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We perform systematic Langevin molecular dynamics simulations of interacting skyrmions in thin
films. The interplay between Magnus force, repulsive skyrmion-skyrmion interaction and thermal
noise yields different regimes during non-equilibrium relaxation. In the noise-dominated regime the
Magnus force enhances the disordering effects of the thermal noise. In the Magnus-force-dominated
regime, the Magnus force cooperates with the skyrmion-skyrmion interaction to yield a dynamic
regime with slow decaying correlations. These two regimes are characterized by different values of
the aging exponent. In general, the Magnus force accelerates the approach to the steady state.

Magnetic skyrmions, particle-like spin textures en-
countered in many magnetic thin films and bulk materi-
als with broken inversion symmetry and strong spin-orbit
coupling under a weak applied magnetic field [1–4], have
recently been observed at room temperature [5, 6]. This
opens many possible avenues for applications in spintron-
ics such as data storage [7, 8] and logic [9] devices due
to the ultra-low current densities required to move these
topologically protected spin textures.

Recent computational [10, 11] and experimental [12,
13] evidence suggests that a particle-like treatment of
skyrmions is valid in certain regimes. Using Thiele’s ap-
proach [14, 15], which treats skyrmions as rigid point-
like particles, equations of motion can be derived [10]
that lend themselves to in-depth numerical simulations
of interacting skyrmion systems. A similar treatment has
been used to derive equations of motion for vortices in
type-II superconductors [16, 17], and the resulting equa-
tions are in fact quite similar to those for skyrmions [18],
except for the Magnus force which is usually negligible in
vortex dynamics. The Magnus force acts normal to the
drift velocity of the skyrmion and can therefore cause or-
bits or spiraling trajectories. Recent progress has focused
on the steady-state properties and dynamical phase tran-
sitions of driven skyrmions moving in an environment
with random quenched disorder [11, 19, 20] or on a sub-
strate [21–23].

As applications become more widespread it will be im-
portant to develop a more complete understanding of
the relaxation dynamics of interacting skyrmions. Ex-
ploiting the particle equations of motion and the result-
ing coarse-grained framework, we probe in the following
relaxation processes of many interacting skyrmions far
from equilibrium. Our main emphasis is to gain a better
understanding of how the interplay between the Mag-
nus force, the repulsive skyrmion-skyrmion interaction,
and thermal fluctuations affect the non-equilibrium re-
laxation properties of skyrmion systems.

In the absence of defects or strong noise, skyrmions
crystallize into a triangular lattice configuration, see Fig.
1, due to the mutual repulsive force between them. Non-

FIG. 1: A system of interacting skyrmions prepared in a dis-
ordered initial state at t = 0 evolves over time into a trian-
gular configuration. Voronoi diagrams constructed from the
particle positions are shown in the bottom row. In a perfect
triangular lattice each region associated with a particle would
form a regular hexagon. At early times the Voronoi lattice is
dominated by defects (polygons that are not hexagons), with
the number of defects decreasing over time. Polygons have
between four and eight sides and are colored in red, magenta,
white, cyan, or blue from least to greatest side number.

equilibrium relaxation kinetics of ordering systems are of-
ten paired with physical aging phenomena. A many-body
system is said to undergo physical aging if the following
three properties are satisfied [24]: (1) the relaxation to-
wards equilibrium is slow, i.e. non-exponential; (2) time-
translation invariance is broken; and (3) dynamical scal-
ing is present. Prominent examples of physical aging can
be found in coarsening systems (including spin glasses
and magnets), polymer glasses, and growth processes, to
name but a few [25–27]. As revealed by numerous the-
oretical and experimental studies, physical aging is best
studied through the investigation of two-time quantities
[24].

We consider interacting skyrmions moving on a two-
dimensional surface under the rigid structure approxi-
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mation, where deformations of the internal spin struc-
ture are taken to be negligible so that the skyrmions are
treated as point-like particles. Recent experiments point
to the validity of this particle-like treatment [12, 13]. The
motion of N interacting skyrmions is modeled according
to a set of Langevin equations derived from Thiele’s ap-
proach [14, 15, 28] and defined in terms of the skyrmion
drift velocities vi(t) and positions ri(t)

ηvi = FM
i + F s

i + f , (1)

where i = 1, ..., N labels the N different skyrmions,
whereas η is the damping coefficient. FM

i = βẑ × vi
is the Magnus force, whose strength can be adjusted by
changing the value of the parameter β. The Magnus
force, which acts in the direction perpendicular to the
skyrmion’s velocity, does not contribute to the energy
of the system and therefore does not break detailed bal-
ance. Still, as shown in the following, the presence of the
Magnus force significantly affects the transient dynamical
properties of a system of interacting skyrmions.

The repulsive skyrmion-skyrmion interaction in (1) has
the form (as determined through a numerical study [10])
F s
i =

∑
i 6=j F

s
0K1(rij/ξ)r̂ij where K1(y) is the modified

Bessel function of the second kind, r̂ij = rij/ |rij | = (ri−
rj)/ |ri − rj | is the unit vector pointing from skyrmion
j to skyrmion i, and ξ is the healing length. This force
decays exponentially for rij/ξ � 1. Finally, the last term
on the right side is thermal white noise obeying 〈fµ(t)〉 =
0 and 〈fµ(t)fν(t′)〉 = σδµνδ(t− t′), with σ = 2ηkBT and
µ, ν = 1, 2 [29]. No driving currents are included here and
the pinning due to defects are considered to be negligible.

In the following simulations we take the skyrmion in-
teraction coefficient F s0 = 1. We also apply a constraint
on the system in terms of the coefficients η and β, namely
that η2 + β2 = 1 [21, 22]. This constraint ensures that
the average magnitude of the velocity of a free skyrmion
is independent of the Magnus force. We also ran simu-
lations without this constraint (not shown) and verified
that the same qualitative behavior is obtained as that
discussed in the following. We choose units such that the
healing length ξ = 1 [10].

We consider in the following systems of size 2√
3
36× 36

with periodic boundary conditions that allow for the
skyrmions to form at equilibrium a triangular lattice.
We tested that the skyrmions in the absence of noise
indeed settle into this triangular configuration. The non-
equilibrium simulations reported below have been done
with N = 149 skyrmions (which corresponds to a cov-
erage of 10%). We checked that our results are robust
against changing system sizes and/or coverage, as long as
the particle picture remains valid. As revealed by many
other studies of non-equilibrium relaxation processes [24],
results obtained for some system size are representative
of much larger systems as long as the system is not yet
close to its steady state. We assume that the system is
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FIG. 2: Edge statistics of Voronoi diagrams generated from
the skyrmion positions at time t = 800 and noise strength
σ = 0, with the Magnus force either turned off (red/left) or
on with β/η = 5 (green/right). An increase of the probabil-
ity to observe six-sided polygons is seen in simulations with
a non-zero Magnus force, indicating a faster relaxation into
equilibrium in the presence of this force. The data result from
averaging aver 150,000 independent runs.

initially in a disordered state where the skyrmions are
located at random positions in our two-dimensional sys-
tem. The system is then allowed to relax for t > 0 at
the temperature T (or, equivalently, at a given value of
σ) following the Langevin dynamics discussed above and
quantities are measured as a function of time.

A first indication of the Magnus force’s impact on re-
laxation processes can be garnered from a statistical anal-
ysis of Voronoi maps like those shown in Fig. 1. In
Fig. 2 we compare for the case without noise the edge
statistics for Voronoi diagrams obtained from simulations
with (in green at the right) and without (in red at the
left) the Magnus force at time t = 800 since preparation
of the system. With the addition of the Magnus force,
six-sided domains become more likely than without, in-
dicating that the presence of the Magnus force facilitates
the crystallization into the triangular lattice. This is a
consequence of the fact that rearrangements of particles
are easier due to the dynamical bending of the moving
particles’ trajectories. It is this facilitation of collective
motion that allows the system to find new, and quicker,
paths towards the steady state.

For a more detailed investigation of the relaxation pro-
cess and the related aging phenomena we turn to two-
time quantities, such as the two-time density autocorre-
lation function, that have been shown to provide valu-
able insights into these processes [24]. Over time the
repulsive skyrmion-skyrmion interaction tends to maxi-
mize the skyrmions’ average nearest neighbor distance.
As a result the skyrmions move away from their random
initial positions, causing the decay of the density auto-
correlation function. In order to capture these changes
we follow Ref. [30] and set at time s a circular area with
radius r (the data discussed below have been obtained
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FIG. 3: (a) The two-time autocorrelation (2) of a system of
non-interacting skyrmions, for various waiting times, s. The
trajectories are completely determined by thermal fluctua-
tions causing the skyrmions to perform random walks. This
results in a simple aging scaling behavior with an aging expo-
nent b = 1, see Eq. (3), as shown in panel (b). The data dis-
played in this figure, which result from averaging over 8000 in-
dependent runs, have been obtained for σ = 0.1 and β/η = 0,
but the observed scaling is independent of the values of these
parameters.

for r = 0.08, but none of the observed features change
when choosing a different, albeit similar, value for r) at
the location of each skyrmion. At time t > s, we count
the number of skyrmions still in their circles, generat-
ing the occupation numbers ni(t), with ni = 0 or 1 (of
course ni(t = s) = 1 by construction). This quantity is
then averaged over the N different skyrmions as well as
over many initial conditions and realizations of the noise
to produce the two-time autocorrelation

C(t, s) =
〈 1

N

N∑
i=1

ni(t)ni(s)
〉
. (2)

A test case, which will help us to understand the re-
laxation properties of the full problem, is provided by
switching off the interactions between skyrmions, see Fig.
3. In that case the skyrmions perform independent ran-
dom walks, and it is expected that the two-time autocor-
relation function (2) displays a simple aging scaling form
[24]

C(t, s) = s−bfC(t/s) , (3)

with the aging exponent b and a scaling function fC(y)
that only depends on the time ratio y = t/s. As shown
in Fig. 3, the data obtained for different waiting times
s display a perfect scaling with b = 1. We observe the
same scaling for all values of σ, both in the absence or
presence of the Magnus force. Indeed the Magnus force,
which corresponds to a non-zero value of β, serves only
to rotate the skyrmions in the plane but leaves the sta-
tistical properties of the random walks unaltered.

We supplement the results from the density autocor-
relations by measuring also the time-dependent average
nearest-neighbor distance

D(t) =
〈 1

N

N∑
i

min
i 6=j

rij

〉
(4)
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FIG. 4: (a) Scaled two-time autocorrelation function for dif-
ferent waiting times s and (b) average nearest-neighbor dis-
tance for the two noise strengths σ = 0 (circles in (a) and
black line in (b)) and σ = 0.2 (squares in (a) and red line in
(b)) in the absence of the Magnus force. The scaling expo-
nent b in (a) varies with the noise strength σ, with b = 0.10
for σ = 0 and b = 0.30 for σ = 0.2. At higher values of σ,
skyrmions are on average driven further away from their pre-
ferred positions within the lattice which yields lower values
of D(t). For σ = 0 the system still contains imperfections
at the end of our runs, with D being slightly smaller than
the equilibrium value. The data for the autocorrelation re-
sult from averaging over a few thousands independent runs,
whereas for D(t) we averaged over a few hundred independent
realizations.

from random initial conditions. In a regular trian-
gular lattice where each of the N sites is occupied
by a skyrmion, the distance between two neighboring
skyrmions is l∆ = 2√

3N
L. For the system studied in

this work this yields l∆ ≈ 3.4. The distance D(t), which
approaches the value l∆ only at very late stages of the
ordering process, provides a time-dependent length scale
that may encode additional interesting details of the re-
laxation of the system [31].

The relaxation of interacting skyrmions is much more
complex than that of free particles. As discussed in Figs.
4 and 5, the interplay between skyrmion interaction, ther-
mal fluctuations, and Magnus force yields aging scaling
with non-universal (i.e. dependent on the strength of
the different terms) aging exponents. To disentangle the
different contributions, we first discuss in Fig. 4 the be-
havior in the presence of interactions and thermal noise
alone, before considering in addition the effects of the
Magnus force in Fig. 5.

In the absence of pinning disorder our system of inter-
acting skyrmions evolves toward the regular triangular
lattice. Thermal noise, however, prohibits the system to
reach the perfect triangular lattice, which instead settles
for moderate noise levels into a partially ordered state
where most of the particles fluctuate around their ground
state positions. Neglecting the Magnus force, this yields
an average distance between skyrmions that is slightly
reduced compared to that measured in the absence of
noise, see Fig. 4b. Further increasing σ increases this
effect until for very large noise levels (corresponding to
large temperatures) the skyrmions behave effectively like
free skyrmions as long as they are not too close. Conse-
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FIG. 5: Unscaled two-time autocorrelation function as a func-
tion of t/s for different values of s in the presence of a Mag-
nus force with β/η = 5: (a) σ = 0 (circles) and (b) σ = 0.2
(squares). In (a) the data sets are ordered from bottom to
top when increasing the waiting time s, whereas in (b) it is
the other way round. (c) Scaled two-time autocorrelations
(σ = 0: circles; σ = 0.2: squares) and (d) average near-
est neighbor distances for the same two cases. The value of
the aging exponent changes sign when decreasing σ, being
b = 0.60 for σ = 0.2 and b = −0.50 for σ = 0.

Without Magnus Force With Magnus Force
β/η = 0 β/η = 5

σ b σ b
∞ 1.0 ∞ 1.0
0.5 0.45 0.5 0.95
0.2 0.30 0.2 0.60
0.1 0.20 0.1 -0.20
0.0 0.10 0.0 -0.50

TABLE I: Measured values of the aging scaling exponent with
and without the Magnus force.

quently, we expect for large values of σ a scaling behavior
close to that displayed in Fig. 3, with more pronounced
deviations showing up the smaller the value of σ is. As
shown in Fig. 4a and Table I, this is indeed the case,
with the value of the aging exponent b decreasing mono-
tonically until it reaches the minimal value b = 0.10 in
the absence of noise.

As already mentioned, a general property of the Mag-
nus force is to accelerate relaxation toward the final state.
One way to see that is to compare Figs. 4b and 5d
that show the time-dependent average distance between
skyrmions. In the presence of the Magnus force D(t)
approaches much faster a plateau-like behavior that in-
dicates the proximity to the final state. Focusing first
on the case of large values of σ, we remark that in this
noise-dominated regime the Magnus force enhances the
effects of the thermal noise, resulting in disordered states

characterized by a much smaller value of D at long times
than that encountered if the Magnus force is negligible
(see the data for σ = 0.2). This is also readily seen in
the scaling of the autocorrelation, see Fig. 5c and Table
I, where the aging scaling exponent b is much larger for
σ = 0.2 and σ = 0.5 when the Magnus force is present.
Remarkably, for σ = 0.5 the value b = 0.95 is already
very close to the value b = 1 for the case σ = ∞ where
thermal noise completely dominates the skyrmion inter-
action.

A second regime of interest is that where the Mag-
nus force dominates the thermal noise, yielding predom-
inantly curved trajectories. Comparing in Figs. 5a and
5b the unscaled autocorrelation function for σ = 0 and
σ = 0.2, we note an inversion of the order of the data
sets as a function of the waiting time. For σ = 0.2, and
this is the same for the cases without the Magnus force
discussed in Figs. 3 and 4, the larger the waiting time
is, the smaller the value of C is for a given value of t/s,
which yields a positive aging exponent b > 0. In con-
trast to this, for σ = 0 the autocorrelation for a fixed
value of t/s is larger for larger waiting times, which then
yields a negative aging exponent b < 0, see Table I. This
remarkable change indicates that in the Magnus-force-
dominated regime the complicity of the Magnus force and
the skyrmion-skyrmion interaction yields states that are
increasingly correlated the closer the system gets to the
steady state.

Our study of interacting skyrmions has yielded im-
portant insights into relaxation processes for situations
where the particle picture prevails. These processes are
heavily influenced by the interplay of the Magnus force,
the repulsive skyrmion-skyrmion interactions, and the
thermal noise. In general, the Magnus force accelerates
the relaxation process, allowing the system to approach
the steady state much faster than in the absence of this
velocity-dependent force. Our study reveals two differ-
ent regimes, one dominated by thermal noise, the other
dominated by the Magnus force. In the former regime
the Magnus force enhances the effects of the noise, re-
sulting in final states with increased disorder, as mea-
sured by the significantly lower value of the average dis-
tance between skyrmions. In the regime dominated by
the Magnus force, the cooperation between this force and
the skyrmion-skyrmion interaction yields an increase of
the correlations between successive configurations. The
change in regime is signaled by a change of the sign of the
aging exponent b. It will be interesting to see whether
these different regimes can be identified experimentally
in studies of interacting skyrmions at different tempera-
tures.
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