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The 2D XY model is the first well-studied system with topological point defects. On the 

other hand, although topological line defects are common in 3D systems, the evolution 

mechanism of line defects is not fully understood. The six domains in hexagonal manganites 

converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that 

during the domain coarsening process, the vortex line network undergoes three types of basic 

topological changes, i.e., vortex line loop shrinking, coalescence, and splitting. It is shown that 

the vortex-antivortex annihilation controls the scaling dynamics.  
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Spontaneous symmetry breaking may give rise to a special class of defects, called 

topological defects [1,2]. A topological defect is insensitive to small perturbations, and cannot be 

continuously de-tangled to the uniform distribution of order parameters. Topological defects are 

ubiquitous in different systems, ranging from the cosmological-scale topological defects in the 

early stage universe [3], vortices in type-II superconductors [4], disclinations in liquid crystals 

[5], to the vortex domains in solid functional materials [6]. The first well-studied system that 

shows topological defects is the XY model with the continuous U(1) symmetry, which possesses 

topological point defects in a two-dimensional (2D) space [1,7]. The point defects can be viewed 

as quasiparticles, two of which tangled in opposite ways can be annihilated when close to each 

other. On the other hand, although topological line defects are frequently observed in 3D bulk 

materials [6], little understanding of the topological evolution of line defects has been achieved. 

Recently hexagonal (h-) REMnO3 (RE, rare earths) have attracted significant attention 

due to their intriguing cloverleaf-like ferroelectric domains and topological defects [8-10]. In h-

REMnO3, the phase transition from space group P63/mmc to P63cm leads to a structural 

trimerization [8,11]. Different choices of the origin give rise to three translational phase variants, 

and each variant has two degenerate polar states with polarization along either +c or –c 

directions [11-14]. Thus, totally six energy-degenerate domains exist in the h-REMnO3 systems. 

The coexistence of the six domains leads to the formation of 1D and 0D topological defects, i.e., 

vortex lines in 3D spaces and vortices/antivortices in 2D spaces (the vortices and anti-vortices 

are categorized based on the cycling sequence of the six domains around the cores) [8,9,15]. The 

cloverleaf-like domains and topological defects in h-REMnO3 can be easily observed and 

analyzed at room temperature [16], which provides a unique opportunity to explore the evolution 

mechanism of topological line defects. 
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In this Letter, we report the evolution and interactions of topological line networks in h-

REMnO3 using the phase-field method with input directly from existing density functional 

theory calculations in the literature [10,17,18]. The phase-field simulations reveal that the 

topological defects in h-REMnO3 are true vortices with the core region adopting the continuous 

U(1) symmetry. During the domain coarsening process, the evolution of the vortex lines involves 

three basic topological changes, i.e., shrinking and disappearance of vortex line loops, 

coalescence of smaller vortex line loops to form larger loops, and splitting of a vortex line loop 

into two loops. It is also shown that the vortex-antivortex annihilation rather than the domain 

wall motion controls the domain coarsening scaling dynamics. 

Different h-REMnO3 systems exhibit similar phase transitions and the same topological 

defects [16,19], and here we employ h-YMnO3 as a representative example. In h-YMnO3, the 

structural trimerization, the primary order parameter, is caused by the in-plane displacements of 

related oxygen atoms, and can be described by the magnitude Q and azimuthal angle Φ [10].  In 

the phase-field simulations, we transform the polar coordinates Q and Φ  into Cartesian 

coordinates ),( yx QQ , with Φ=Φ= sin,cos QQQQ yx . As an improper ferroelectric, h-YMnO3 

also exhibits an induced polarization zP . Based on its hexagonal symmetry, the total free energy 

density is expressed as [10,18,20]  
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where ,,,,,, ggccba ′′ and Pa  are coefficients for the bulk free energy, x
P

z
Q

x
Q sss ,, , and z

Ps  are 

coefficients for the gradient energy terms, 0ε  is the vacuum permittivity, bκ  is the background 

dielectric constant [21], and zE  is the electric field calculated by 
z

Ez ∂
∂−= ϕ  with ϕ the 

electrostatic potential. The coefficients for the bulk free energy and gradient energy are obtained 

from first-principles calculations at 0 K as listed in Ref. [10], except that x
Ps  is changed from 

8.88−  eV to 8.88 eV. As demonstrated in Supplementary Fig. S1 [22], the modification makes 

negligible changes to the primary order parameter profiles near the domain wall. However, this 

modification allows us to use the classical semi-implicit method to solve the time-dependent 

Ginzburg-Landau (TDGL) equations more efficiently [23]. Based on the assumption of Landau 

theory, the coefficient a  should be temperature dependent as in Refs. [24,25]. However, this 

letter focuses on the topological changes and scaling dynamics, which are insensitive of the 

magnitude of order parameters. Therefore, all the coefficients are assumed to be temperature 

independent. The background dielectric constant bκ  is assumed to take the typical value of 50 

[26].  

The domain structures are evolved by solving the TDGL equations 

z
P

z

P fL
t P

δ δ
δ δ

= − , , yx
Q Q

x y

QQ f fL L
t Q t Q

δδ δ δ
δ δ δ δ

= − = − ,                                                   (2) 

where PL and QL  are the kinetic coefficients related to the domain wall mobility. The TDGL 

equations assume that the changing rate of order parameters is proportional to the variational 

derivative of the total free energy of an inhomogeneous system with respect to the spatial 

distribution of order parameters. The TDGL equations are solved based on the semi-implicit 
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spectral method [23], and it is assumed that unitarbLL QP  . 05.0==  in the simulations. The 

gradient energy coefficients are normalized based on 0
** / gss z
Q

z
Q = , 0

** / gss x
Q

x
Q = , 0

** / gss z
P

z
P = , 

and 0
** / gss x
P

x
P = , where 2

0 )( xag Δ= . Thus the normalized gradient energy coefficients are 

determined by the grid spacing. Unless stated otherwise, the initial conditions are small random 

noises for the order parameter components, which represents a system quenched from high 

temperatures. Periodic boundary conditions are applied along the three directions.   

The predicted domain structures along the basal plane (the xy plane) and 3D spaces are 

plotted in Figs. 1(a) and 1(b), in strikingly good agreement with those observed in experimental 

measurements [9,15,27]. As shown in Fig. 1(a), six domains meet together at the vortex and anti-

vortex cores, which are the topological defects [8]. The 3D domain structures in Fig. 1(b) exhibit 

an anisotropic property, i.e., the xy plane shows more vortex cores than the xz and yz planes. The 

anisotropy is specific to the hexagonal system, whose property within the basal plane is typically 

different from that along the z axis, and the anisotropy is reflected by the anisotropic gradient 

energy coefficients in Eq. (1) with x
Q

z
Q ss >  [10]. Thus the domain structures in Fig. 1(b) can 

reduce the interfacial energy, by avoiding domain walls perpendicular to the z axis. The 

distribution of vortex cores in the 3D space results in vortex line networks, and Fig. 1(c) shows 

the vortex lines corresponding to the domain structures in Fig. 1(b). Some vortex lines form 

loops inside the sample, whereas others go through the sample following the periodic boundary 

conditions [16,28]. The vortex lines in Fig. 1(c) tend to be parallel to the z direction, consistent 

with the anisotropic domain structures in Fig. 1(b) [29,30].  

With the gradient energy coefficients obtained from first-principles calculations, the 

phase-field models can be employed to estimate the size of the vortex cores. As shown in Figs. 
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2(a) and 2(b), six domains converge to a point in the basal plane, with a decreasing magnitude of 

the structural order parameter, which is consistent with the claim of a real vortex in earlier 

experimental reports [15,25]. Note that the magnitude Q only depends on the distance to the 

center point, i.e., the vortex core region adopt the continuous U(1) symmetry. The vortex cores 

have a diameter of ~ 0.49 nm [Fig. S2], smaller than the experimental values of ~ 4-5 nm [15,25]. 

Note that there exist two types of domain walls in h-YMnO3, i.e., sharp walls and 2/c walls 

[31,32], and the domain wall width of the 2/c type is larger than that of the sharp type. The 

theoretical domain wall width based on the parameter setting is ~0.5 nm (See supplemental Fig. 

S1 [22]), close to the sharp walls [10], whereas the experimental domain wall width is ~4 nm, 

close to the 2/c wall [25,31]. The difference of the domain wall width may lead to the difference 

in the vortex core size. Also, experimentally other structural and chemical defects may be 

concentrated near the vortex cores, which may increase the vortex core size.  

The simulations indicate that the vortex cores are in the high-symmetry paraelectric phase 

with 0~Q  and 0~P , and the physical implication is demonstrated in Figs. 2 (c) and 2(d). The 

paraelectric nature of the vortex core is also discussed based on direct first-principles 

calculations [31]. The core structures of the structural topological defects, with the reduced 

magnitude of Q, are different from those of spin vortices, e.g., magnetic skyrmions, where the 

spins generally maintain the magnitude [33].  

Pairs of vortex and anti-vortex can be annihilated to reduce the total interfacial energy at 

high temperatures in experiments [19], and here we investigate the annihilation process by 

phase-field simulations. As shown in Figs. 3(a) and 3(b), firstly the vortex and anti-vortex cores 

approach to each other, with decreased magnitude Q between the cores. The vortex and anti-

vortex cores then coalesce to one point, as illustrated in Fig. 3(c). The stage is in the critical state, 
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i.e., the transient state between two topological defects and zero topological defects. The point is 

no longer topologically protected, since the six domains around it belong to four types of 

domains variants, rather than six types of domains. Afterwards, the shape of deep valley 

disappears and striped domains are formed, as shown in Fig. 3(d). The domain patterns obtained 

from the simulations is consistent with those observed experimentally, as demonstrated in 

Supplementary Fig. S3 [22].  

In 3D spaces, the vortex-antivortex annihilation gives rise to the topological changes of 

the vortex lines, and the evolution starting from small random noises is shown in Supplementary 

Movie 1 [22]. We find that the evolution of vortex line loops consists of three basic topological 

changes, i.e., shrinking, coalescence, and splitting of vortex line loops. To demonstrate the three 

topological changes, we run the simulations using the isotropic gradient energy coefficients 

( x
Q

z
Q ss = ). Note that changing to isotropic gradient energy coefficients will not affect the 

topological changes.  

With the isotropic gradient energy coefficients, the evolution of vortex line loops starting 

from three different initial configurations is demonstrated in Supplementary Movies 2-4 [22], 

and three snapshots are chosen for each movie, as shown in Fig. 4. If the system contains an 

isolated circular loop, the loop tends to shrink and disappear to reduce the interfacial energy 

[Figs. 4(a)-4(c)]. When two loop segments, as arcs of two circles with different centers, are close 

to each other, the two loop segments may exchange parts of them. If the two loop segments 

initially belong to different loops, the exchange leads to coalescence of the two loops, as shown 

in Figs. 4(d)-4(f). On the other hand, if the two loop segments are initially parts of one loop, the 

exchange results in the splitting of the loop into two loops, as shown in Figs. 4(g)-4(i). During 
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the three topological changes, the numbers of vortex line loops change from 1 to 0, 2 to 1, and 1 

to 2, respectively, i.e., the numbers of vortex line loops are increased or decreased by 1. The 

evolution of the corresponding domain structures is provided in Supplementary Movies 5-7 [22]. 

From Movies 5-7, the shrinking of vortex line loops is caused by the shrinking of the domains 

within the loop, whereas the coalescence and splitting of vortex line loops are accompanied by 

the coalescence and splitting of related domains. Note that annihilation of vortex and anti-vortex 

can be observed on certain 2D planes in the three movies, e.g., on the yz plane going through the 

centers in Movie 6.  

The evolution of the vortex lines behaves similar to that of the 3D lattice dislocation 

networks, where the dislocations with opposite Burgers vectors can be annihilated and 

dislocation loops can shrink [34,35]. The exchange of vortex line loops is analogous to the 

crossing of two disclinations in nematic liquid crystals, where the number of disclinations can 

increase or decrease by one [36,37]. Physically, the vortex lines in h-REMnO3, dislocations, and 

disclinations are all 1D topological defects [1].  

Next we focus on the scaling dynamics during the vortex-antivortex annihilation process. 

The scaling hypothesis claims that at late stages, the statistics of domain structures is 

independent of time while the characteristic length scales with time. It is known that the isotropic 

3D XY model shows a power-law ordering kinetics, i.e., the vortex density ρ is a function of 

simulation steps t as: t/1~ρ , whereas the 2D XY model exhibits the power-law with a 

logarithmic correction as expressed by t/1~lnρρ  [38,39]. This is because the 2D XY model 

shows a slower coarsening dynamics, which originates from the scale-dependent friction 

constant [38,40,41].  
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In the 2D simulations of h-YMnO3 on the basal plane, the average area of the domains A, 

with ρ/1~A , is calculated as a function of simulation steps, i.e., time t. Also, the results from 

the 2D XY model are demonstrated for comparison (sixth order coefficients and polarization in 

Eq. 1 are set to zero). As shown in Fig. 5(a), the exponent of the average area A with respect to 

time t at late stages is about 0.87 and 0.86 for YMnO3 and the XY model, respectively, different 

from the exponent of 1.00 in the 3D XY model and grain growth models [17,39]. After 

considering the logarithmic correction, the exponents are both 0.96, which is consistent with the 

analytical predictions of the 2D XY model [38,39]. This indicates that the annihilation of 

vortices and anti-vortices controls the coarsening process of the vortex state, and the 6-fold 

degeneracy does not significantly change the scaling behavior, although the 6-fold degeneracy 

results in the existence of domain walls. During the coarsening process, the domain walls tend to 

reduce their curvature, and the curvature-driven process is faster than the vortex-antivortex 

annihilation [38], as demonstrated in Supplementary Movie 8 [22]. As a reference, we also 

provide the evolution of domain structures for the XY model in Supplementary Movie 9 [22].  

The results of 3D simulations with the anisotropic gradient energy coefficients are plotted 

in Fig. 5(b), and a yellow line with slope ~ -1.0 is drawn as the reference. The simulation data for 

h-YMnO3 are parallel to the yellow line at small number of simulation steps, whereas deviates 

from the yellow line for large number of simulation steps. To reveal the origin of the deviation, 

we run the simulations using the isotropic gradient energy coefficients ( z x
Q Qs s= ) with all the 

other simulation conditions unchanged, and the results are well fitted by the yellow line, as 

shown in Fig. 5(b). Thus the simulation results with the isotropic gradient energy coefficients are 

consistent with the prediction of the isotropic 3D XY model, and the deviation of YMnO3 arises 
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from the anisotropic gradient energy coefficients ( x
Q

z
Q ss > ). At large number of simulation steps, 

the order parameters are basically homogeneous along the z axis as shown in Fig. 2 (b), and the 

coarsening process becomes 2D-like with the exponent of -0.87 (a 2D system can be regarded as 

homogeneous along the z axis with ∞→z
Qs ). Therefore, due to the anisotropy intrinsic to the 

hexagonal system, the scaling dynamics shows a crossover from 3D-like to 2D-like behaviors.  

The scaling dynamics here is different from the Kibble–Zurek mechanism reported 

earlier [16]. The Kibble–Zurek mechanism applies to the situation of slow cooling with different 

cooling rates, and is based on the critical scaling analysis above the critical point [42-44]. The 

scaling dynamics here, on the other hand, corresponds to the phase-ordering dynamics at a 

specific temperature, after an infinitely rapid quench from high temperatures [38,43]. The 

Kibble-Zurek mechanism predicts that the vortex density follows a power-law with the exponent 

of ~0.57 with respect to different cooling rates [16], whereas the coarsening dynamics here gives 

rise to a curve with the slope ranging from -0.87 to -1.02 in the log-log plot, as shown in Fig. 

5(b). 

 In summary, first-principles informed phase-field simulations of the vortex line network 

evolution in h-REMnO3 reveals the dislocation-like topological changes, i.e., vortex line loop 

shrinking, coalescence, and splitting, as well as loop interactions and exchanges leading to the 

coalescence and splitting of domains. It is shown that the domains coarsen with time exhibits a 

power-law with a logarithmic correction, which indicates that the scaling dynamics is controlled 

by the vortex-antivortex annihilation rather than the movement of domain walls. The topological 

evolution mechanisms discovered here could be extended to different systems with line defects. 
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Figure Legends  

Fig. 1. 2D and 3D domain configurations. (a) Part of the domain structures from a 2D simulation on the 

basal plane with a system size of xxx Δ×Δ×Δ 110241024  and grid spacing of nmx 30.0=Δ . The six 

colors represent six types of domains. (b) Domain structures from a 3D simulation with a system size of 

xxx Δ×Δ×Δ 128128128 and grid spacing of nmx 30.0=Δ . (c) Vortex lines in 3D spaces corresponding 

to the domain structures in (b). The brown dots denote the intersection of vortex lines and surfaces. 

Fig. 2. Demonstration of vortex core structures. (a) and (b) Distribution of the structural trimerization 

magnitude Q near a vortex core and an anti-vortex core, respectively. The domain structures are from 2D 

simulations on the basal plane with grid spacing of nmx 020.0=Δ , and the height represents the value of 

Q with the equilibrium bulk value of 9.5×10-2 nm. (c) and (d) The corresponding atomic structures near a 

vortex core and an anti-vortex core, respectively. The vortex cores have a size of about one unit cell, and 

show the paraelectric phase with Q ~ 0. The red arrows in (c) and (d) represent the displacement 

directions of oxygen atoms. 

Fig. 3. Evolution of vortex structures during vortex-antivortex annihilation. (a)-(d) Vortex structures 

at different simulation time steps. The simulation is on the 2D basal plane and the height represents the 

magnitude of the structural order parameter Q. In (c) the two red domains are connected by a point with 

Q~0, and the point separates the two light blue domains as well.  

Fig. 4. Topological evolution of vortex lines. (a)-(c) Shrinking, (d)-(f) coalescence, and (g)-(i) splitting 

of vortex line loops. 

Fig. 5. 2D and 3D coarsening dynamics. (a) Average domain area as a function of simulation steps in 

the 2D basal plane. The squares and circles correspond to the raw data and the data with logarithmic 

correlations, respectively. Different lines are fitted based on the formula: bta + . (b) Total vortex line 

length as a function of simulation steps in 3D simulations. The pink squares correspond to the anisotropic 

gradient coefficients. The yellow circles are results using the isotropic gradient coefficients as the control 

experiments, which are fitted by a yellow line. (a) is the average result of five parallel simulations with a 

system size of xxx Δ×Δ×Δ 120482048 and grid spacing of nmx 30.0=Δ , and (b) is the average of 

three parallel simulations with a system size of xxx Δ×Δ×Δ 512512512  and grid spacing of 

nmx 30.0=Δ .  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

 


