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We investigate the critical Berezinskii-Kosterlitz-Thouless (BKT) behavior of disordered two-
dimensional Josephson-junction arrays (JJA) on the insulating side of the superconductor-insulator
transition (SIT) taking into account the effect of hitherto ignored residual random dipole mo-
ments of the superconducting grains. We show that for weak Josephson coupling the model is
equivalent to a Coulomb gas subjected to a disorder potential with logarithmic correlations. We
demonstrate that strong enough disorder transforms the BKT divergence of the correlation length,
ξBKT ∝ exp(const/

√
T − TBKT), characterizing the average distance between the unbound topologi-

cal excitations of the opposite signs, into a more singular Vogel-Fulcher-Tamman (VFT) behavior,
ξVFT ∝ exp[const/(T − TBKT)], which is viewed a hallmark of a glass transitions in glass-forming
materials. We further show that the VFT criticality is a precursor of the transition into a nonergodic
superinsulating state, while the BKT critical behavior implies freezing into an ergodic confined BKT
state. Our finding sheds the light on the yet unresolved problem of the origin of the VFT criticality.

I. INTRODUCTION

More than 40 years ago, celebrated works by Berezin-
skii, Kosterlitz, and Thouless (BKT) introduced the idea
of topological phase transitions where pairs of bound
topological vortex-like excitations unbind at the critical
temperature.1–4 Soon after, the fundamental importance
of BKT theory for understanding two-dimensional (2D)
superconductivity was demonstrated5–8 in films and pla-
nar Josephson junction arrays (JJA), where supercon-
ductivity was described as a low-temperature BKT phase
with vortices and antivortices bound in vortex dipoles
(see for a review A.M.Goldman in Ref. [9] and also
Ref. [10]). Above the BKT transition temperature, TBKT,
the proliferation of low-energy vortices breaks down the
global phase coherence, and the 2D superconducting sys-
tems fall into the resistive state.
Diamantini et al. introduced the concept of a su-

perinsulating state in the framework of the gauge the-
ory of Josephson junction arrays (JJA)11 as a realiza-
tion of the Cooper pair-vortex duality,12–14 and later it
was proposed in Ref. [15] that the superinsulator is a
low-temperature charge-BKT state. The zero tempera-
ture superconductor-insulator transition (SIT) then cor-
responds to the mutual termination of charge- and vortex
BKT transitions at the self-dual point.13,16,17 The self-
dual point separates a superconducting state that har-
bors Cooper pair condensate and pinned vortices from
a superinsulating state where Bose condensation of vor-
tices inhibits charge transport.14,15,17 The dual picture
leads to similar vortex and Cooper pair dynamics on ei-
ther side of the SIT.13 The divergence of the dielectric
constant near the SIT in strongly disordered supercon-
ductor thin films which in turn leads to 2D logarithmic
Coulomb interactions between the Cooper pairs over ap-
preciably macroscopic scales15 provides a material plat-
form for the realization of charge BKT physics. This con-
jecture was found to comply with the experimental data
on TiN films16 and earlier experimental benchmarks of

the superinsulating state.18,19 The dielectric constant di-
verging on approach to the SIT from the insulating side
was recently observed in thin NbTiN films.20

The BKT critical behavior4 of the sheet resistance
upon approaching the vortex BKT transition tempera-
ture, TVBKT, from above, R ∝ exp[−b/

√

1− T/TVBKT],
has been reported in numerous works (see A.M.Goldman
in Ref. 9). Recent observations of the charge BKT crit-

ical behavior R ∝ exp[b/
√

1− T/TCBKT]
16,20 is consis-

tent with the dual BKT physics of the SIT.13 Recent
measurements21 of the temperature dependence of the
sheet resistance of InOx thin films on the insulating
side in the vicinity of a field-tuned SIT reported, how-
ever, a surprising observation of much more singular, the
so called Vogel-Fulcher-Tammann (VFT)-like critical be-
havior of the resistance, R(T ) ∼ exp[const/(T − TVFT)].
This VFT dependence is viewed as a standard critical be-
havior in glass-forming materials, but its origin remains a
puzzle in spite of the decades-long search, see Ref. [22] for
a review. At the same time, an earlier suggestion made
by Anderson23 that the origin of the VFT may also lie
in logarithmic interactions between topological defects
in the glass-forming materials, makes it appealing to re-
visit the theory of disordered superconductor films and
to examine whether the VFT criticality may arise in the
framework of the BKT physics. We will show that this
is indeed the case.

We investigate here the nature of BKT criticality
in strongly disordered superconductor thin films in the
framework of the disordered JJA model that hosts both
vortex and charge BKT transitions. Depending on the
ratio of the characteristic Josephson coupling energy EJ

and the Coulomb charging energy of a single junction,
EC, one obtains either a superconducting phase for EJ >
EC, or insulating phase for EJ < EC.

13 For concrete-
ness and also to connect with the recent experiment21,
we focus here on the insulating regime. Apart from the
well-studied effect of nucleating Cooper pair islands,24 we
argue that potential disorder is also a source of quenched
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random dipole moments. We show that such disorder
in the dipole moments, if sufficiently strong, turns the
standard BKT critical behavior of conductivity

σ(T ) ∼ e−const/
√
T−T BKT (1)

into the more singular VFT criticality

σ(T ) ∼ e−const/(T−TVFT) . (2)

The difference of critical behaviors comes from poorer
electrostatic screening (in the VFT case) due to the
freezing of charge dipole excitations that is known to
occur25 in the absence of interactions of the dipole-
dipole kind once disorder strength exceeds a critical
value. This critical strength is determined by the ratio
of temperature and Coulomb interaction scales. Based
on this consideration, we posit that the VFT and BKT
phases respectively correspond to nonergodic and ergodic
regimes of the superinsulator. The strong disorder cri-
terion is η > T/2EC, where dimensionless parameter
η defines the strength of disorder via the correlation
function of the coarse-grained random dipole potential,
〈(V (r) − V (r′))2〉 ≈ 4ηE2

C
ln (|r− r

′|/R). We construct
the disorder vs. temperature phase diagram of the su-
perinsulator transition, and this, along with the critical
behaviors given by Eqs. (1) and (2) and the phase di-
agram of the BKT critical region constitute the main
result of our work.

II. JJA MODEL AND DISORDERED

COULOMB GAS DESCRIPTION

We consider a homogeneously disordered two-
dimensional superconductor on the insulating side of the
SIT. Coarse-graining over the size of the Cooper pairs,
we approximate the disorder background charge distribu-
tion ρ(r) as a Gaussian white noise correlation function,
〈(ρ(r) − ρ̄)(ρ(r′) − ρ̄)〉 = ndδ(r − r

′), where the average
background charge density, eρ̄, equals the average charge
density of the Cooper pairs, and nd is the variance of
the coarse-grained background charge distribution. The
angular brackets stand for averaging over disorder. Near
the SIT the dielectric constant diverges κ ≫ 1, see Ref. 16
and references therein, and in a film of thickness t, the
Coulomb interaction between two charges has logarith-
mic separation r dependence as ln(Λ/r) over distances
t < r < Λ, where Λ ≃ κt is an electrostatic screen-
ing length 16,26. At distances beyond Λ the interaction
falls off as 1/r. The system is customarily viewed as
a lateral JJA comprising superconducting droplets cou-
pled by Josephson links 16. The droplets nucleate at deep
potential fluctuations resulting from intrinsic quenched
charge disorder of the host. Near the SIT, the size of the
droplets is expected to be of order of the superconducting
coherence length and in any case exceed the characteris-
tic localization length of single particles in the disordered
potential24,27,28. In the JJA, the effective dielectric con-
stant and, accordingly, the crossover length is expressed

via the characteristic capacitances 13. We will address
the situation Λ & L so that the interactions between the
charges is logarithmic.

The excess charge on a droplet interacts with the
charge distribution of other droplets. The leading
contribution to the energy is provided by the electric
‘monopoles’, the single excess charges ni on the other
droplets, −∑

i6=j ECninj ln |(ri − rj)/a|, where a is a mi-

croscopic length scale (the size of the droplet), EC =
q2/2C is the characteristic energy for creation of a CP
dipole (q = 2e) across neighboring droplets and C is the
inter-droplet capacitance 13. The next order contribution
comes from the dipole moments of the grains, Pi, which
yield the random potential energy

Vi =
∑

j

q

2πC

Pj · rij
r2ij

. (3)

Using 〈P〉 = 0, we derive, analogously to 29, that the
dipole-induced random potential is logarithmically cor-
related:

〈(V (r)− V (r′))2〉 ≈ 4ηE2
C
ln (|r− r

′|/R) , (4)

where η = π〈P 2〉/q2R2, R is the typical radius of a grain
and 〈P 2〉 ∝ nd.

The effective action for JJA comprises both, the charge
and phase degrees of freedom. Trading off the phase de-
grees of freedom for vortex variables via the Villain trans-
formation 13 gives the well-known Fazio-Schön action

S[n, v] =

ˆ β

0

dτ
∑

i,j

(

ECniUijnj + EJviUijvj + ιniΘij∂τvj

+
1

2EJ

∂τniUij∂τnj

)

+
∑

i

Vini, (5)

where vi are the integer-valued vortex degrees of free-

dom, defined on the dual lattice, Θij = arctan
(

yi−yj

xi−xj

)

and Uij = − ln |ri − rj |. In the insulating state where
EJ ≪ EC, EJ being the typical strength of the Josephson
coupling, we can treat the integer valued vortex fields
as continous fields and integrate them out to obtain the
effective charge action as

Se[n] =

ˆ β

0

dτ
∑

i,j

Uij

(

1

EJ

∂τni∂τnj + ECninj

)

+
∑

i

Vini .

(6)
Hereafter we neglect the temporal fluctuations as they
are irrelevant at low energies and do not alter the na-
ture of the phase transition governed by the interplay of
the long-range Coulomb interaction and disorder corre-
lations. The parameters in the model are thus the tem-
perature T, Coulomb energy scale EC and the effective
disorder strength η.
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III. RESULTS FROM SCALING ANALYSIS

A scaling analysis of our classical 2D Coulomb gas
Hamiltonian in Eq. (6) proceeds through analyzing the
disorder averaged real-space Kosterlitz renormalization
group (RG) equations. This RG analysis has been per-
formed by Carpentier and Le Doussal,30 and we discuss
the results relevant to our study in this section.
To deal with quenched disorder, one introduces repli-

cas and performs the average over disorder to obtain
the disorder-averaged replica Coloumb gas Hamiltonian
(with m replicas),

βH(m) =
∑

i6=j

Kabn
a
i ln

( |ri − rj |
a0

)

nb
j +

∑

i

lnY [ni].

(7)

Here the superscripts on the charges refer to the replica
index, Y [n] = exp(−naγKabn

b) is the fugacity, Kab =
βECδab − ηβ2E2

C
is the effective coupling, and a0 is of

the order of the lattice constant and serves as a short
length cutoff as we go over to the continuum description.
Disorder averaging mixes different replicas and the extent
of this mixing, which is controlled by disorder strength η,
has a qualitative effect on the phase diagram and critical
behavior.
To O(Y [n]2), one obtains the following RG flow equa-

tions for the effective coupling and fugacity as we rescale
from a0(ℓ) to a0(ℓ+ dℓ) = a0e

dℓ (thus, a0e
ℓ is the spatial

scale over which short wave-length excitations have been
integrated out by RG):

∂ℓ(K
−1
ℓ )ab = 2π2

∑

n 6=0

nanbY [n]Y [−n], (8)

∂ℓY [n 6= 0] = (2− naKabn
b)Y [n] +

∑

n
′ 6=0,n

πY [n′]Y [n− n
′].

(9)

Equation (8) comes from the annihilation of dipoles of op-
posite vector charges in the annulus a0 < |ri−rj | < a0e

dℓ.
Simple rescaling gives the first part of Eq. (9). The
second part, a new contribution that is absent in the
disorder-free case, comes from the possibility of “fusion”
of unit charges in two different replicas upon coarse grain-
ing. Here fusion refers to the possibility of combining two
vector charges with the ±1 charges occuring in different
replica indices.
The analysis of the above RG equations has been per-

formed in Ref. [30]. The phase boundary between the
superinsulating (XY phase) and normal insulating (dis-
ordered) phases is given by

2− EC

T
+

ηE2
C

T 2
= 0 for T > Tg = EC

√

η

2
; (10)

η = ηc =
1

8
for T ≤ Tg, (11)

where EC and η stand for the renormalized quantities at
ℓ = ∞.
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Figure 1. A sketch of the phase diagram of the superin-
sulating state and critical behaviours of a two-dimensional
Josephson-junction disordered array in disorder-temperaure
coordinates. Disorder being considered is the quenched ran-
dom dipole moments of the grains. In the superinsulating
phase, the probability of single charge excitations is zero. The
transition to the conducting state occurs via the proliferation
of the single charge excitations generated either thermally or
by disorder. The former leads to the BKT criticality, given
by Eq. (1), while the latter results in VFT behavior of Eq. (2).
The dotted line η = T/2EC, separates the nonergodic region
(shaded green), where the charge dipoles freeze (their free en-
ergy becomes independent of temperature), from the ergodic
region (shaded blue) where a finite entropy is associated with
the charge dipoles which can appear anywhere. Likewise, the
VFT critical region is nonergodic and conducting, while the
BKT critical region is ergodic and conducting.

Two distinct critical behaviors are identified on ap-
proach to the charge BKT transition. Near the phase
boundary at small degrees of disorder, the correlation
length exhibits the usual BKT criticality

ξ ∼ e1/
√

b/[(T/TBKT)−1], (T − TBKT)/EC ≪ 1 , (12)

where, TBKT = EC/2 is the critical temperature of the
charge-BKT transition 13 and b is a numerical constant
of order unity. For finite but small disorder η, the depen-
dence of TBKT on η can be obtained from the solution of
Eq. (10). Near the disorder-controlled phase boundary,
the correlation length is

ξ ∼ e1/(η−ηc), T/EC ≪ 1, η − ηc ≪ 1 , (13)

where ηc = 1/8 is the critical disorder strength at low
temperatures for the transition.

IV. ERGODIC AND NONERGODIC REGIMES

To understand the physics underlying these two crit-
ical scenarios, we look at a dilute gas of charge dipoles
subjected to disorder and neglect the dipole-dipole inter-
ations. Here, the distinct critical scenarios correspond to
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the system freezing into either the ergodic, at low disor-
der, or into the nonergodic, at strong disorder, respec-
tively, superinsulating states as shown in the phase dia-
gram in disorder-temperature coordinates in the Fig. 1.
The dotted line η∗(T ) = T/2EC, marks the onset of freez-
ing of isolated charge dipoles 25 where freezing means that
the free energy of dipole excitations loses an explicit tem-
perature dependence. To see this, consider a dilute gas
of dipoles, where the inter-dipole distance D far exceeds
the typical dipole size R. In this dilute limit, we focus on
a region of linear size D containing a single dipole. The
energy of this dipole is

Ed ∼ 2(lnY + EC ln(R/a0)) + (V (+)(r)− V (−)(r′)),
(14)

where V (±) refer to the respective potential energies of
the positive and negative charge constituting the dipole,
|r− r

′| = R. The first term is a uniform part and the lat-
ter term is a random contribution. Although V (+) and
V (−) individually have long-range correlations, their dif-
ference is short-range correlated beyond the scale R. The
variance of this random potential difference is easily seen
to be ∆ = 4ηE2

C ln(r/a0). Thus we effectively have a sin-
gle particle (the dipole) subjected to a Gaussian white
noise random potential with variance ∆. Factoring out
the constant part of the energy, we construct the parti-
tion function for the random energies of different charge
configurations,

Z =
∑

N

exp[−βEi
d], (15)

where i labels the charge configuration, N ∼
(D/a0)

2(R/a0)
2 is the total number of configurations.

This random energy model has been extensively studied
in the literature.31 The free energy is known to have the
following form,

F = −c(T, s) lnN +O(ln lnN), (16)

where,

c(T, s) =

{

T + s/2T forT > Tg(s)√
2s forT < Tg(s)

(17)

Here s = ∆/ lnN and Tg(s) =
√

s/2. Then for our case,
we have,

s =
2ηE2

C ln(R/a)

ln(R/a0) + ln(D/a0)
. (18)

The free energy is given by,

Fd(D,T ) ∼ 2(lnY + EC ln(R/a0))− 2c(T, s) ln

(

DR

a20

)

(19)
The freezing now takes place at T ∗ = Tg(s). The typical
inter-dipole distance D can be determined from the con-
dition, Fd(D,T ) = 0. The D thus determined will then

initially increase as T decreases and then lock to a value
D∗ as T < T ∗. Thus T ∗ is obtained by self consistently
solving the equation,

T ∗ = Tg(s
∗), (20)

with s∗ given by (18) by putting D = D∗. The solution
is then given by, T ∗ = 2ηEC .

In the ergodic phase the dipoles can appear anywhere
and thus assume the most efficient – for screening –
configuration. In the nonergodic phase, the dipoles are
frozen, as they emerge mostly due to fluctuations in the
random quenched potential, and hence may not provide
an efficient screening as compared to the one due to ther-
mally generated dipoles. This then leads to the more
singular VFT-like critical behavior. In the presence of
dipole-dipole interactions, it remains an open question
as to whether the above transition remains a true one or
becomes a crossover.

V. CHARGE TRANSPORT IN THE CRITICAL

REGION

The experimentally measurable quantity is conductiv-
ity, σ ≃ µcnc, where µc is the charge mobility and
nc ∼ 1/ξ2 is the density of free charges in the critical
regime 7. Then Eq. (12) leads us to our result in Eq. (1),
i.e., the vanishing of conductivity in accordance with the
BKT law.

We next address the conductivity in the strong disor-
der case described by Eq. (13). In Sec. III, the disorder
strength was treated as a temperature independent pa-
rameter. However in our description of the effective JJ
model (see Sec. II), η in general depends on the tempera-
ture. Physically, increasing the temperature increaes the
ionization of the dopants. We assume an activated tem-
perature dependence nd(T ) = nd(0) +Nde

−Ed/T , where
Ed is the characteristic dopant-carrier binding energy for
dopant levels near the conduction or valence bands. The
temperature dependence of nd imparts a temperature
dependence to the disorder strength, η. Let Tc be the
temperature at which η(Tc) = ηc. Expanding nd(T ) in
the vicinity of Tc, nd(T ) ≈ nd(Tc)[1 + (T − Tc)(Ed/T

2
c )],

we recover the VFT law for conductivity near the dis-
order -driven transition with TVFT = Tc and constant =
2T 2

c /(Edη(Tc)). Note that this result is obtained under
the condition Tc < EC/2, for otherwise the condition for
the thermally-driven BKT transition is satisfied first with
the increasing temperature and one obtains the BKT be-
havior of Eq. (1) as expected for the weak disorder case.
Comparing VFT and BKT results one concludes that
the transition from the VFT to the BKT behavior oc-
curs at η(T BKT) = ηc. Different critical behaviors in
the strongly and weakly disordered regimes implies the
existence of two distinct phases of the superinsulator.
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VI. DISCUSSION

In summary, we have shown that in strongly disordered
superconductor thin films, a logarithmically interacting
2D charge Coulomb gas may be realized in the vicinity of
the SIT, where the dielectric constant tends to diverge.
Apart from the well-known formation of superconducting
islands, we proposed that quenched disorder also induces
quenched random dipole moments of the charge distri-
bution of the superconducting islands, which in turn, is
the source of long-range (logarithmically) correlated po-
tential fluctuations acting on the charge excitations. We
also showed that the strength of the long-range correlated
disorder increases with temperature. At low tempera-
tures, a charge BKT (superinsulator) phase is realized,
characterized by a vanishing conductivity. Increasing the
temperature ultimately results in a BKT transition to a
normal insulator phase. We showed that in the critical
normal region, the conductivity continuously vanishes in
accordance with two different laws - the usual BKT law
for small disorder strengths, and a more singular VFT
law for strong disorder strengths. We posit that these two
distinct critical behaviors are manifestations respectively
of ergodic and non-ergodic regimes of the superinsulator
phase. The transition from the ergodic to nonergodic
regimes is associated with the freezing of single charge
dipole excitations.
By observing the critical behavior experimentally, we

can understand if the system undergoes a transition to
the ergodic or nonergodic superinsulating state. Based
on the existing data, we suggest that disordered super-
conducting TiN and NbTiN films 15,16,20 exhibit transi-
tion into the ergodic phase of the superinsulator, while
the VFT criticality reported in InO films 21 suggests non-
ergodic behavior.
An analogous situation may also arise in the context

of the superconducting transition in these systems in
the presence of a finite magnetic field. Here, random
Aharanov-Bohm phases associated with Cooper pair hop-
ping lead to a (logarithmically) long-range correlated
disorder for the vortex Coulomb gas.29,30 The crossover
length separating 2D and 3D Coulomb regimes is now the
Pearl screening length, λP = λ2/t, where λ is the stan-
dard London penetration depth and t is the thickness
of the superconducting film. Vortices tend to appear
in regions of small local superfluid stiffness, and anal-
ogously to the residual charge dipoles discussed above,
one now has residual vortex dipoles oriented along ran-
dom directions. Since the (vortex) disorder parameter η
is proportional to the density of randomly oriented vor-
tex dipoles, increasing the temperature leads to the ex-
citation of more dipoles in the weak-link regions thereby
increasing η. Proceeding with the analysis we followed

for the superinsulator phase, we arrive at essentially the
same phase diagram and critical behavior for the super-
conductor phase. Owing to the vortex-charge duality,
here the resistivity vanishes in accordance with either
the BKT or VFT law upon approaching the supercon-
ducting phase boundary. A signature of the nonergodic
superconducting phase would be the resistivity critically
vanishing according to the VFT law. Instead of tuning
the temperature, one can also tune an external (perpen-
dicular) magnetic field to control the disorder parameter
η (see Ref. 28). The same critical scaling now appears in
the magnetic field dependence of resistance near the field
tuned superconductor-insulator transition.

In Ref. 21, the authors propose that their finite tem-
perature insulator transition could be a manifestation of
the many-body localization (MBL) transition.32,33 The
rationale behind this suggestion is that the Cooper pairs
are only weakly coupled to the phonons, which is one
of the prerequisites for observing an MBL transition. In
what follows, we compare and contranst our picture with
those obtained in the MBL framework. The critical be-
havior of σ(T ) on approaching the MBL transition pro-
posed in Ref.[ 32] is identical to our result for the ergodic
BKT regime, while a recent result for conductivity in the
vicinity of a many-body localized phase 34 resembles our
nonergodic BKT behavior of Eq. (13).

A key difference is that in our picture, the zero con-
ductivity phase is the result of long-range Coulomb in-
teractions and turning up the disorder ultimately takes
us out of this phase, while, in the MBL picture, the
zero conductivity state is underpinned by disorder, and,
Coulomb interactions provide the means to delocalize
the charges. Historically, MBL studies have focused on
the case with the short range interactions, but the re-
cently proposed extension of MBL to a model with long-
range interactions35 challenges the earlier understanding
that MBL does not occur for long range interactions.36.
We further note that while the MBL phase is essen-
tially nonergodic, our superinsulating phase is ergodic
for T > 2ηEC, and non-ergodic for T < 2ηEC. In the
nonergodic region, the transition from the superinsulat-
ing phase to the conducting phase is reminiscent of the
transition to nonergodic conducting regime derived in the
MBL framework.37 The comparison of BKT and MBL
pictures is summarized in Table I .
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