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We show how the snowflake phononic crystal structure, which has been realized experimentally
recently, can be turned into a topological insulator for mechanical waves. This idea, based purely
on simple geometrical modifications, could be readily implemented on the nanoscale.

Introduction. – First examples of topologically pro-
tected mechanical wave transport have just emerged dur-
ing the past three years. So far, experimental implemen-
tations exist on the centimeter-scale, both for the case
of time-reversal symmetry broken by external driving [1],
such as in coupled gyroscopes, as well as for the case with-
out driving [2–6], such as in coupled pendula. Moreover,
a multitude of different implementations have been en-
visioned theoretically [7–24]. However, it is highly desir-
able to come up with alternative design ideas that may be
realized on the nanoscale, eventually pushing towards ap-
plications in integrated phononics. The first theoretical
proposal of this kind [25] suggested to exploit the optome-
chanical interaction to generate chiral (uni-directional)
mechanical waves in a phononic crystal. While that ap-
proach is particularly robust against disorder, it requires
breaking the time-reversal symmetry by an external laser
drive. To avoid this requirement, one can resort to topo-
logical insulators, with helical mechanical waves where
the propagation direction depends on a (pseudo-)spin.
These can be implemented using a purely geometrical
approach. A first step in this direction is the phononic
crystal design proposed in Ref. [26]. However, it requires
feature sizes much smaller than the phonon wavelength.
It is, thus, impossible to reach wavelengths comparable
to the smallest feature sizes allowed by nanofabrication.
In this letter, we propose a simple modification to an al-
ready existing structure, the so-called snowflake phononic
crystal, that has already proven to be a reliable plat-
form for nanoscale optomechanics [27], and could also
support pseudomagnetic fields for mechanical waves [28].
With the proposed modification, which is inspired by an
idea first analyzed by Wu and Hu for photonic systems
[29] (see also [30] for the corresponding experimental im-
plementation and [17, 18, 23, 31] for related theoretical
work), we are able to create a topological insulator for
mechanical waves based on a proven nanoscale platform.

Helvetica-Fontsize: 16px LaTex-Fonstize: 16px

LaTex-Fonstize: 20pxHelvetica-Fontsize: 20px
LaTex-Fonstize: 24pxHelvetica-Fontsize: 24px

Default Font-Size:Picture produced by:

Name:

a

b

! M K N !

Fr
eu

qn
cy

 o
in

 H
z

#10 9

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Blue Unitcell

N L ! N

Red Unitcell r c = r

N L ! N

Red Unitcell r c = 2000nm

c d e
�r = 0 �r = 200 nm�r = 0

fr
eq

ue
nc

y 
in

 G
H

z

1.2

1.3

1.4

1.5

1.6

quasi momentum
~K~� ~M ~L~N ~� ~N ~N~� ~L~N ~N~�

band structures:
Snowflake/TopoInsulator/FEM/2016_11_15_UnitcellFolding/Plot1.m

3d-snowflake images:
Snowflake/TopoInsulator/Zeichnungen/*.mph 

~K

~�
~M~K 0

~L ~N

kx
ky

TI_Paper_Fig1_resubmission

a

r
r + �r

w

x

y

slab thickness:d

Figure 1. Setup and bulk band structures (FEM simula-
tions). (a) Snowflake crystal design defined by the param-
eters (a, r, w, d,∆r) where d is the slab thickness. For ∆r = 0
(∆r 6= 0), the border of the Wigner-Seitz cell is drawn in blue
(red). (c) Reciprocal space. The edges of the corresponding
Brillouin zones are drawn in the same colors. Plotted are also
the contours along which the band structures in panel (c) and
(d-e) are calculated (blue and red contours, respectively). (c)
Band structure for ∆r = 0. (d) Same band structure, but
folded into the smaller BZ. The Dirac cones at the K and K′

points are now mapped onto the Γ point. (e) Band structure
for ∆r 6= 0. The Dirac cones are now gapped. Note that the
same behavior is observed for several Dirac cones (highlighted
by dotted boxes). The modes symmetric to the xy-plane are
displayed in darker colors. [Here we have considered a silicon
crystal slab with Young’s modulus of 170 GPa, mass density
2329 kg/m3, Poisson’s ratio 0.28, and geometrical parameters
(a, r, w, d) = (5000, 1800, 750, 220) nm]

Original Snowflake design. – The snowflake crystal
is a planar quasi-two-dimensional crystal slab patterned
with snowflake-shaped holes arranged on a triangular lat-
tice. Thus, it exhibits the D6h symmetry (six-fold rota-
tional symmetry with in-plane and out-of-plane reflec-
tions). Strictly speaking, it is an optomechanical crystal,
but here, we will only make use of its phononic prop-
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erties which we investigate by solving the full elastic-
ity equations [32, 33], as well as approximate analyti-
cal treatments and tight-binding models. The phononic
crystal band structure is shown in Fig. 1c. It displays
Dirac cones at the two high-symmetry points, K and
K′. The geometrical parameters are optimized to obtain
spectrally well isolated Dirac cones in view of opening a
complete topological band gap for the modified crystal,
as described below.

Topological design. – The proposed modification con-
sists in changing the radius of every third snowflake, cf.
Fig. 1a. By doing so, we break the original translational
symmetry while preserving the point group. The new
Wigner-Seitz cell, with a single modified snowflake at its
center, is enlarged by a factor of three, while the Brillouin
Zone (BZ) is reduced by the same factor, cf. Fig. 1b. We
anticipate this reduction by folding the band structure
for the as-yet unperturbed structure into the new BZ
(see Fig. 1a-b). This maps the Dirac cones from K and
K′ points of the old BZ to the Γ-point of the new BZ,
forming a degenerate pair of Dirac cones at Γ (Fig. 1c-d).
For the new structure, the breaking of the translational
symmetry of the original structure splits the cones, open-
ing a complete band gap (Fig. 1e). Below, we show that
such band gap can be topological in nature.

Effective Hamiltonian. – We complement our finite el-
ement simulations by deriving an effective Hamiltonian
valid for long wavelengths. In this context, the nor-
mal mode wavefunction ψ(x, y, z) is a complex three-
dimensional vector field related to the mechanical dis-
placement field u(x, y, z) by u = Re

[
ψ · e−iωt

]
where ω

is the normal mode eigenfrequency. We follow a route
that clarifies the connection to the original valley de-
gree of freedom. The results can alternatively be ex-
plained by the symmetry arguments first advocated for
C6-symmetric structures in a photonic context in [29].
We start by pointing out that the Dirac cones of the
regular snowflake crystal stem from an essential degen-
eracy enforced by the C6v symmetry. Such a degener-
acy occurs whenever a normal mode |ψσ,τ 〉 has three-fold
quasi-angular momentum σ = +1 or σ = −1 for quasi-
momentum K (corresponding to τ = 1) or K′ (corre-
sponding to τ = −1). That this indeed occurs for the
tip of a cone can be verified using finite elements simu-
lations, see Ref. [28] where the mode displacement fields
are shown for similar parameters. By applying the sym-
metries M̂xz (reflection through the plane xz), and R̂π
(180-degree rotation) it follows that the state belongs to
a quadruplet of degenerate states |ψσ,τ 〉 (σ = ±1 and
τ = ±1) fullfilling

|ψσ,τ 〉 = M̂xz |ψ−σ,τ 〉 = R̂π |ψσ,−τ 〉 . (1)

Next, we introduce two sets of Pauli matrices to span this
4-dimensional Hilbert space. One set encodes the valley
degree of freedom, τ̂{x,y,z}, and another one the quasi-
angular degree of freedom, σ̂{x,y,z}, such that τ̂z |ψσ,τ 〉 =
τ |ψσ,τ 〉 and σ̂z |ψσ,τ 〉 = σ |ψσ,τ 〉, and the usual set of
Pauli matrices holds in this basis.

We now write the Hamiltonian as a Taylor series up
to linear order in k by using the above matrices. By
keeping only terms that are invariant under the time-
reversal symmetry T̂ , 60-degree rotations R̂π/3, and M̂xz,
we obtain [33]

Ĥk = gτ̂x + vτ̂z(kxσ̂x − kyσ̂y). (2)

This derivation can be generalized to systems without
the symmetry M̂xz (in-plane point group C6), see SM
[33]. Up to a unitary transformation, Hamiltonian (2) is
the large-wavelength limit of the Bernevig-Hughes-Zhang
model for a topological insulator [34]. Here, the con-

served helicity is the matrix Ŝ = τ̂xσ̂z. Combined with
the time-reversal operator, it gives rise to a pseudo time-
reversal symmetry (T̂ Ŝ), which squares to minus the
identity, directly leading to Kramer’s degeneracy. The
first term in Eq. (2) is induced by the breaking of the
translational symmetry of the original structure and is
responsible for gapping the Dirac cones. In other words,
g can be interpreted as a mass. At the Γ-point, the
common eigenstates of Ĥk=0 and Ŝ are the states |p±〉
and |d±〉 which obey τ̂x |d±〉 = |d±〉, τ̂x |p±〉 = − |p±〉,
Ŝ |p±〉 = ∓ |p±〉, and Ŝ |d±〉 = ∓ |d±〉. One can show
that these states are actually of p- and d-type with re-
spect to 60-degree rotations [? ]

R̂π/3
∣∣p±〉 = e±iπ/3

∣∣p±〉 , R̂π/3
∣∣d±〉 = e±i2π/3

∣∣d±〉 .
Thus, the band inversion signaling a topological phase is
realized for g < 0. Note that away from the Γ point only
states of the same helicity (s = ±1) will get mixed to form
the finite−k eigenstates. This conservation law emerges
because the terms which are linear in k can induce transi-
tions only between states whose 60-degree quasi-angular
momenta differ by one quantum: p+ to d+ and p− to
d− [33]. Higher-order terms (e.g. ∼ k2) not included
in Eq. (2) mix different helicities [33] but are negligible
close to the Γ point. An indirect signature of this cou-
pling is the lifting of the degeneracy of the two helicities.
Remarkably, for our specific design, the splitting remains
smaller than 1.5% of the band gap even for a quasimo-
mentum as large as 1/4 of the distance to the boundary
of the Brillouin zone, |k| ≤ π/(6a).

From Eq. (2), we see that the snowflake crystal under-
goes a topological phase transition whenever the mass g
changes sign. We can simply tune g by varying the radius
of the central snowflake, see Fig. 2. The behavior of g can
be understood by noting that the p-orbitals have extra
nodes at the external links leading out of the (enlarged)
unit cell (enforced by a phase-difference of π across those
links) and taking into account that the p− and d− bands
are degenerate for the original structure. Thus, the addi-
tional energy cost associated with the larger phase gradi-
ent (compared to a d-orbital) across these external links
exactly offsets the benefit of a reduced phase gradient
on a path encircling the central snowflake when ∆r = 0
(∆r is the change of radius). Obviously, stronger internal
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Figure 2. Band inversion (FEM simulations): Frequencies of
the |p±〉, |d±〉 modes at the Γ-point evolving for a sweep of
∆r. Snapshots of the corresponding displacement fields for
∆r = ∓200 nm are also shown. The in-plane displacement
field is directly visualized by the deformation, whereas the
out-of-plane displacement is encoded in the color scale. d(p)-
orbitals are (anti-)symmetric under rotation by 180 degrees.
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Figure 3. FEM simulations for an infinite strip. (a) Snowflake
strip configuration comprising two different domains, with the
lower (upper) domain containing smaller (larger) snowflakes
with ∆r = −200 nm (∆r = +200 nm). The depicted strip
hosts n = 11 resized snowflakes (nl = 6 blue and nu = 5
red). (b) Acoustic band structure of the blue domain only,
with a system size n = 17. The blue shaded area indicates
the strip’s bulk bands, whereas the sole remaining bands are
degenerate pairs of edge states localized at both boundaries
of the strip. (c) Counterpart to (b) for the upper domain,
essentially the strip version of Fig. 1e. A strip comprising
two domains (∆rl/u = ∓200 nm,nl = 18,nu = 17) has the
band structure depicted in (d,e). In addition to the bulk
modes and the edge modes at the physical boundaries (g), it
reveals the two topologically protected counter-propagating
modes localized at the domain wall [wave function in (f)]. For
clarity, in all these band structures we just depicted the modes
symmetric to the sample plane. For all FEM calculations fixed
boundaries (u = 0) were used at the upper and lower end of
the silicon slab.

links, corresponding to a negative ∆r, favor energetically
the p-states, leading to positive g, cf. Fig. 2.

Helical edge channels. – In the presence of a domain
wall where the mass g changes sign, Eq. (2) leads to
helical edge states along the domain wall [35–37]. More
precisely, the edge states have opposite helicity (s ± 1),
propagate in opposite directions with speed v, and have
penetration depth ξ ∼ |gbulk|/v [35–37]. The underlying
assumption is that the mass g changes smoothly at the
lattice scale. Here, we test this scenario for a sharp do-
main wall, solving the full elasticity equations [33]. More
specifically, we consider a strip with a finite extent along
y. Before investigating the effects of domain walls, we
briefly discuss the strip with a spatially homogeneous
mass term. Fig. 3 shows the band structures of strip con-
figurations with ∆r = −200 nm (b) and ∆r = 200 nm (c).
The Dirac cones are replaced by a complete bulk band
gap. Moreover, localized boundary states occur due to
the symmetry breaking at the sharp sample boundaries
(Fig. 3g), but these are not protected by any symmetry
and are highly sensitive to the exact geometry of the edge.

Next, we attach both structures to each other (Fig. 3a)
and obtain a strip geometry with a domain wall where
the sign of the mass g ∝ ∆r flips. The corresponding
band structure is shown in Fig. 3d. It is basically a su-
perposition of the band structures depicted in (b) and (c).
However, two new states appear that traverse the gap en-
tirely, with a linear dispersion of opposite slope (group
velocity). Moreover, there is no discernible avoided cross-
ing between these two states, underlining the absence of
back-scattering expected for topological insulators due
to the symmetry-protection. Fig. 3f shows the quasi-
momentum resolved wave function of the right-moving
state (red energy dispersion in panel e). For small quasi-
momenta it is highly confined around the domain wall,
with a typical penetration depth inversely proportional to
the size of the bulk band gap (as expected from ξ = v/g0).

Effects of disorder . – One of the more intriguing ques-
tions is how far the helical transport is robust once the
C6 symmetry is broken by the presence of a domain wall
or by generic disorder. Here, based on simple general ar-
guments, we identify the conditions where the resilience
should be granted. Moreover, we identify two scenarios
where it goes far beyond the expectations.

Any smooth perturbation can be described in the
framework of an envelope function approximation by the
effective Hamiltonian (2) with space dependent param-
eters g and v. Thus, smooth disorder and smooth do-
main walls are non-magnetic (they do not break the
pseudo time-reversal symmetry) and do not lead to any
backscattering of topological excitations. More generally,
backscattering is suppressed for any perturbation whose
matrix elements between states of opposite helicity van-
ish for small quasimomentum transfer. One can show
that this applies even to sharp defects if the defect itself
has the C6 symmetry, e.g. a hexagonal cell where the
masses of all 6 triangles have been changed by the same
amount, or where the central snowflake hole has been left
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Figure 4. Finite size sample with arbitrarily shaped sharp do-
main wall, simulated using a tight-binding model. One polar-
ization (p−) is injected and propagates to the right, which can
be identified with the wave function of Fig. 3f. (a) Detailed
representation, showing all 6 triangles inside each hexagonal
unit cell. Color indicates the square of the mechanical wave
amplitude, i.e. the energy. (b) Extracting the component of
the p− mode inside each unit cell. (c) Scattering into the other
helicity (p+) is present, but still strongly suppressed even at
sharp corners. Note that in panel (c) we enhanced the de-
picted energy by a factor of 10 to make the weak scattered
component visible. (d) Weak component of opposite polar-
ization (p+) appearing at a corner [color scale different from
before]. (e) Domain wall geometry (transverse to corner). (f)
The total fraction of p+ polarization decreases for a smoother
domain wall.

out.

Arbitrary boundaries. – Next, we discuss two scenar-
ios where the resilience of the topological transport goes
well beyond the expectations. Firstly, our FEM simula-
tions do not show any discernible sign of backscattering
for sharp, translationally invariant domain boundaries.
Such a scattering would show up in the form of a minigap,
i.e. an avoided crossing between the counter-propagating
edge states. A similar behavior has been observed also in
[29, 31] for related C6-based photonic topological insula-
tors. Secondly, inspired by this unexpected behavior, we
have investigated a related scenario where the suppres-
sion of backscattering would seem at a first sight even
less probable: randomly shaped domain walls. To keep
the computational effort manageable, we consider a tight-
binding model on the honeycomb lattice (cf. also [18])
that closely mimics our phononic crystal design [33].

As shown above, the unidirectional edge states along
smooth domain walls are superpositions of the states with
the same helicity s (e.g. p+ and d+). Fig. 4 shows the en-
ergy distribution for a mechanical wave that is propagat-
ing at a randomly shaped domain wall. We excite a whole

unit cell (indicated by the yellow arrow) with a |p−〉-type
mode shape, thereby launching a right-propagating me-
chanical wave. By calculating the linear response of each
lattice site to this particular excitation, we obtain the
propagation probability (modulus squared of the Green’s
function) of the mechanical excitation. Our simulations
reveal a surprisingly weak helicity-flipping by the sharp
randomply-shaped boundaries, cf. panel c where the
transmission of |p+〉-type excitations is plotted. This
helicity-flipping is completely suppressed when a sharp
domain wall (with a sudden jump in hopping amplitudes)
is replaced by even only a slightly smoothened wall, cf
Fig. 4d–f. Most remarkably, even for sharp boundaries
there is no visible transmission to the left of the injection
point, cf. Fig. 4a–d. In other words, the backscattering is
still suppressed in spite of the randomly-shaped bound-
aries. On the other hand, significant backscattering is
introduced by moderate values (above 3%) of generic dis-
order, see [33]. A surprising resilience to sharp disorder
was also observed in recent extensive FEM simulations
[23] for a macroscopic acoustic metamaterial similar to
the photonic design of [29].

Implementation. – The snowflake phononic topologi-
cal insulator proposed here is a simple modification of an
existing nanoscale structure and is, thus, straightforward
to fabricate at any scale, down to the nanoscale. The fab-
rication induced disorder observed in existing nanoscale
devices is of the order of 1% [27] and will be smaller
for larger scale devices. For the more complex finite
structures discussed above, FEM simulations including
the effects of disorder would be numerically far too ex-
pensive. However, our tight-binding calculations suggest
that 1% disorder will not induce significant backscatter-
ing [33]. The remaining experimental challenge is the
excitation and read out of helical mechanical waves. The
most suitable approach depends on the implementation
scale and ranges from mechanical, through electrical, to
optomechanical, see [28]. On the nanoscale, each trian-
gular membrane forming the snowflake lattice could host
a optical cavity interacting with the edge mode via ra-
diation pressure. In this setting, the desired mechanical
waves could be induced and read out by a laser with
a modulated intensity, similar to the schemes proposed
in [28, 38]. A helicity-selective excitation and read out
of mechanical waves is possible by interfering two laser
beams, one of them carrying unit orbital angular mo-
mentum [39], which produces a suitable pattern of forces.
Alternatively, one could excite and read out unpolarized
mechanical waves, while the helical nature of the trans-
port could still be revealed by a beam-splitter-like setup
as in Ref. [3]. We have further validated our approach
performing a complete ab-initio finite-element simulation
of this setup, see [33].

Outlook. – The simplicity of the nanoscale design will
turn the snowflake phononic topological insulator into
a versatile platform for generating arbitrary phononic
circuits and networks [40, 41] on the chip, which may
interact with hybrid quantum systems of various kinds,
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including embedded strain-coupled dopant-based qubits
[42–44] and superconducting qubits coupled via surface-
acoustic waves [45]. A qubit could emit phonons in a
pseudo-spin-selective way via a triplet of electrodes ap-
plying piezo-electric strain to the snowflake triangles in
a chiral fashion. These new helical phonon networks
could also contain optically tunable non-reciprocal ele-
ments [46], as well as quantum-limited chiral traveling
wave amplifiers of phononic signals (adapting the scheme
presented in [47]).

Acknowledgments. – C.B., V.P. and F.M. acknowl-

edge funding by ERC StG OPTOMECH and the EU
HOT network, as well as the Max Planck Society. V.P.
acknowledges support by the Julian Schwinger Founda-
tion (grant JSF-16-03-0000). O.P. acknowledges funding
by the AFOSR-MURI Quantum Photonic Matter, the
ARO-MURI Quantum Opto-Mechanics with Atoms and
Nanostructured Diamond (grant N00014-15- 1-2761),
and the Institute for Quantum Information and Matter,
an NSF Physics Frontiers Center (grant PHY-1125565)
with support of the Gordon and Betty Moore Foundation
(grant GBMF-2644).

[1] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M.
Turner, and W. T. M. Irvine, Proceedings of the Na-
tional Academy of Sciences 112, 14495 (2015).

[2] R. Susstrunk and S. D. Huber, Science 349, 47 (2015).
[3] C. He, X. Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu,

X.-P. Liu, and Y.-F. Chen, Nature Physics 12, 1124
(2016).

[4] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and
Z. Liu, Nature Physics advance online publication
(2016), 10.1038/nphys3999.

[5] L. Ye, C. Qiu, J. Lu, X. Wen, Y. Shen, M. Ke, F. Zhang,
and Z. Liu, Physical Review B 95, 174106 (2017).

[6] B.-Z. Xia, T.-T. Liu, G.-L. Huang, H.-Q. Dai, J.-R. Jiao,
X.-G. Zang, D.-J. Yu, S.-J. Zheng, and J. Liu, Physical
Review B 96, 094106 (2017).

[7] E. Prodan and C. Prodan, Physical Review Letters 103,
248101 (2009).

[8] P. Wang, L. Lu, and K. Bertoldi, Physical Review Let-
ters 115, 104302 (2015).

[9] Z. Yang, F. Gao, X. Shi, X. Lin, Z. Gao, Y. Chong, and
B. Zhang, Physical Review Letters 114, 114301 (2015).

[10] T. Kariyado and Y. Hatsugai, Scientific Reports 5, 18107
(2015).

[11] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alu,
Nature Communications 6, 8260 (2015).

[12] Z.-G. Chen and Y. Wu, Physical Review Applied 5,
054021 (2016).

[13] R. Fleury, A. B. Khanikaev, and A. Alu, Nature Com-
munications 7, 11744 (2016).

[14] R. K. Pal, M. Schaeffer, and M. Ruzzene, Journal of
Applied Physics 119, 084305 (2016).

[15] J. Lu, C. Qiu, M. Ke, and Z. Liu, Physical Review Let-
ters 116, 093901 (2016).

[16] K. H. Matlack, M. Serra-Garcia, A. Palermo, S. D. Hu-
ber, and C. Daraio, arXiv:1612.02362 [cond-mat] (2016).

[17] J. Mei, Z.-G. Chen, and Y. Wu, Scientific Reports 6,
32752 (2016).

[18] T. Kariyado and X. Hu, arXiv:1607.08706 [cond-mat]
(2016).

[19] R. Susstrunk and S. D. Huber, Proceedings of the Na-
tional Academy of Sciences 113, E4767 (2016).

[20] N. P. Mitchell, L. M. Nash, D. Hexner, A. Turner,
and W. T. M. Irvine, arXiv:1612.09267 [cond-mat,
physics:physics] (2016).

[21] H. Abbaszadeh, A. Souslov, J. Paulose, H. Schomerus,
and V. Vitelli, arXiv:1610.06406 [cond-mat] (2016).

[22] A. Souslov, B. C. van Zuiden, D. Bartolo, and V. Vitelli,
arXiv:1610.06873 [cond-mat] (2016).

[23] Z. Zhang, Q. Wei, Y. Cheng, T. Zhang, D. Wu, and
X. Liu, Physical Review Letters 118, 084303 (2017).

[24] R. K. Pal and M. Ruzzene, New Journal of Physics 19,
025001 (2017).

[25] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt,
Physical Review X 5, 031011 (2015).

[26] S. H. Mousavi, A. B. Khanikaev, and Z. Wang, Nature
Communications 6, 8682 (2015).

[27] A. H. Safavi-Naeini, Physical Review Letters 112 (2014),
10.1103/PhysRevLett.112.153603.

[28] C. Brendel, V. Peano, O. J. Painter, and F. Mar-
quardt, Proceedings of the National Academy of Sciences
, 201615503 (2017).

[29] L.-H. Wu and X. Hu, Physical Review Letters 114,
223901 (2015).

[30] Y. Yang, Y. F. Xu, T. Xu, H.-X. Wang, J.-H. Jiang,
X. Hu, and Z. H. Hang, arXiv:1610.07780 [physics]
(2016), arXiv: 1610.07780.

[31] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and
M. Hafezi, New Journal of Physics 18, 113013 (2016).

[32] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P.

PitaevskiÄ, Theory of Elasticity (Elsevier, 1986).
[33] See Supplemental Material.
[34] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science

314, 1757 (2006).
[35] M. Z. Hasan and C. L. Kane, Reviews of Modern Physics

82, 3045 (2010).
[36] J. K. Asboth, L. Oroszlany, and A. Palyi,

arXiv:1509.02295 [cond-mat] 919 (2016), 10.1007/978-3-
319-25607-8.

[37] R. Jackiw and C. Rebbi, Physical Review D 13, 3398
(1976).

[38] M. Schmidt, S. Kessler, V. Peano, O. Painter, and
F. Marquardt, Optica 2, 635 (2015).

[39] A. M. Yao and M. J. Padgett, Advances in Optics and
Photonics 3, 161 (2011).

[40] S. J. M. Habraken, K. Stannigel, M. D. Lukin, P. Zoller,
and P. Rabl, New Journal of Physics 14, 115004 (2012).

[41] M. Schmidt, M. Ludwig, and F. Marquardt, New Journal
of Physics 14, 125005 (2012).

[42] B. Golding and M. I. Dykman, arXiv:cond-mat/0309147
(2003), arXiv: cond-mat/0309147.

[43] V. N. Smelyanskiy, A. G. Petukhov, and V. V. Osipov,
Physical Review B 72, 081304 (2005).

[44] O. O. Soykal, R. Ruskov, and C. Tahan, Physical Review
Letters 107, 235502 (2011).

[45] M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ek-



6

strom, G. Johansson, and P. Delsing, Science 346, 207
(2014).

[46] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Mar-
quardt, A. A. Clerk, and O. Painter, Nature Physics ad-

vance online publication (2017), 10.1038/nphys4009.
[47] V. Peano, M. Houde, F. Marquardt, and A. A. Clerk,

Physical Review X 6, 041026 (2016).


