc subsequently.

IV. INTRINSIC ENERGY SCALE J FOR
PHASE TRANSITIONS ON 2D MATERIALS

WITH STRUCTURAL DEGENERACIES

A. Generic lattice and basis vectors needed to
compute J

The intrinsic energy scale on materials with structural
degeneracies is given by the energy difference among the
(degenerate, rectangular) ground state unit cell, and the
unit cell with high symmetry at zero temperature.

As indicated by condition 1 in Section II, the energy
difference among the square unit cell (Ec) and the energy
for a structure in the ground state (EA→) yields J , which
will be estimated in a detailed manner next.

Lattice vectors for the (square) unit cell at point c in
Fig. 1(b) are given by:

a1 =(ac, 0, 0), a2 = (0, ac, 0),

a3 = (0, 0, 20 Å), (6)

while the basis vectors (that yield a zero net electric
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TABLE I. Optimal magnitudes for lattice and basis vectors
listed in Eqns. (6) through Eqn. (9), and energy barrier J
of SnSe monolayers, as obtained with three commonly used
computational tools; van der Waals corrections are included
in these estimates. Subindex c refers to the square structure
at point c, while subindex A is to label the structural ground
state A; c.f., Figs. 1(a)-(b). z2c and z2A are 0 Å throughout.

VASP, vdW.45–48

J = (Ec − EA→)/kB = 154.84 K; ∆α(T = 0) = 2.298o

ac = 4.3418, z1c = 2.8129, z3c = 2.7347, z4c = 0.0781
a1A = 4.4678, a2A = 4.2957

δ = 0.2879, z1A = 2.8641, z3A = 2.7309, z4A = 0.1331
a1A/a2A = 1.0401, a1A/aC = 1.0290

Quantum Espresso, vdW.49–54

J = (Ec − EA→)/kB = 146.04 K; ∆α(T = 0) = 2.097o

ac = 4.3137, z1c = 2.8422, z3c = 2.7202, z4c = 0.1220
a1A = 4.4251, a2A = 4.2690

δ = 0.2684, z1A = 2.8593, z3A = 2.7180, z4A = 0.1417
a1A/a2A = 1.0366, a1A/aC = 1.0258

SIESTA, vdW.27,28,55,56

J = (Ec − EA→)/kB = 149.26 K; ∆α(T = 0) = 2.131o

ac = 4.3590, z1c = 2.7661, z3c = 2.7616, z4c = 0.0042
a1A = 4.4873, a2A = 4.3264

δ = 0.2785, z1A = 2.8035, z3A = 2.7578, z4A = 0.0457
a1A/a2A = 1.0372, a1A/aC = 1.0294

dipole given that θ = 0) are:

b1 =(ac/2, ac/2, z1c) (Sn),

b2 = (0, 0, 0) (Sn),

b3 = (0, 0, z3c) (Se),

b4 = (ac/2, ac/2, z4c) (Se), (7)

where the atomic species are indicated. ac, z2c, z3c, and
z4c, as obtained with van der Waals corrections appear
in Table I (numerical details are given in Section A).

The magnitude of ac in Table I renders the minimal
energy of a unit cell under the constraint a1 = a2 on a
structure that lacks an in-plane electric dipole (Eqn. 7),
as necessary for all four dipole orientations to occur with
equal probability as soon as a1 6= a2. Point c is a sad-
dle point on the elastic energy landscape E(a1, a2) in
Fig. 1(a): a minimum along the a1 = a2 line, and a max-
imum along the (orthogonal) r−line in Fig. 2(b).

The ground state structures A→ and A← have the fol-
lowing lattice vectors:

a1 =(a1A, 0, 0), a2 = (0, a2A, 0),

a3 = (0, 0, 20 Å). (8)

The values of a1A and a2A in Tables I and II are guaran-
teed to yield the minimum energy by an explicit meshing
procedure for a1 and a2 around point A that gives higher
structural energies for values of a1 and a2 in the closest
vicinity of the listed a1A and a2A, that can thus be con-
sidered reliable (DFT-vdW) mean field values. The basis

TABLE II. Lattice and basis vectors for structures employed
to obtain SnSe energy barrier using identical methods and
computational tool as in Ref.26. b2zc and b2zc are 0 Å through-
out. Note that lack of van der Waals corrections yields a ratio
a1A/a2A smaller than the one listed in Table I.

VASP, PBE.45,46,57

J = (Ec − EA→)/kB = 50.30 K; ∆α(T = 0) = 1.175o

ac = 4.3179, z1c = 2.7256, z3c = 2.7180, z4c = 0.0077
a1A = 4.3819, a2A = 4.2940

δ = 0.2106, z1A = 2.7505, z3A = 2.7167, z4A = 0.0338
a1A/a2A = 1.0205, a1A/aC = 1.0148

vectors of a ground state structure are:

b1 =(a1A/2± δ, a2A/2, z1A) (Sn),

b2 = (±δ, 0, 0) (Sn),

b3 = (0, 0, z3A) (Se),

b4 = (a1A/2, a2A/2, z4A) (Se), (9)

where a positive (negative) sign renders structure A→
(A←) that has an in-plane dipole moment that is oriented
towards the positive (negative) x−axis, as confirmed by
Bader charge analysis and Berry-phase calculations. Ex-
change of x− and y− components on both lattice and
basis vectors renders the two additional degenerate struc-
tures B↑ and B↓.

B. Relevance of van der Waals corrections on 2D
materials hosting lone pairs

According to Ref. 20, the ratio of lattice parame-
ters a1/a2 for group IV monochalcogenide monolayers
tends to unity as a function of the mean atomic num-
ber. Our calculations indicate that the value of the mean
atomic number for which a1/a2 = 1 is highly dependent
on the exchange-correlation functional employed, with
structures computed with LDA turning into squares for
smaller mean atomic number than structures obtained
with PBE functionals. In turn, van der Waals corrections
yield rectangular structures in cases where PBE predicts
square unit cells.

Turning to experiment, the discovery of ferroelectric-
ity on SnTe monolayers implies that this material hosts a
rectangular unit cell,25 while mean-field structural calcu-
lations with DFT and the PBE approximation indicate
the unit cell to be square.20,26

Using SnSe as a representative case example, it will be
shown that van der Waals corrections help increase the
anisotropy among a1 and a2 on group-IV monochalco-
genides, even at the monolayer limit,23 and may lead to
structural estimates that are closer to experiment.

Indeed, the energy barrier obtained for a SnSe mono-
layer in Table II follows the exact methodology and the
numerical code listed in Model 2. (They indicate that
no van der Waals corrections were included in monolayer
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calculations.) The value J = 50.3 K for the SnSe mono-
layer is similar to the previously reported value,26 and
smaller to the magnitude of 146.0–154.8 obtained with
van der Waals corrections in Table I.

Van der Waals corrections play an important role on
non-covalent interactions, such as those originating from
lone-pairs.58 The four-fold degeneracy of monochalco-
genide monolayers is the result of a three-fold coordina-
tion, which in turn is due to the existence of a lone-pair
on the Sn ion59 that inhibits a more symmetric five-fold
coordination. Since lone pairs exist even at the mono-
layer limit, van der Waals corrections may be needed for
monolayers too. The lone pair is quenched to some ex-
tent on heavier monochalcogenides with a rhombic unit
cells such as SnTe, but it can still have significant effects
on their structural anisotropy at the monolayer limit,25

that is missed within the PBE approximation.26 (In fact,
developers of van der Waals functionals refer to group
IV monochalcogenides as a material family where such
corrections may be relevant; c.f. Refs. 60 and 61).

This way, the Curie temperature of 326 K for a SnSe
monolayer reported in Ref.26 disagrees with the classic
theoretical result, Tc = 1.14×50.3 K, Eqn. (4), by about
600%. Noting that the constrained Model 2 has only
two degenerate states instead of four, Potts prediction
will turn into the prediction for an Ising system (i.e.,
the relation among Tc and J on a square lattice with
two-degenerate structural ground states): kBTc = 2.27J ,
which still remains 212 K below the value reported by Fei
and coworkers. (In looking for a close correspondence,
one should not turn inconsistent and use J from a calcu-
lation with van der Waals corrections on an estimate of
Tc obtained with a PBE exchange-correlation potential.)

An explanation for the large value of Tc in Ref. 26
will next be provided to solve contradicting accounts for
the transition temperature, thus contributing to an uni-
fied framework to understand 2D structural transitions
in these materials.

V. INCREASING THE TRANSITION
TEMPERATURE WITH TENSILE STRAIN

MD calculations uncovering phase transitions on
group-IV monochalcogenide monolayers that are based
on a NPT ensemble20,23 agree with experimental observa-
tion concerning the collapse of 〈∆α〉, down to the critical
exponent.25 It will now be qualitatively shown on a 8×8
supercell how uniaxial strain permits raising Tc up to the
large values reported in Model 2, where lattice parame-
ters are not allowed to evolve with temperature. Such
strain may be engineered, or created at the interface be-
tween the monochalcogenide monolayer and a substrate
during growth.25

To this end, and as illustrated in Fig. 5(a), SnSe mono-
layers were subjected to a one or two percent uniaxial
tensile strain along the direction defined by either a1 or
a2 at zero temperature and relaxed, still at zero temper-
ature, afterwards. Lattice parameters prior and after the
structural optimization are reported in Table III.

(a) SnSe monolayer
under uniaxial strain

<α3> < <α2> = <α4> < <α1>

<α3> <α1>
<α2>

<α4>

<d2> < <d3>

<d2>

<d3>

(c) Angles

(d) Distances

T<Tc

<α1> = <α3> < <α2> = <α4>

<α3> <α1>
<α2>

<α4>

<d2><d3>

<d2> = <d3>

T<Tc

T>Tc

T>Tc

T>TcT<Tc
<∆α> > 0

(b) <∆α>
<∆α> > 0

FIG. 5. (a) SnSe monolayer clamped onto a substrate and
subjected to uniaxial tensile strain by bending. (b) to (c):
proposed thermal evolution of 〈∆α〉, 〈α1〉, 〈α2〉, 〈α3〉, 〈α4〉,
〈d2〉 and 〈d3〉. An explicit MD verification of this structural
transition is given in Figs. 7 to 10.

Uniaxial strain impedes the creation of a square struc-
ture at Tc, and 〈∆α〉 remains non-zero through the tran-
sition, as displayed in Fig. 5(b). The introduction of
this symmetry-breaking constraint62 reduces the original
four-fold degeneracy onto a two-fold one.

As highlighted in Fig. 5(c) there are three dissimilar
angles prior to the transition, and two dissimilar ones
once the transition takes place. Similarly, as indicated
in Fig. 5(d), 〈d2〉 and 〈d3〉 become equal at Tc. This
happens as the tilt 〈δ〉 and 〈θ〉 both turn to zero, thus
quenching the in-plane electric dipole too.

The structural transition described in Fig. 5 is the one
argued for in Ref. 26, where only two degenerate ground
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TABLE III. Lattice parameters of strained SnSe at zero tem-
perature prior (a1,0, a2,0) and after (a1, a2) a structural op-
timization. Here, ε = δa1/a1, or ε = δa2/a2, accordingly.

ε a1,0 (Å) a2,0 (Å)
a1,0
a2,0

a1 (Å) a2 (Å) a1
a2

0.01 (a1) 4.5160 4.3264 1.044 4.5160 4.3200 1.045
0.02 (a1) 4.5600 4.3264 1.054 4.5600 4.3020 1.060
0.01 (a2) 4.4873 4.3750 1.026 4.4400 4.3750 1.015
0.02 (a2) 4.4873 4.4191 1.015 4.3551 4.4191 0.986
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FIG. 6. Vertical displacements of samples under uniaxial
strain. The value of Tc on the 8 × 8 unstrained sample (175
K) is emphasized by a yellow rectangle.

states exist. It will be explicitly verified through MD
calculations on uniaxially-strained samples in Figs. 7 to
10, that display the configurational energy 〈U〉, the elec-
tric dipole, and structural order parameters that include
〈θ〉, 〈δ〉, lattice parameters 〈a1〉 and 〈a2〉, as well as the
parameters 〈∆α〉, angles and distances that were high-
lighted in Figs. 5(b-d).

Similar to previous studies on non-strained samples,
an 8×8 supercell is built out of the strained unit cells
at zero temperature afterwards, and the MD simulation
box is kept fixed along the strained direction throughout
the thermal evolution, by an in-house modification of the
computational tool. MD calculations on the NPT ensem-
ble ran for over 30,000 femtoseconds at selected temper-
atures. One sees in Fig. 6 a relative increase of out-of-
plane corrugations when contrasted with Fig. 3(a), which
is due to the larger temperature range employed in runs
dealing with samples under strain. In Fig. 6, no signa-
ture of the transition can be extracted from out-of-plane
corrugations.

Figure 7 displays a 2D structural phase transition of a
SnSe monolayer under 1% tensile uniaxial strain along a1

that is captured in Fig. 7(a) by a sudden increase of 〈U〉
at a Tc = 390 K that is higher than its Tc = 175 K value
in Fig. 3(a) and is a result of the structural constraint.
The saturation value of 〈U〉 is also larger than that seen
in Fig. 3(a).
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FIG. 7. Structural transition of a SnSe monolayer under an
initial 1% uniaxial tensile strain along a1: while Tc is signalled
by the sudden agreement of lattice parameters (〈a1〉 = 〈a2〉)
and the collapse of 〈∆α〉 on unstrained samples, a strained
sample preserves a rectangular shape. Nevertheless, its in-
trinsic dipole turns to zero as in-plane angles and distances
take on two values for T ≥ Tc, instead of three for T < Tc.
The value of Tc on the 8 × 8 unstrained sample (175 K) is
emphasized by the yellow rectangle. Fitting curves are ther-
modynamical averages arising from Eqn. 10.

The order parameters 〈θ〉, 〈δ〉 and the electric dipole
〈px〉 show an identical dependence on temperature in
Figs. 7(b-d). These identical trends can be understood
from the fact that 〈δ〉 is the in-plane separation among
the positive group-IV element and the negative chalcogen
(e.g., atoms b2 and b3), that turns the in-plane electric
dipole 〈px〉 on, while 〈θ〉 is linearly proportional to 〈δ〉
for small angles.

The lattice parameter 〈a1〉 in Fig. 7(e) can be obtained
either from the fixed length of the constrained super-
cell, or from the distance among identical basis atoms
belonging to consecutive unit cells. The second choice,
displayed in Figs. 7 through 10, permits adding informa-
tion about out-of-plane oscillations at finite temperature
and confers 〈a1〉 with a slight slope and an error bar.

The orthogonal and unconstrained lattice vector a2 in-
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FIG. 8. Structural transition of a SnSe monolayer under an
initial 2% uniaxial tensile strain along a1, that raises Tc to
470 K. The value of Tc on the 8 × 8 unstrained sample (175
K) is emphasized by the yellow rectangle. Fitting curves are
thermodynamical averages arising from Eqn. 10.

creases its magnitude with temperature due to a positive
coefficient of thermal expansion. Nevertheless, 〈∆α〉 in
Fig. 7(f) remains non-zero through this transition: 〈∆α〉
is not a good measure for the structural transition of
strained samples that are never let to turn onto square
unit cells artificially in numerical calculations.

Despite of the lack of converging values of 〈∆α〉 to 0
in Fig. 7(e), Figs. 7(g) and 7(h) show a convergence of
〈α1〉 onto 〈α3〉 at Tc that is similar to the one shown in
Fig. 5(c). Similarly, 〈d2〉 = 〈d3〉 at Tc in Fig. 7(h), which
is consistent with the transition depicted in Fig. 5(d).

Given that 〈px〉 is quenched in Fig. 7(d), the transi-
tion of a group-IV monolayer under uniaxial tensile strain
bears resemblance to a transition on a NVT ensemble;26

the exception being the release of a2 to vary, a condi-
tion consistent with a SnSe monolayer clamped at two
opposite ends only.

Figure 8 shows the structural transition when the
strain is raised to a still small value of 2%. The tran-
sition is similar to the one described in Fig. 7, but now
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FIG. 9. SnSe monolayer under 1% uniaxial strain along a2:
given that the transition still occurs outside of the yellow-
marked areas, Tc still increases when the shorter lattice pa-
rameter a2 was elongated by 1%. The value of Tc on the 8×8
unstrained sample (175 K) is emphasized by the yellow rect-
angle. Fitting curves are thermodynamical averages arising
from Eqn. 10.

〈U〉 doubles it value when compared to its magnitude in
Fig. 7 while Tc continues to increase, thus demonstrating
the high degree of tunability of Tc with moderate tensile
strain.

Compressive strain is hard to achieve in 2D materials,
but as seen in Fig. 9, tensile strained can also be ap-
plied along the short lattice vector a2, thus favoring a
square structure. The larger magnitude of Tc in Fig. 9
indicates that any constraint on the original four-fold de-
generate structure increases Tc. As discussed before,20

an unstrained unit cell requires two “turning events” to
switch its polarization by 180 degree: a direct flip of
polarization from A→ to A← requires an energy of 2J ,
while a two-step flip (either A→ to B↑ to A←, or A→
to B↓ to A←) only requires overcoming a barrier equal
to J at each 90-degree flip. In favoring a pair of degen-
erate ground states over the other two, one reduces the
probability of the two-step transition to favor a transition
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through the larger (2J) barrier, hence raising Tc.
Fig. 9 is similar to Figs. 7 and 8, but Fig. 9(e) shows a

decrease of 〈a1〉 towards 〈a2〉 that is suddenly suppressed
at higher temperature. The sudden change of 〈a1〉 and
〈a2〉 with temperature is due to the thermal softening of
elastic constants in these 2D materials.

VI. SETTING THE ORIENTATION OF THE
ELECTRIC DIPOLE WITH TENSILE STRAIN

〈a1〉 is larger than 〈a2〉 in Figs. 7 through 9. Neverthe-
less, the SnSe monolayer aligns its in-plane dipole under
a threshold uniaxial tensile strain along a2, to become
parallel to the direction of the external uniaxial tensile
strain: uniaxial tensile strain can be used to orient the
direction of the intrinsic in-plane electric field.

As shown in Table III and Fig. 10, a 2% strain along
the initially smaller in-plane lattice vector a2 is sufficient
to make a2 larger than a1, and MD calculations indi-
cate that the electric dipole realigns to be parallel to the
y−direction: in Fig. 10, angles 〈α2〉 and 〈α4〉 take on dis-
similar values at zero temperature, and converge at Tc,
while 〈α1〉 and 〈α3〉 remain identical through the tran-
sition. In contrast, Figs. 7(e), 8(e) and 9(e) display dif-
ferent magnitudes of 〈α1〉 and 〈α3〉 at zero temperature
that converge at Tc, while 〈α2〉 and 〈α4〉 remain identi-
cal, while the in-plane electric dipole was oriented along
the x−direction. Tc is raised to 250 K in this scenario.

VII. PHASE TRANSITION OF STRAINED
MONOLAYERS IN A TWO-PARAMETER

MODEL

A clock model with one single fitting parameter J
allows to understand the phenomenology of unstrained
group-IV monochalcogenides qualitatively. In order to
emphasize the basic physical behavior over numerical de-
tails, we wish to maintain the simplicity of that model in
describing strained monolayers.

As indicated in Section IV, the relation among Tc
and J increases by decreasing the number of degener-
ate ground states. This observation implies that the in-
crease of Tc observed in Figs. 7 to 10 with respect to
its magnitude on an unstrained sample, could in princi-
ple be assigned to the favoring of two structural ground
states (i.e., those two parallel to the applied strain ε)
and makes it more energy costly to occupy the two states
whose dipole moments pi are parallel to the direction of
the applied strain. An interaction of the form −|pi(ε) · ε|
enforces the preference of two degenerate states over the
other two, and sets the system in between a Potts model
with four degenerate ground states when previous term
is turned off, and an Ising model when this term is on
and set larger than J , such that Tc ∼ [1.1(4) − 2.2(7)]J
depending on the magnitude of strain. Previous state-
ments imply that strain lowers the initial symmetry of the
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FIG. 10. 8 × 8 SnSe monolayer supercell under 2% uniaxial
strain along a2: as the transition occurs for Tc outside the
yellow box, Tc still increases when the shorter lattice param-
eter is elongated by 2%, the orientation of the electric dipole
flips in order to point along the longest lattice vector, making
〈δ〉 align along the y−direction in subplot (c), so that 〈py〉
is non-zero in subplot (d). (e) 〈a1〉 becomes larger than 〈a2〉
again at a temperature larger than Tc, making 〈∆α〉 in sub-
plot (f) change sign. The dipole orientation along the y−axis
comes about from the angles in subplot (g) that are different
before Tc, when compared with those in Figs. 7 to 9. Fitting
curves are thermodynamical averages arising from Eqn. 10
(Tc on the 8× 8 unstrained sample (175 K) is emphasized by
the yellow rectangle).

structure and lowers the number of degenerate ground
states.62. The preference of two states over the other
two implies that a square structure is not found at Tc as
well, such that |langle∆α〉| > 0 at Tc.

This way, the effective dynamics of strained samples
takes the following form:

U = −J
∑
i

1−
∑
〈i,j〉

cos(Θi −Θj)

− h∑
i

|pi(ε) · ε|,

(10)
where i runs over n−individual sites, 〈i, j〉 implies a
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sum over next-nearest neighbors, and Θi is the (discrete)
dipole orientation, which can take on four values that
correspond to the four degenerate ground states on the
unstrained sample, and h is an additional fitting param-
eter.

The first term to the right of Eqn. (10) is similar to the
one given in Ref.20. As discussed earlier, the second term
reduces the original four-fold degeneracy because it favors
orientations of the electric dipole that are parallel to the
direction of the applied strain, turning the system into
an Ising (two-fold degenerate) lattice, and hence yielding
Tc in between 1.14J when the first term dominates and
2.27J when the second term does. We consider strain ε
parallel to either a1 or a2 and dipole moments pointing
parallel or anti-parallel to the lattice vectors.

The dynamics expressed by Eqn. (10) were employed in
an in-house Monte Carlo solver on a 60×60 supercell, and
the solid trendlines in Figs. 7 through 10 are results from
the model that fully describe the MD phenomenology. In
order for the model to best describe MD data, we found it
necessary to increase the magnitude of J . This is, strain
sets a preference for two degenerate ground states, but
it also increases the elastic energy barrier. The parame-
ters employed in obtaining the dashed curves in Figs. 7
through 10 are listed in Table IV.
〈U〉 is the expectation value of U given in Eqn. (10),

and writing the probability of a given dipole orientation
as 〈→〉, 〈←〉, 〈↑〉 and 〈↓〉, which are all functions of tem-
perature, condition 2 in Section 1 is established by set-
ting 〈→〉 = 1 at zero temperature. This way, the lattice
parameters and other order parameters are estimated by:

〈a1(ε)〉 =

a1(T = 0, ε)(〈→〉+ 〈←〉) + a2(T = 0, ε)(〈↑〉+ 〈↓〉)
〈→〉+ 〈←〉+ 〈↑〉+ 〈↓〉

,

〈a2(ε)〉 =

a1(T = 0, ε)(〈↑〉+ 〈↓〉) + a2(T = 0, ε)(〈→〉+ 〈←〉)
〈→〉+ 〈←〉+ 〈↑〉+ 〈↓〉

,

〈∆α(ε)〉 =
〈a1(ε)〉
〈a2(ε)〉

− 1,

〈px(ε)〉 =
px(T = 0, ε)(〈→〉 − 〈←〉)
〈→〉+ 〈←〉+ 〈↑〉+ 〈↓〉

,

and

〈py(ε)〉 =
px(T = 0, ε)(〈↑〉 − 〈↓〉)
〈→〉+ 〈←〉+ 〈↑〉+ 〈↓〉

,

and shown by solid curves in Figs. 3 (for ε = 0, J = 150
K, and h = 0), and 7 to 10. There, 〈θ〉 and 〈δ〉 are
proportional to 〈p〉, and the zero-temperature values are
taken from Table III. The qualitative agreement among
the full-scale MD data and the results from the model
stands out given the simplicity of the latter: though the
model could be improved, it captures the essential effects
of strain on structure.

TABLE IV. Magnitudes of model parameters and Tc.

ε J (K) h px δ (Å) θ (deg) Tc (K)
(1010Km

C
) (10−10 C

m
)

0.01 (a1) 330 25.53 2.35 0.295 5.9 390
0.02 (a1) 375 38.46 2.60 0.305 6.1 500
0.01 (a2) 175 5.00 2.00 0.270 5.4 210
0.02 (a2) 175 51.28 1.95 0.215 4.3 250

VIII. CONCLUSIONS

To conclude, this manuscript improves the present un-
derstanding of two-dimensional structural phase transi-
tions on two-dimensional materials beyond graphene.

The conditions for 2D structural transitions are: the
existence of degeneracies on the ground state unit cell,
a path among degenerate ground states that has an en-
ergy barrier smaller than the melting point, and the ex-
istence of sufficiently large monodomains displaying a
given ground state.

Unstrained group-IV monochalcogenide monolayers
possess four switchable ground states. These materials
undergo a 2D structural transition at finite temperature
provided the lattice parameters evolve freely and uncon-
strained, such that all four ground states are sampled.
Sampling of the four ground states is essential for theory
to describe experimentally-observed transitions that are
triggered by the collapse of 〈∆α〉 to zero and possess a
critical exponent β = 1/3.

Constraining the unit cell lattice vectors to their
magnitude at zero temperature while discussing finite-
temperature properties amounts to applying strain and
it raises the transition temperature from its magnitude
on an intrinsic, unstrained sample.

The transition temperature, and even the orientation
of the in-plane intrinsic electric dipole can be widely con-
trolled by moderate uniaxial tensile strain. These MD
results can be qualitatively cast onto an extension of the
clock model. Additional studies may include the amount
of entropy in these systems at finite temperature.

The results from the present study will assist in estab-
lishing a solid theoretical background for further work
in phase transitions in two-dimensional materials, and
their effects on material properties, and offer intriguing
connections among topics in soft-condensed matter and
novel two-dimensional atomic materials.

This work was funded by an Early Career Grant from
the DOE (DE-SC0016139; S.B.L. and T.P.K). Calcu-
lations were performed at Arkansas High Performance
Computing Center’s Trestles, which is funded through
multiple National Science Foundation grants and the
Arkansas Economic Development Commission. Conver-
sations with Kai Chang are gratefully acknowledged.
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Appendix A: Further details of methods employed

The energy landscape and the dependency of order pa-
rameters of SnSe monolayers on r in Figs. 1 and 2 were
obtained with the SIESTA DFT code27 in calculations
carried out on the unit cell at zero temperature and with
van der Waals corrections within the consistent-exchange
vdW-DF-cx functional55. The pseudopotentials with van
der Waals corrections have cutoff radii as listed for PBE
pseudos in Ref.17. Calculations proceeded with a 18×18
k−point grid, and a mesh cutoff of 300 Ry for the Pois-
son solver was employed as well. The mesh from which
Fig. 1(a) was drawn included 50 independent values of
a1 and a2. As indicated in the main text, the unit cells
along the a1 = a2 line were obtained on structures that
have an explicit zero net in-plane dipole.

The structures listed in Tables I and II were obtained
with the SIESTA, VASP45, and Quantum Espresso49

computer codes, as listed.
All results obtained within plane-wave, pseudopoten-

tial density-functional theory methods (e.g., VASP and
Quantum Espresso) employ projector-augmented wave63

pseudopotentials that are tuned against the open-source
pseudopotential library.64,65.

The calculations within VASP employ a 15 × 15
k−point grid and a cutoff energy of 37 Ry. The force
convergence criteria was set to 10−3 eV/Å. In Quantum
Espresso calculations a 15 × 15 k−point grid was also
employed, with cutoff energy of 40 Ry, and a force con-
vergence criteria of 10−4 eV/Å. van der Waals corrections
in the VASP code were turned on by employing the fol-
lowing flags: GGA = OR; LUSE V DW = .TRUE., and
AGGAC = 0.0000. Espresso calculations with van der
Waals corrections employed the vdW −DF − obk8 flag.

The landscape shown in Fig. 1(a) is extremely flat near
the local minima for a regular force minimization pro-
cess with standard limits (e.g., a force tolerance of 0.001
eV/AA) to reach the lowest-energy configuration. For
this reason, a meshing of a1 and a2 around the minimum-
energy structures was employed to truly guarantee that
the absolute minima had been reached. This should help
reduce the current spread in known structural estimates.

Figure 3(e) re-expresses results from previous
calculations23 in the language of Refs. 25 and 26. These
results were obtained from ab initio MD calculations
with the SIESTA code that were performed on the NPT
ensemble, with basis sets and input parameters similar
to those listed in previous paragraph for consistency.

NPT MD calculations at standard ambient pressure
proceed with an algorithm in which temperature is con-
trolled by a Nose thermostat, while pressure is con-
trolled using the Parinello-Raman method.66 The orig-
inal method is contained in the dynamics.F file of the
SIESTA distribution.

The standard algorithm on file pushes all six containing
walls, including those not in direct contact with the 2D
material. Therefore, a physically meaningful constraint is
imposed, such that the lattice vector perpendicular to the

A

B

C

D

E∆α

a1

a1
a2

a2

β

F

FIG. 11. Geometrical parameters on a rhombus that were
employed to derive Eqn. (1) of the main text.

supercell, a3, is not a function of time. Calculations on
samples under uniaxial strain proceed by setting the time
evolution of an additional, in-plane superlattice vector
(i.e., 8a1) to zero as well, while the remaining superlattice
vector (i.e., 8a2) is let to vary with time. The algorithm
can be shared with any interested party, and additional
details will be provided in a separate publication.

Table II lists structural parameters for a SnSe mono-
layer with the VASP code within the PBE57 approxima-
tion for exchange-correlation. Here, we restate the exis-
tence of a systematic underestimation of the ratio a1/a2

in DFT calculations that can be expressed as follows:

1 ≤ (a1/a2)LDA < (a1/a2)PBE < (a1/a2)vdW .

The results in Figs. 7 through 10 where obtained with
the SIESTA code using input parameters that are similar
to those listed two paragraphs above.

Numerical limitations in the theoretical understand-
ing of group-IV monochalcogenides must also be prop-
erly acknowledged in order to foresee opportunities
for further work. For example, the magnitude of
J could be contrasted against other van der Waals
implementations,67,68 other approaches like Quantum
Montecarlo,69 and available experiments.25 Similar to
status of bulk ferroelectrics, experimental and theory-
based transition temperatures tend not to be in perfect
agreement, which does not preclude a complete theoret-
ical description of the fundamental physical picture at
hand.

Appendix B: Relation among a1/a2 and ∆α

The rhombus in Fig. 2(a) –that is reproduced in
Fig. 11– has sides AB, BC, CD, and DA of equal length
a, but angles ∠DAB = ∠BCD < 90o < ∠ABC =
∠CDA. It also has two orthogonal diagonals BD < AC.
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Given that ∠EAD = 90o, ∆α measures the deviation
from a square structure. (∆α = 0o implies ∠DAB =
∠BCD = ∠ABC = ∠CDA = 90o, and BD = AC; i.e.,
a square.)
β + ∆α = 90o in Fig. 11 yields β/2 = 45o − ∆α/2.

Orthogonality of diagonals further implies that a1
a2

=

cot
(
β
2

)
= cot

(
45o − ∆α

2

)
. Now, cos(45o) = sin(45o) =

1/
√

2, so that:

a1

a2
=

cos
(

∆α
2

)
+ sin

(
∆α
2

)
cos
(

∆α
2

)
− sin

(
∆α
2

) .

Multiplying both the numerator and denominator by
cos
(

∆α
2

)
+ sin

(
∆α
2

)
yields:

a1

a2
=

1 + 2 cos
(

∆α
2

)
sin
(

∆α
2

)
cos2

(
∆α
2

)
− sin2

(
∆α
2

) =
1 + sin(∆α)

cos(∆α)
,

which is Eqn. (1) of the main text.
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4 P. Miró, M. Ghorbani-Asl, and T. Heine, Adv. Mat. 25,

5473 (2013).
5 R. B. Potts, Math. Proc. Camb. Phil. Soc. 48, 106 (1952).
6 R. Houtappel, Physica 16, 425 (1950).
7 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
8 D. Nelson, S. Weinberg, and T. Piran, Statistical Mechan-

ics of Membranes and Surfaces, 2nd ed. (World Scientific,
Singapore, 2004).

9 E. Sutter, Y. Huang, H.-P. Komsa, M. Ghorbani-Asl,
A. Krasheninnikov, and P. Sutter, Nano Lett. 16, 4410
(2016).

10 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).

11 M. Katsnelson, Graphene: Carbon in two dimensions, 1st
ed. (Cambridge University Press, 2012).

12 P. Avouris, T. F. Heinz, and T. Low, 2D materials: prop-
erties and devices (Cambridge U. Press, UK, 2017).

13 A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and
C. Oshima, Phys. Rev. Lett. 75, 3918 (1995).

14 S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and
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