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We propose the weak localization of magnons in a disordered two-dimensional antiferromagnet.
We derive the longitudinal thermal conductivity, k4., for magnons of a disordered Heisenberg anti-
ferromagnet in the linear-response theory with the linear-spin-wave approximation. We show that
the back scattering of magnons is critically enhanced by the particle-particle type multiple impurity
scattering. This back scattering causes a logarithmic suppression of ks, with length scale in two
dimensions. We also argue a possible effect of inelastic scattering on the temperature dependence
of Kqe. This weak localization is useful to control turning the magnon thermal current on and off.

The Anderson localization is an impurity-induced lo-
calization of electrons [1]. Its effects depend on the di-
mension of the system and the symmetry of the Hamil-
tonians [2-5]. The understanding has been substantially
advanced by the theory in the weak-localization regime,
where the effects of impurities can be treated as pertur-
bation [3-7]. For example, the weak-localization theory
of a disordered two-dimensional electron system demon-
strates the logarithmic temperature dependence of the
resistivity, the negative magnetoresistance, and the an-
tilocalization due to the spin-orbit coupling; those are
experimentally confirmed [8-10]. That theory also re-
veals the Anderson localization originates from the criti-
cal back scattering due to the multiple electron-electron
scattering under time-reversal symmetry [6].

Since the similar argument may be applicable to
magnons, quasiparticles in a magnet, the weak local-
ization of magnons has a potential for a new avenue in
spintronics. Among several possibilities, antiferromag-
nets are suitable because global time-reversal symme-
try holds, and because even non-disordered antiferromag-
nets have several applications [11]. (In contrast to elec-
tron systems, local time-reversal symmetry is broken in
any magnets due to the magnetic ordering.) Then, the
knowledge for disordered antiferromagnets will be useful
for others, such as disordered ferromagnets, which break
global time-reversal symmetry. As well as antiferromag-
nets, ferromagnets are useful to carry information and
energy [12-14].

In spite of the above potential, it is unclear how
impurities affect magnon transport even in the weak-
localization regime. In particular, the weak-localization
theory of magnons under global time-reversal symmetry
will be highly desirable because the previous theories [15-
18] about the magnon localization analyze the ferromag-
netic cases, in which global time-reversal symmetry is
broken. While there is a previous theory [19] about the
magnon localization in the antiferromagnetic case, that
does not study magnon transport. Since the existence of
the back scattering is not sufficient to justify the local-
ization, it is necessary to study magnon transport in dis-
ordered antiferromagnets. In particular, it is essential to
clarify whether the weak localization occurs or not in the

FIG. 1: Schematic illustrations of a lattice (a) without and
(b) with disorder. An orange circle represents a magnetic ion,
and a blue circle represents a different one. J, J + J’, and
J+J" are the Heisenberg interactions between orange circles,
between orange and blue circles, and between blue circles.

presence of global time-reversal symmetry without local
time-reversal symmetry and how the weak localization of
magnons is characterized by an observable quantity.

In this paper, we formulate the longitudinal thermal
conductivity, Kz, of magnons in a disordered Heisenberg
antiferromagnet, and show disorder effects in the weak-
localization regime. Our formulation is based on the
linear-response theory [20-22] with the linear-spin-wave
approximation [23]. In our model, disorder is induced by
partial substitution for magnetic ions [Fig. 1(b)], and
its main effect is considered as changing the value of
the Heisenberg interaction. We show that the particle-
particle type multiple impurity scattering of magnons
causes the critical back scattering for any dimension and
any spin quantum number S. Most importantly, this
critical back scattering drastically suppresses the magnon
thermal flow in two dimensions. We also argue a possible
temperature dependence of k,, in the presence of inelas-
tic scattering. We finally discuss validity of our theory
and implications of experiments and theories. Through-
out this paper, we set kg = 1 and h = 1.

Model.—We begin to construct a model for a disor-
dered antiferromagnet. Our model Hamiltonian is H =
flo + flimp, where flo is the Hamiltonian without impu-
rities and ﬁimp is the impurity Hamiltonian. ﬁo consists
of the antiferromagnetic Heisenberg interaction between



nearest-neighbor sites and the magnetic anisotropy:
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where ¢ € A and j € B for A or B sublattice, and
Z@j) = Nz/2 with N, the number of sites, and z, the
coordination number; the numbers of A and B are equal.
We assume that J(> 0) is much larger than D(> 0).
Then, we construct flimp as follows. We first assume
that one kind of disorder is substitution for magnetic ions
(see Fig. 1), and its main effect is to modify the value
of the exchange interaction; for simplicity, we neglect the
disorder effect from the magnetic anisotropy because its
magnitude will be much smaller. Thus, flimp becomes

Hip =2 AJS™ S5 85, (2)
(i.3)

with AJS™ = J' for i € Aunp, j € Bo or for i € Ay,

J € Bimp, and AJ(‘mp) J" for i € Aimp, J € Bimp; Ao
and By represent A and B sublattice for orange circles in
Fig. 1(b), while Ajpp and Biyp represent those for blue
ones; the numbers of Ajn, and Bjyp are equal. In the
similar way for electron systems [24], we suppose that
impurities are randomly distributed. Also, we assume
that J’ and J” are much smaller than J. Thus, the main
terms of Eq. (2) come from the mean-field type terms:
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where Vimp = 252" J" with 2, the coordination number
for J+ J”. Here we have neglected the other mean-field
type terms, — 3 1AV S; +Y jesVS; (V = 2S2'J' with
z', the coordination number for J + J'), because those
lead to the same effect as the magnetic anisotropy in the
linear-spin-wave Hamiltonian; the effect of the terms in
Eq. (3) is different due to the limit of the sum of sites.

We next express our Hamiltonian in terms of magnon
operators. For that purpose, we use the linear-spin-wave
approximation [23] for a collinear antiferromagnet. As
the result, Eq. (1) becomes

HO —Z Z Ell'

q =

quql’ (4)

where €a4(q) = epp(q) = 25(Jz + D) and eap(q) =
epa(q) = 2SJ Y, €97, and Eq. (3) becomes

Hip =Y S V™ (q—q)iliqr.  (5)

q,q' lI=A,B

where V,"*(Q) = Vimp 2 Dict,, €9* Here Y is the
sum of momentum in the first Brillouin zone; the magnon
operators fulfill g4 = dq and Z4p = bj] with a4, the an-

nihilation operator for A sublattice, and I;L, the creation

X
N NN N

PO
O

FIG. 2: Feynman diagrams of (a mﬁ"“‘) ) the Dyson equa-

tion, (c) Akgr and (d) contrlbutlon from the particle-hole
type vertex corrections. The bold arrows and thin arrows de-
note the magnon Green’s functions after taking the impurity
averaging and magnon Green’s functions without impurities;
a dotted line denotes the impurity scattering.

operator for B sublatice. Then, we obtain the eigenval-
ues of Eq. (4) using the Bogoliubov transformation [23]:
Hy = dgv—ag €q®h, qu, where v is the band index
for o and 3 bands, ¢q = \/EAA((])2 —€eap(q)? and &g =
> e Uw(@)Zqn with Usaa(q) = Upp(q) = coshby,
Uap(q) = Upa(q) = —sinh 6y, and tanh 26, = Zﬁfggg

Situation.—As magnon transport in our disordered
antiferromagnet, we consider k.., given by o =
Kzz(—0,T). Here Jj& is the thermal current density, and
(—=0,T) is the temperature gradient; for magnons, the
thermal current is equal to the energy current. We focus
on the thermal transport rather than charge transport,
considered for the localization of electrons [6, 7], because
charge transport is absent in magnets, magnetically or-
dered insulators. Furthermore, we consider k., because
Kz 1S finite even without external magnetic fields. To
analyze K., we assume that the temperature gradient is
so smooth that the local equilibrium is reached, that is,
the local temperature is definable. We also assume that
the local energy conservation holds. Those assumptions
are standard ones [20-22, 25].

Linear-response theory.—Using the linear-response
theory [20-22, 26-28], we can express kg, as
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2 (1, — w+1i0+) with Q,, = 27Tn
(n=0,+1,£2,- bosonic Matsubara frequency, and

Ko (i) = fo dTezmT(TTJE(T)JE) with T, a 7-
ordering operator [25]. Since the energy current operator
can be derived by using the local energy conservation [25],
we can derive J& of our model [29]:
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with €% ,(q) = —e% 5(q) = BTUGAB(q) and €% 5(q) =

e€pa(g) = 0. Then, by using a field theoretical tech-
nique [24, 26-28], we obtain
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where > 1,y = > 11.00,15,15, the Bose distribution func-
tion n(e), and D) (¢’,q,¢) and D™ (g,q',€), the ad-

l4lq lals
vanced and retarded Green’s functions of magnons for H
before taking the impurity averaging. (For the deriva-
tion, see Supplemental Material [29].) We have ne-

glected the term including (D( )(q’,q, )D( )(q,q',e))

lalq lols
or <Dl(ﬁz (q',q,e)Dl(ﬁi (g,q’,€)) because the term in Eq.
(8) is primary in the weak-localization regime [6, 7).

Weak-localization theory.—We formulate the weak-
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The contribution from the particle-hole type vertex cor-
rections [Fig. 2(d)] is negligible for our disordered an-
tiferromagnet because of the similar argument for elec-
tron systems with inversion symmetry [28]. Then, the
magnon Green’s functions in Eqgs. (9) and (10) are deter-

mined from the Dyson equation [Fig. 2(b)]: Dl(l,)(q7 €) =
0(R. DOR R), \ (R

Dy (q.e) + Y DY (g, 0800 () DY) (g, €),

D?l(, )(q, €) is the retarded Green’s function without

where

impurities, and EI(R)(E) is the retarded self-energy,
R ~(R .
El( )(6) = 'VimquDl(l )(q,e) with Yimp = %nimp‘/;rznp;
the advanced quantities are similarly determined. The
vertex function in Eq. (10) is determined from the
Bethe-Salpeter equation [Fig.  2(c)]: Ty (Q,w) =
Yimp i (@5 ) Yimp + D ’Yimszz"(Q, W)y (Q,w) with
AR
Hll’(va) = Ztth(l')((hv ) ll' (Q qi,w )

To proceed with the formulation as simple as possi-
ble, we introduce two simplifications. The first one is
about the self-energy: we consider only the imaginary
part. This is appropriate because its effect is essential
for the localization [6, 7]. The other is about the Green’s
functions: for positive frequency we consider only the
positive-pole contribution, while for negative frequency
we consider only the negative-pole contribution. For

the more precise explanation, let us consider D?l(,R)(q, €).

localization theory of our disordered antiferromagnet.
That theory describes the disorder effects in the weak-
localization regime, in which the magnitude of Viy, is
smaller than the magnon energy and the impurity con-
centration, nimp = NJ‘\‘}“’, is dilute. Since Vipyp comes from
J", we can apply the perturbation expansion of Hlmp o)
Eq. (8). We can employ that expansion in a similar way

for the longitudinal conductivity of electrons [6, 7], and
reduce Eq. (8) to kyx = KB 4 Ak £SO

without vertex corrections [Fig. 2(a)],
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and Akg, is the contribution from the particle-particle
type vertex corrections [Fig. 2(c)],

/(@)D (g, )Tii(q +q',€) DY (g, DY (¢, ), (10)

That for our model is given by

Uia (@)U 0(q)
€—€q+ 10

~ Uis(q@)Urs(q)
€+e€q+ 10

DY (q,€) = . (11)

where 6 — 0+. The above first and second terms provide
the positive-pole and negative-pole contributions, respec-
tively; the first and second terms are dominant for € > 0
and € < 0, respectively. We thus approximate D?l(,R) (g,€)
for € > 0 by the first term of Eq. (11), and D%R) (g,€)
for € < 0 by the second term. Combining this and the
first simplification with the Dyson equation, we obtain

Uia(q)Ura(q)

€ —eq+i7(e)

~ Us(@)Urs(q)
€+ eq+i7(—e¢)

(e > 0),
DY (g, e) ~ (12)

(e <0),

where j(e) = (cosh?fy + sinh®fy)y(e) with ~v(e) =
Nimp VimpTp(€); p(€) is the density of states, and g of
these hypobolic functions are determined by eq = [e].
The advanced quantities are similarly simplified.

The above simplifications enable us to proceed with
the formulation in a similar way for the weak localization

of electrons [6, 7]. First, we get a simple expression of
(Born)
Koz -

e TNZ(aeq )2{_82(:)}%(6‘*)’ (13)




where 7(eq) = J(€q) 1. Due to the factor [—9n(eq)/Deq],
the contributions for small ¢ = |g| are dominant. Then,
by estimating II;; (Q,w) and T'jy (Q,w) for small Q =
|Q|, we can demonstrate that I';;(Q,w) diverges in the
limit @ — 0. The brief outline of the estimates is as
follows (for the details, see Supplemental Material [29]).
First, by using Eq. (12) and performing the momentum
sum in I (Q,w), Iy (Q,w) for small @ is expressed as
2 2 2~
e @20

M (@)~ 4 0 v (14)
18N : s — (w < 0)7
Yimp(c5+55)

where w;, = Ui (qo), co = coshfy, and so = sinhfy,,

0 . .
Dy(w) = ﬁ|%|2 (w) = o2 7(w), the spin diffu-
—1

sion constant for d dimensions, and 7(w) = F(w)

(w)
(cd+s5)°

the momentum-dependent cosh® f, and sinh® 6, by the
typical values, cosh? 0q, and sinh” 0q0; Qo is a momen-
tum with small magnitude. This will be sufficient for a
rough estimate because the dominant contributions come
from the terms for small |g1|. Then, combining Eq. (14)
with the Bethe-Salpeter equation, we obtain

In the above estimate, we have approximated

2,2 Yimp
T > 0),
Ui Ug O‘Ds(w)QQT(w) (w )
I (Q,w) ~ Yim (15)
ujsug b (w<0).

? Dy(~w)Q?7(-w)

This demonstrates the divergence of I';/(Q,w) in the
limit @ — 0. This divergence indicates the critical back
scattering for ¢ = —q in Eq. (10); the other terms about
q’ are non-singular. We thus put ¢’ = —q in Eq. (10)
except I'vi(g + @', €) to estimate the main effects of the
critical contribution. Under this simplification, we can
rewrite Eq. (10) as

7w e )T—%%?kﬂﬂ

nlmp 1mp
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AKgy ~
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The dominant contributions come from the terms for
small ¢ = |q| due to the same reason for £io"™ . In the
sum of q’, we have replaced the lower value of Q = |g+¢’|
by a cut-off, L™, which approaches zero in the thermo-
dynamic limit. Also, we have replaced the upper value of
Q by Lt the inverse of the mean-free path. (The prime
of the sum of g’ represents those replacements.)

Weak localization in a two-dimensional case.—As a
specific example, we apply the above theory to a two-
dimensional case on the square lattice for arbitrary S.
In this case, €;/(q) are eaa(q) = epp(q) = 25(4J + D)
and eap(q) = epa(q) = 4SJ(cosq, + cosgy). Since we
have ¥ gl +q/|7% = [/ §2Q- Q7% = £ In()

m

and we can approximate y(eq) and Dg(eq) in Eq. (16)
by Yo = 7v(€q,) and Dy = Ds(eq,), respectively, Ky, =
R(Bom) + AKgy 1s reduced to

nimpV;?np
mm(%)} (17)

This shows that the critical back scattering causes the
logarithmic suppression, which diverges in the thermody-
namic limit. Thus, magnons are localized at low temper-
atures in the two-dimensional disordered antiferromag-
net.

The above In L dependence may indicate that the InT
dependence emerges in the presence of inelastic scat-
tering because of a similar argument for electrons [30,
31]. We have considered only the elastic scattering of
ﬁimp. However, if we consider the interaction between
magnons, it causes the inelastic scattering, resulting in
a temperature-dependent mean-free path. Since that is
expressed as a power function of T, the In L dependence
of Ky, may result in the In T dependence in the presence
of the inelastic scattering.

Discussion.—We first discuss validity of our theory.
It treats partial substitution for magnetic ions as im-
purities, and analyzes the effect on k., in the weak-
localization regime. Such situation may be realized by
substituting some of magnetic ions with different ones,
which belong to the same family of the periodic table; an
example is substitution of Ag ions for Cu ions. We have
considered such substitution because magnetic ions in the
same family have the same S due to the same number
of electrons in the open shell [e.g., in LagCuj_,Ag, Oy,
(3d)? for Cu ions and (4d)® for Ag ions], and because its
main effect is to change the exchange interaction. Then,
our theory is applicable to disordered Heisenberg anti-
ferromagnets for any S and any dimension, while the
specific example considered in this paper is the two-
dimensional case. Since our theory uses the linear-spin-
wave approximation, which can be appropriate at low
temperatures, our theory can generally describe the weak
localization of magnons of any disordered Heisenberg
antiferromagnets at low temperatures. In our theory,
the temperature effect comes from the Bose distribution
function.

We now turn to experimental implications. Our main
result shows that the magnon energy current parallel
to the temperature gradient is drastically suppressed in
the disordered two-dimensional antiferromagnet. This
property is experimentally testable by measuring and
comparing k., in cases without and with partial sub-
stitution of magnetic ions; for example, this can be
done in a quasi-two-dimensional antiferromagnet, such
as LagCuy_,Ag,0y4. In addition, this property will be
useful for a thermal switch as a spintronics device be-
cause turning the magnon thermal current on and off is
controllable by partial substitution of magnetic ions.

Ko K(Born) |:1



Our theory also has several theoretical implications.
That may provide a starting point for further studies of
magnon localization because the weak-localization the-
ory [2, 3] for electrons under time-reversal symmetry
opened up the further research in various situations [6, 7].
In particular, by using or extending our theory, it is pos-
sible to understand how the dimension of the system
and the symmetry of the Hamiltonians affect the weak
localization of magnons in disordered antiferromagnets.
Furthermore, in a similar way for our theory, we can
construct the weak-localization theory of magnons for
another magnet even if its Hamiltonian includes more
complex terms. That study may help understand the
difference due to the magnetic structure and exchange
interactions.

Summary.—We have formulated k., of the disordered
Heisenberg antiferromagnet in the weak-localization
regime, and showed the weak localization of magnons
in two dimensions. This theory is valid at low tempera-
tures for any S and any dimension. We have shown that
the multiple impurity scattering critically enhances the
back scattering of magnons, resulting in the logarithmic
suppression of kg, with L in two dimensions. Also, we
have argued that this logarithmic suppression may result
in the logarithmic temperature dependence of x,, due to
the inelastic scattering. Our weak localization can be ex-
perimentally observed by measuring k., in a quasi-two-
dimensional antiferromagnet, such as LasCuj_,Ag,Oy4.
Furthermore, our weak localization may be utilized as a
thermal switch. This work provides a starting point for
further research of the weak localization of magnons.
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