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We report diffusion Monte Carlo (DMC) and path integral Monte Carlo (PIMC) calculations of
the properties of a 1D Bose quantum fluid. The equation of state, the superfluid fraction, ρS/ρ0,
the one-body density matrix, n(x), the pair distribution function, g(x), and the static structure
factor, S(q), are evaluated. The aim is to test Luttinger Liquid (LL) predictions for 1D fluids over
a wide range of fluid density and LL parameter K. The 1D Bose fluid examined is a single chain
of 4He atoms confined to a line in the center of a narrow nanopore. The atoms cannot exchange
positions in the nanopore, the criterion for 1D. The fluid density is varied from the spinodal density
where the 1D liquid is unstable to droplet formation to the density of bulk liquid 4He. In this range,
K varies from K > 2 at low density, where a robust superfluid is predicted, to K < 0.5, where
fragile 1D superflow and solid-like peaks in S(q) are predicted. For uniform pore walls, the ρS/ρ0
scales as predicted by LL theory. The n(x) and g(x) show long range oscillations and decay with
x as predicted by LL theory. The amplitude of the oscillations is large at high density (small K)
and small at low density (large K). The K values obtained from different properties agree well
verifying the internal structure of LL theory. In the presence of disorder, the ρS/ρ0 does not scale
as predicted by LL theory. A single vJ parameter in the LL theory that recovers LL scaling was
not found. The one body density matrix (OBDM) in disorder is well predicted by LL theory. The
“dynamical” superfluid fraction, ρDS /ρ0, is determined. The physics of the deviation from LL theory
in disorder and the “dynamical” ρDS /ρ0 are discussed.

I. INTRODUCTION

Dimensions play a key role in determining exotic phe-
nomena such as Bose-Einstein condensation (BEC) and
superfluidity. In 3D, BEC begins at a well-defined fi-
nite temperature1–4 TBEC . Below TBEC , a finite frac-
tion of the Bosons occupy one single particle state and
the one-body density matrix (OBDM) develops a long-
range tail4–6. In bulk, uniform systems, the tail is flat
and extends to infinity. Superfluidity (and superconduc-
tivity) can be formulated7 as arising from the coherent
field established by the macroscopically occupied state.
Tc for superflow equals TBEC . Below Tc, the superfluid
fraction, ρS/ρ, increases smoothly with decreasing tem-
perature, from zero at Tc to unity at 0 K.

In 2D systems at low temperature, the OBDM devel-
ops a tail that decays algebraically with distance. In
2D liquid 4He the algebraic tail can extend6 to over 100
Å, but is not macroscopic. A TBEC in 2D can be de-
fined as the temperature at which the OBDM first devel-
ops this algebraic tail. Superfluidity in 2D is generally
formulated8,9 independently of BEC. There is an abrupt
jump in ρS/ρ from zero to a finite fraction9 at Tc, in con-
trast to 3D. Tc can also be identified8 from the OBDM
as the temperature at which the exponent that describes
the algebraic tail reaches a specific value.

In 1D spinless Bose and Fermi fluids, low energy phe-
nomena such as superflow and BEC is expected to follow
the predictions of Luttinger Liquid (LL) theory10. The
OBDM is predicted to show a decaying algebraic tail at
low temperature that has oscillations which extend to
large distances reflecting the atomic order in 1D. The
pair distribution function (PDF) has similar long-range

oscillations. These oscillations are uniquely characteris-
tic of 1D and are not seen in the OBDM or PDF in 2D or
3D fluids. Superfluidity in 1D is really only a finite size
effect. There is no Tc. The ρS/ρ0 has a characteristic 1D
shape and scales as LT , the product of the temperature,
T , and length, L, of the 1D system.

There has been an extensive search for 1D quantum
fluids. 4He or other Bosons confined in small diameter
nanopores may show 1D behavior11–17. Most of the 4He
in the nanopores is deposited in layers (solid and liquid)
on and near the pore walls.11–16,18,19 These layers have
properties characteristic of 2D or 3D. Those atoms con-
fined to the center or core of the nanopore could be a
1D system.20–22 4He confined to a dislocation in solid he-
lium is also predominantly a 1D system23. 4He and other
atoms confined in and on carbon nanopore bundles can
show 1D character.24

Cold atoms in highly asymmetric optical lattices can
be tightly restricted in two dimensions but highly ex-
tended in the third dimension25,26. While atomic dis-
placements in all directions are possible, exchange and
tunneling between lattice sites are predominantly along
the extended 1D. The central goal of this exciting field
is to explore transitions from superfluidity to Mott-
insulator27,28 or Bose Glass29–32 states, and to deter-
mine critical momentum33 and phase slips34in 1D. Su-
perconductivity in 1D is also anticipated in nanowires35.
Specifically, the role of phase slips in loss of super-
flow in nanowires has been extensively investigated36.
The theory of 1D systems has been equally extensively
developed37–42 .

The goal of the present paper is to display the proper-
ties of a genuine 1D Bose quantum fluid. It is particularly
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to test whether the properties are well predicted by LL
theory. We consider liquid 4He confined to a line in a
narrow nanopore of radius R = 3 Å. The nanopore wall
represents the amorphous solid layers of 4He (1.5 layers)
on the interior of the nanopore as well as the nanopore43.
We present DMC calculations of the equation of state
(EOS), the pair distribution function (PDF), g(x), and
the static structure factor, S(q), and PIMC calculations
of the superfluid fraction, ρS/ρ0, and the one-body den-
sity matrix (OBDM), n(x), of the confined liquid. The
aim is to verify LL predictions as a function of the 1D
density and the value of the LL parameter K which is a
sensitive function of density. It is also to display clearly
the properties of 1D fluids as a function of the LL param-
eter, K. With a clear picture of a 1D fluid, we can more
readily identify whether experimentally investigated sys-
tems show 1D properties rather than 2D or 3D character.
We also evaluate the “dynamical” superfluid fraction de-
fined in Refs. 44 and 45.

Liquid 4He at reduced dimension has been investigated
recently using PIMCmethods. Del Maestro and Affleck46

explored pure 1D helium, a line of N Bosons in a length
L, in the grand canonical ensemble. They showed that
the distribution of N about its equilibrium value, N0,
and the distribution of winding numbers, W , were Gaus-
sian and well predicted by LL theory with corrections at
higher energy. Del Maestro et al.20,21 and Kulchytskyy
et al.22 explored 4He confined in nanopores. They found
that most of the 4He is deposited on and near the pore
walls, first as solid and then liquid layers. However, at
some pore radii, a fraction of the liquid is confined to
a line at the center of the pore. This fraction may be
considered a 1D liquid. The total ρS/ρ of the 4He ap-
peared to fulfill LL predictions although this was not
well-established.22. Vranješ Markić and Glyde43 consid-
ered liquid 4He in a model nanopore chosen to represent
both the nanopore and the solid 4He layers on the pore
walls. In this way, only the liquid in the nanopore need
be simulated using PIMC. The density was set at the
bulk liquid density. For liquid pore radii R ≥ 4 Å, most
of the 4He lay in liquid layers close to the pore walls with
a small fraction in a 1D core at the center of the pore.
At R ≥ 4 Å the ρS/ρ and OBDM scaled as expected
for 2D and or 3D liquids.43,47. However for R = 3 Å all
of the helium was found to lie on a line at the center of
the pore. The ρS/ρ0 and OBDM of the 1D line followed
the LL predictions.

Liquid parahydrogen (p-H2) has long been investi-
gated as a possible superfluid. As for liquid 4He, the
search includes p-H2 at reduced dimensions such as pure
2D p-H2

48 and pure 1D p-H2
48,49, and p-H2 in car-

bon nanopores24,49,50 and p-H2 in a variety of other
nanopores51. The similarity of 1D 4He and p-H2 is
discussed in section IV.

In this context our goal is to calculate the properties
of 1D liquid 4He in a narrow nanopore of liquid pore
radius R = 3 Å in which (1) there is only 1D liquid
4He (no other 2D or 3D 4He in layers), (2) the density

can be varied and (3) disorder can be added. Over the
range of 1D densities considered, the LL parameter K =
(vJ/vN)1/2 varies from K < 0.5 (solid-like correlations)
to K > 2 (a robust superfluid). The aim is to test LL
theory.10,37–39

II. LUTTINGER LIQUID PREDICTIONS

In this section we outline the predictions made from LL
theory. Haldane10 and others37–39,46 consider a 1D line
of N bosons of average density ρ0 = N0/L with periodic
boundary conditions over a length L. The field opera-
tor, ΨB(x), in the general Hamiltonian H is expressed as

a magnitude and a phase, φ(x), Ψ†
B(x) = ρ(x)1/2eiφ(x).

For low energy, long wavelength fluctuations in the den-
sity ρ(x), Haldane10 shows that H may be simplified to,

HLL =
~

2π

∫

dx[vJ (∇φ)2 + vN (∇θ − πρ0)
2]

= ~







∑

q 6=0

ωqb
†
qbq +

( π

2L

)

[

vJJ
2 + vN (N −N0)

2
]







.

(1)

HLL describes an effective harmonic fluid. The term
~

2π vJ(∇φ)2 represents the kinetic energy density. The
density is ρ(x) = ρ0+Π(x) where Π(x) is a small and long
wavelength change in ρ(x) and ∇θ ≡ π[ρ0 + Π(x)]. The
term ~

2π vN (∇θ − πρ0)
2 = ~

2π vNΠ(x)2 represents the po-
tential energy density of the density fluctuations. The ωq

are the frequencies of the density modes. Since q = 2π/λ
is small, ωq = vSq where vS is the sound velocity. The
index J denotes the number of phase twists in φ over
the length L, φ(L) − φ(0) = 2πJ , and (N − N0) is the
deviation of N from the average N0 = ρ0L. We consider
a canonical ensemble in which N is fixed at N = N0.
For a Galilean invariant, 1D LL ~v0J = π(~2/m)ρ0 and

~vN = (πρ20κ)
−1 where κ is the 1D compressibility. At

T = 0 K and expressing V = AL, the 1D compressibility
is κ−1 = Aκ−1

T where κ−1
T = −V (∂p/∂V )T is the 3D

compressibility. In terms of the 1D pressure P = Ap,

κ−1 = ρ0
∂P

∂ρ0
, (2)

where P = ρ20∂e/∂ρ0 and e = E/N . Since K =

(v0J/vN)1/2 = [π2(~
2

m )ρ30κ]
1/2, large K corresponds to

large κ, e.g. a gas like fluid. For K > 2 and K > 3/2
a superfluid robust to a periodic external potential and
to disorder, respectively, is predicted52. Small K corre-
sponds to small κ, e.g. a solid-like fluid at high density
where superflow is fragile.
The sound velocity of the 1D LL density modes, given

by the usual expression v2S = (mρ0κ)
−1, can be written as

vS = (v0JvN )1/2. The parameter K is often expressed as
K = v0J/vS and K = vS/vN . The physics of 1D systems
has been extensively reformulated and reviewed.37–39



3

From HLL, Haldane and others make predictions that
we denote LL predictions. For the pair distribution func-

tion (PDF), g(x), [〈ρ(x)ρ(0)〉 = ρ20g(x)], and the OBDM,
n(x), at long lengths x ≫ a = ρ−1

0 and T = 0 K, and the
superfluid fraction, ρS/ρ0, these are,10,46

g(x) =
1

ρ20
〈ρ(x)ρ(0)〉 =

[

1− 2K(2πρ0x)
−2 +

∞
∑

n=1

(ρ0x)
−2Kn2

An cos(2πnρ0x)

]

(3)

n(x) = 〈ΨB(x)Ψ
†
B(0)〉 =

ρ0
(ρ0x)1/2K

∞
∑

n=0

(ρ0x)
−2Kn2

Bn cos(2πnρ0x) (4)

and

ρS
ρ0

=

(

TL

σρ0

)

〈W 2〉 = α0〈W
2〉 (5)

= α0

∑

W

W 2e−
1

2
αW 2

/
∑

W

e−
1

2
αW 2

(6)

=
(α0

4

) |Θ′′
3(0, e

−α/2)|

Θ3(0, e−α/2)
(7)

where α0 ≡ (TL/σρ0), σ = ~
2/kBm = 12.1193 K Å2, W

is the winding number, Θ3(z, q) is the Theta function,
Θ′′

3(z, q) = d2Θ3(z, q)/dz
2 and

α =

(

πkBTL

~vJ

)

= α0(
vJ
v0J

)−1. (8)

The expressions for g(x) and n(x) are Eqs. (3) and (4),
respectively, of Haldane10. The coefficients An and Bn

are not known. Our goal is to check how well the LL
predictions for g(x) and n(x) fit our calculated g(x) and
n(x) treating the LL parameter K = (vJ/vN)1/2 (and A1

and B1) as free fitting parameters.
Eq. (5) for ρS/ρ0 is the general expression for the

“thermodynamic” superfluid fraction ρS/ρ0 in 1D in
terms of the winding number W .4,6,53 We calculate 〈W 2〉
using PIMC and evaluate ρS/ρ0 from Eq. (5). DelMae-
stro and Affleck46 have shown that the probability of ob-
serving a winding number W in a 1D LL is Gaussian,

P (W ) ∝ e−
1

2
αW 2

, (9)

with coefficient α given by Eq. (8). Eqs. (6) and (7) are
the LL predictions for ρS/ρ0 with W = 0,±1,±2, ....
To test LL predictions we fit Eq. (6) with ~vJ treated

as a free fitting parameter to the PIMC ρS/ρ0 calculated
from Eq. (5). For a Galilean invariant LL (no disorder
or periodic external potential), ~vJ → ~v0J = π(~2/m)ρ0,
(vJ/v

0
J = 1), and α → α0. For a Galilean invariant LL,

v0J = vF where, vF , is the Fermi velocity of a Fermi
liquid at the same linear density, ρ0. In a uniform 1D
fluid, if it is a LL, we expect a good fit of Eq. (6) to
the PIMC ρS/ρ0 (low χ2) with vJ/v

0
J = 1. For a 1D

LL in disorder we anticipate a good fit of Eq. (6) with a
constant vJ but vJ may differ from v0J . For constant vJ ,
the LL ρS/ρ0 still scales as the product LT rather than

separately on L or T . In 1D ρS/ρ0 is a finite size effect,
there is no TC and ρS/ρ0 → 0 as L → ∞.
LL theory also predicts that the static structure factor,

S(q), will develop a peak at the first “reciprocal lattice”
vector q = 2π/a at high density ρ0. The peak signals that
the liquid at high density displays solid-like features. The
LL parameter K can be obtained from the low q limit of
S(q),

K = 2πρ0 lim
q→0

S(q)

q
. (10)

Eq. (10) follows from the general relation between
the sound velocity vS and S(q) valid in all dimensions,
limq→0 S(q) = ~q/2mvS and the 1D (uniform) LL rela-
tion, K = v0J/vS . The LL parameter may be calculated
from: (a) the equation of state e(ρ0) = E(ρ0)/N using
Eq. (2), (b) from fits of the LL expression Eq. (3) to
the calculated g(x) and from the q → 0 limit of S(q), Eq.
(10), and (c) from fits of the LL expression Eq. (4) to
n(x). If the predictions of LL theory are internally con-
sistent, the K values obtained from these three routes
should agree.
The equation of state E(ρ0) at T = 0 K was calculated

using DMC methods as were g(x), and S(q) using the
expressions,

g(x) =
1

ρ0N

N
∑

l 6=l′

〈δ(x − |xl − x′
l|〉, (11)

and,

S(q) =
1

N
〈

N
∑

l,l′

e−iq·[xl−x′

l
]〉. (12)

The OBDM, n(x), and the MC winding number 〈W 2〉
at finite temperature were calculated using the worm
algorithm PIMC and standard methods6. To restate,
we used the canonical ensemble version of the worm al-
gorithm PIMC code in which N is fixed at N = N0;
ρ0 = N/L = N0/L.
To close this section, we note that a “dynami-

cal” superfluid fraction, ρDS , has been introduced.45,54

This is in addition to the “thermodynamic” ρS/ρ0 =
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∂(Fv/N)/∂(12mv2) = α0〈W
2〉 defined above that we

evaluate using PIMC. The “thermodynamic” ρS/ρ0 is
given4,53 by the change in Helmholtz free energy arising
from a superfluid velocity v. The defining relation for
ρDS /ρ0 may be taken as,45

Feff =
~
2

2m
ρDS

∫

dx(∇Φ)2, (13)

where Φ is the phase of the order in the liquid which ex-
plicitly includes phase twists over the length L. Prokof’ev
and Svistunov45 show that, from Feff , the probability of
observing a number of phase twists J and winding num-
ber W are both Gaussian in J and W as obtained in Ref.
46 from HLL. Specifically, the probability of observing a
W obtained from Feff is45

PD(W ) ∝ exp

(

−
1

2

LT

σρDS
W 2

)

= exp

(

−
1

2
αDW 2

)

(14)
in 1D. Eq. (14) is the same as the LL P (W ) in Eq. (9)
with α replaced by αD where

αD = α0

(

ρDS
ρ0

)−1

. (15)

From the general relation ρS/ρ0 = α0〈W
2〉 and using

PD(W ) in Eq. (14) to evaluate 〈W 2〉 we obtain Eq. (6)
with α replaced by αD, i.e.

ρS/ρ0 =
(α0

4

) |Θ′′
3(0, e

−αD/2)|

Θ3(0, e−αD/2)
(16)

This provides a relation45,54 between ρS/ρ0 and ρDS /ρ0.

In a uniform system (Galilean invariant), if LL predic-
tions are correct, we expect P (W ) in Eq. (9) to be correct
with vJ = v0J and α = α0. Comparing Eqs. (9) and (8)
with Eqs. (15) and (14) requires ρDS /ρ0 = 1 for a uniform
system. In disorder or in a periodic external potential,
vJ can differ from v0J . However, if the LL predictions
hold with vJ a constant, then we expect ρDS /ρ0 to be a
constant independent of T or L, i.e. ρDS /ρ0 = vJ/v

0
J to

be constant. In disorder we can fit Eq. (16) to the PIMC
ρS/ρ0 and obtain ρDS /ρ0. Indeed Machta and Guyer54

and Prokof’ev and Svistunov45 have proposed this fit to
obtain ρDS /ρ0. To do this, they propose a limit of Eq.
(16) valid at large LT . The limit, is obtained by keep-
ing only W = ±1 in the numerator and W = 0 in the
denominator in Eq. (16) so that Eq. (16) reduces to,

ρS
ρ0

= α02 exp

[

−
1

2
α0

(

ρDS
ρ0

)−1
]

. (17)

The full expression Eq. (16) or the limit Eq. (17) pro-
posed in Refs. 45 and 54 can be fitted to the PIMC ρS/ρ0
to determine ρDS /ρ0, as we do in the present paper.

III. MODEL OF THE NANOPORE AND

METHODS

We simulate liquid 4He confined in a nanopore de-
scribed by the Hamiltonian,

Ĥ = −
~
2

2m

N
∑

i=1

∆i +

N
∑

i<j

U(rij) +

N
∑

i=1

V (ρi), (18)

where N is the number of 4He atoms of mass m, U(r)
represents the interaction between 4He atoms modeled by
the Aziz potential55 and V (ρ) is the confining potential
at a distance ρ from the center of the pore. To reduce
the system size, we include the effect of the amorphous
solid 4He layers on the interior walls of the nanopore in
the external potential V (ρ). Our model is thus exactly
the same as that used previously in Ref. 43.
The walls of real porous media plus solid 4He layers

are rough and irregular. This leads to a disordered con-
fining potential for the liquid helium. In order to model
the irregularity of the potential we have, as in Ref. 43,
added fictitious fixed particles to the nanopores at ran-
dom positions along the whole length of the pore and at
all angles, separated from 2.5 Å to 3.5 Å from its axis.
The average linear density of the fixed particles was 1
Å−1. We represented their interaction with the helium
atoms by a Lennard-Jones potential with parameters ǫd
= 1.5 K and σd = 2 Å. The effect of this external potential
is the creation of random pockets of stronger attraction
or repulsion. For a given length, L, of the nanopore, the
impurity potential is the same for all densities of the 4He
in the pore.
Finite temperature calculations are performed using

the finite temperature worm algorithm path-integral
Monte Carlo6,56. The values of the discretized imaginary
time δτ were the same as in Ref. 43, i.e. 0.004 K−1.
For calculations at zero temperature the second-order

diffusion Monte Carlo method was used57, which solves
stochastically the Schrödinger equation written in imagi-
nary time. The details of the method are given in Ref. 57
The guiding wave function was as usual constructed as
Ψ =

∏

i<j f(rij)φ(ρi), where f(r) = exp(−(b/r)5) and

φ(ρ) was the exact single-particle solution in the con-
fining potential V (ρ). Care was taken to eliminate any
residual biases, such as the time-step or the population-
size bias.

IV. RESULTS

A. Uniform nanopores

1. Bulk liquid 4He density

Fig. 1 shows the superfluid fraction, ρS/ρ0, the
OBDM, n(x), and the pair distribution function, g(x), of
1D liquid 4He confined in a uniform nanopore of radius
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FIG. 1. (Color online) The (a) superfluid fraction, ρS/ρ0,
(b) one body density matrix, n(x), and (c) pair distribution
function, g(x), of liquid 4He confined in a uniform nanopore of

radius R = 3 Å. The 3D liquid density in the pore, ρ
′

= 0.0212
Å−3, (linear density ρ0 = 0.267 Å) is set close to the density
of bulk liquid 4He at SVP, ρ = 0.0218 Å−3. The PIMC data
for ρS/ρ0 and n(x) are from Ref. 43. The LL prediction
for ρS/ρ0 is fitted to the PIMC ρS/ρ with ~vJ as a free
fitting parameter. The error of the individual ρS/ρ0 values is
included in the fit. The fit is good with a χ2 near unity. The
best fit value of ~vJ agrees with the uniform liquid, LL value,
~v0J = π(~2/m)ρ0 = 10.17 K Å, within the fit error. The
PIMC n(x) and the DMC g(x) show long range oscillations
as predicted by LL theory, oscillations that are unique to 1D
fluids.

R = 3 Å at bulk liquid 4He density. The corresponding
linear density of the 4He is ρ0 = 0.267 Å−1, interatomic
spacing a = ρ−1

0 = 3.75 Å, along the nanopore. At R = 3
Å, it is energetically very difficult for two He atoms to
exchange positions in the pore. In this sense it is a 1D
system.
In Fig. 1a and 1b, ρS/ρ0 and n(x) calculated using

PIMC are reproduced from Ref. 43. The solid line in Fig.
1a is a fit of the LL prediction for ρS/ρ0, Eq. (6), with
the LL parameter ~vJ treated as a free fitting parameter.
The best fit value of ~vJ agrees with LL expression of a
uniform system, ~v0J = π(~2/m)ρ0 = 10.16 Å K, within
fit precision. The fit is good with a χ2 close to unity.
The PIMC ρS/ρ0 clearly scales as the product LT as
predicted for 1D by LL theory. In Fig. 1b, the solid line
is a fit of the LL prediction, Eq. (4), to the PIMC n(x).
Only the first term in the series for n(x) was retained
with B1 and K as free fitting parameters. The fit of the
LL prediction to the PIMC n(x) is clearly good.
In Fig. 1c, the dots show the fit of the LL predic-

tion, Eq. (3), to g(x) calculated using DMC. Again only
the first term in the series was retained with A1 and K
treated as free fitting parameters. The fit is excellent
and the K value obtained from the fit agrees well with
K calculated from the equation of state and S(q). The
g(x) clearly shows the long range oscillations character-
istic of 1D at a linear density of ρ0 = 0.267 Å−1.
Eqs. (3) and (4) are valid for a LL liquid with periodic

BCs over a length L → ∞. For finite L, the ρ0x in the
denominators of the terms in Eqs. (3) and (4) should be
replaced by ρ0x → ρ0(L/π)| sin(πx/L)| (see Eqs. (61)
and (62) of Cazalilla58). We actually show the finite L
expressions in Fig. 1 but the difference from Eqs. (3)
and (4) is, except very near L/2, hardly perceptible on
the scales shown in Figs. 1b and 1c.

2. Density dependence

We now explore the density dependence of 1D liquid
4He. Fig. 2 shows the energy per particle, e(ρ0) =
E(ρ0)/N , the pressure, p(ρ0), and the sound velocity,
vS(ρ0), of liquid

4He in the uniform nanopore (R = 3 Å)
versus the linear density, ρ0. As the temperature is low-
ered the finite temperature PIMC results approach the
T =0 K DMC values. E(ρ0)/N has a broad minimum
at ρ0 = 0.108 Å−1. Specifically, the pressure is zero at
ρ0 = 0.108 Å−1 showing that the equilibrium density in
the nanopore is significantly lower than the linear den-
sity corresponding to bulk liquid 4He, ρ0 = 0.267 Å−1.
There is a modest pressure in the nanopores, p ≃ 35 bar,
at ρ0 = 0.267 Å−1. The sound velocity goes to zero at
ρ0 = 0.09 Å−1 which defines the spinodal density where
the 1D liquid is mechanically unstable. At the spinodal
density, the uniform liquid appears to separate into lin-
ear droplets. The spinodal density lies very close to the
equilibrium density.
Fig. 3 shows the Luttinger Liquid parameter K of
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FIG. 2. (Color online) (a) The energy per Boson, e(ρ0), ver-
sus linear density, ρ0, of 1D liquid 4He in a nanopore of radius
R = 3 Å. e(ρ0) = E(ρ0)/N has a broad minimum at ρ0 ≃

0.108 Å−1. (b) The pressure versus ρ0. The pressure is zero
at ρ0 = 0.108 Å−1. At ρ0= 0.267 Å, the pressure is P ≃ 35
bar. (c) The sound velocity, vS versus ρ0. The LL parame-
ter is K = v0J/vS . The sound velocity vanishes at ρ0= 0.09
Å−1which defines the spinodal density where the 1D liquid
becomes mechanically unstable to droplet formation.

the 1D liquid versus linear density ρ0. The K calculated
from the equation of state (the sound velocity), the static
structure factor, S(q), and from fits to the g(x) agree
well e.g. within a few percent at ρ0 = 0.25 Å−1. The
K obtained from g(x) is less well determined at lower
densities since the amplitude of the oscillations in g(x) is
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using DMC S(k)

using DMC g(x)

FIG. 3. (Color online) The Luttinger liquid parameter K =

(v0J/vN )1/2 versus density ρ0 = N/L between ρ0 = 0.10
Å−1 and ρ0 = 0.30 Å−1(ρ0 = 0.090 Å−1 is the spinodal
density and ρ0 = 0.267 Å−1is the linear density correspond-
ing to bulk liquid 4He density at SVP). The solid line is K
calculated from the equation of state. The solid circles and
open squares are K calculated from the static structure fac-
tor, S(q), and pair correlation function, g(x), respectively. K
varies from K >

∼
2.0 at the equilibrium density, ρ0 = 0.108

Å−1, to K < 0.5 at ρ0 = 0.267 Å−1.

smaller at lower densities and the linear region of S(q) is
reached only at low q. K varies from K ≥ 2 at and below
the equilibrium density ρ0 = 0.108 Å−1 to K < 0.5 at
ρ0 > 0.23 Å−1. Essentially at lower density, where the
interaction is weaker, the kinetic energy (vJ ) becomes
relatively more important than the potential energy (vN ).
K = (v0J/vN )1/2 is a sensitive function of linear density
ρ0 = N/L.

Fig. 4 shows the PIMC superfluid fraction, ρS/ρ0,
at four linear densities between ρ0 = 0.25 Å−1 and
ρ0 = 0.10 Å−1, the latter close to the spinodal density
ρ0 = 0.09 Å−1. At the higher densities, ρ0 = 0.20 Å−1

and ρ0 = 0.25 Å−1, the LL prediction fits the PIMC
ρS/ρ0 well, the χ2 is close to unity and the best fit value
of ~vJ agrees with the uniform system value ~v0J , as in
Fig. 1a. However, at lower density, ρ0 = 0.133 Å−1 and
ρ0 = 0.10 Å−1, the χ2 is significantly larger. At lower
density there does not appear to be a systematic devia-
tion of the PIMC ρS/ρ0 from the LL predictions. Rather
there is a wider scatter of the PIMC ρS/ρ0. The wider
scatter may arise because at low density we have fewer
atoms (lower statistics) in a given length L and L cannot
be too long or there will be little or no winding. In addi-
tion, the density ρ0 = 0.10 Å−1 is close to the spinodal
density and in the PIMC simulations we observe peri-
ods of separation of the liquid into droplets during the
simulation, in which case LL scaling is not expected.

Fig. 5 shows the OBDM, n(x), calculated using PIMC
methods at five linear densities between ρ0 = N/L =
0.117 Å−1 and ρ0 = 0.25 Å−1. As in Fig. 1b, the
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FIG. 4. (Color online) The PIMC superfluid fraction ρS/ρ0 (data points) versus L/~βv0J = (TL/σρ0) /π ≡ α0/π (see Eq. (6))
of 1D liquid 4He in a uniform nanopore (radius R = 3 Å) at four linear densities between ρ0 = 0.10 Å−1 and 0.25 Å−1. The
LL prediction (solid line) fits well at all ρ0 with LL parameter ~vJ = ~v0J = π(~2/m)ρ0, the uniform liquid value, within fit
error.

n(x) initially drops rapidly over a short distance x. This
reflects the high localization of the atoms in real space (a
wide momentum distribution) especially at higher den-
sity. The large amplitude oscillations in n(x) at large x
at ρ0 = 0.25 Å−1 arise from the atomic correlations at
high density. The fits to the PIMC OBDM shown (dot-
ted lines) are Eq. (4) modified for the finite L periodic
boundary conditions used in PIMC (see Eq. (62) of Ref.
(58)). The LL parameter K obtained from the fit is con-
sistent with K obtained from the equation of state and
S(q). The dashed-dotted line is Eq. (4) which shows that
using the finite L expressions58 makes little difference to
the OBDM in this case.

Cazalilla58 has derived expressions for correlation func-
tions, g(x) and n(x), valid at finite temperature in the
limit of infinite box size. These expressions show that
the T = 0 K limit where the correlations functions show
algebraic decay is reached only at lengths less than a ther-
mal correlation length LT = ~vs/(kBT ), i.e. at x ≤ LT .
At finite temperature and long lengths x ≥ LT , g(x)
and n(x) cross over to exponential decay. At the three
largest densities shown in Fig. 5, LT & 30 Å, so that fi-

nite temperature exponential scaling can not be observed
for the x ≤ 30 Å shown. At ρ0 = 0.117 Å−1, LT ≈ 9.4
Å, and the heavy dotted line shows a fit of the finite
temperature expression (Eq. (71) of Ref. (58)) to the
PIMC OBDM. The finite T expression clearly fits the
data well. We could not use the whole range up to half
the box size, because the periodic boundary conditions
cause the OBDM to have zero slope at half the box size,
and in this particular case the slope started to change
almost 10 Å before L/2. For the density 0.133 Å−1 no
fit is provided because LT ≈ 14 Å so the range for both
algebraic and exponential decay were too short.

The DMC pair distribution function versus linear den-
sity is shown in Fig. 6a for densities 0.1 ≤ ρ0 ≤ 0.3 Å−1.
While the amplitude of the oscillations decreases with
decreasing density, there remain clearly observable oscil-
lations at low density. The LL prediction for g(x) fits
the DMC g(x) well down to the lowest densities.

Algebraic decay of g(x) at T = 0 K is expected to
cross over to exponential decay at finite temperature,
as observed in n(x). In g(x) the cross over is most
clearly observed in the decay of the oscillatons. Figure
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FIG. 5. (Color online) The PIMC OBDM, n(x), at five linear
densities between N/L = ρ0 = 0.117 Å−1 and 0.25 Å−1. The
amplitude of the oscillations in n(x) is larger at high density
where the liquid has solid-like correlations. The dotted lines
are fits of Eq. (4) modified to take account that the periodic
BCs used have a finite L. Only the first term of these equa-
tions was retained with B1 and K as adjustable parameters.
The heavy dashed-dotted line at N/L = 0.25 Å−1 is a fit of
Eq. (4), assuming L → ∞ limit. Clearly, the approximation
L → ∞ introduces little error. The heavy dotted line at N/L
= 0.117 Å−1 is a fit of the finite temperature n(x) in a region
of x where n(x) shows exponential decay.

6b shows a zoomed pair distribution function at two tem-
peratures. The more rapid decay at higher temperature
is most clearly seen at the highest density shown, (0.250
Å−1), where the thermal length LT ≈ 54 Å at 0.5 K
and LT ≈ 18 Å at 1.5 K. The same type of behavior is
present at all densities, but less visible.

Fig. 7 shows the static structure factor, S(q) =
1
N 〈ρ(q)ρ(−q)〉, where ρ(q) is Fourier transform of the
density operator, ρ(x) =

∑

l δ(x− xl) at T=0 K. S(q) is
shown for liquid 4He in the nanopore at linear densities,
0.117 < ρ0 < 0.30 Å−1. S(q) is dominated by a single
peak at q = 2πρ0. The peak height and sharpness of the
peak increases with increasing density ρ0. A small sec-
ond peak emerges at q = 4πρ0 at the highest densities ρ0.
The dominant peak at q = 2πρ0 arises from the nearly
solid like order in the 1D liquid and is characteristic of
1D. Using the relation,

1

2π

∫

dqe−iqx[S(q)− 1] = ρ0[g(x)− 1], (19)

we see that the dominant single peak in S(q) at q = 2πρ0
will lead to oscillations in g(x) dominated by a single
term A1cos(2πρ0x). Thus the long range oscillations in
g(x) and sharp peak in S(q) are complimentary charac-
teristics of a highly correlated 1D fluid. Within precision
we found that S(q) was linear in q at q → 0, although a
low q value is needed to reach the linear region at low ρ0.
Using the relation, (10), we may see visually from Fig. 7
that the LL K decreases with increasing ρ0.
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FIG. 6. (Color online) (a) The DMC pair distribution func-
tion, g(x), at twelve linear densities ρ0 (in Å−1). The LL
g(x) fits well retaining the first term only in the series in Eq.
(3) with A1 and K as adjustable parameters As found for the
OBDM, the amplitude of the oscillations in g(x) increases
with increasing density ρ0. The LL parameter K obtained
from g(x) agrees well with K obtained from the equation of
state and S(q). (b) The PIMC pair distribution function at
T=0.5 K (dashed lines) and T=1.5 K (full lines) at two linear
densities. At sufficiently large x the correlation functions at
finite T start to decay exponentially.

B. Disordered nanopores

In the previous section we presented PIMC and DMC
results for ρS/ρ0, the OBDM, n(x), the pair distribu-
tion function, g(x), and S(q) for liquid 4He in a uniform
nanopore of radius R = 3 Å. These properties were well
described by LL expressions especially at higher linear
density, ρ0 ≥ 0.2 Å−1. In this section we present results
for the 1D liquid in the nanopore containing disorder.

Fig. 8 shows ρS/ρ0 for liquid 4He at five linear den-
sities in the nanopore containing point disorder in the
walls as described in section III . The same disordered
nanopore was used at all densities. The fits of the LL
expression Eq. (6) to the PIMC ρS/ρ0 are quite different
from that of the uniform pore case. In disorder, the χ2 is
large even at high density ρ0 = 0.25 Å−1 where χ2 was
small in the uniform case. Also, at ρ0 = 0.25 Å−1 the
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FIG. 7. (Color online) The DMC static structure factor
S(q) versus linear density ρ0 = a−1 in Å−1. At larger ρ0,
S(q) shows a peak at q = 2π/a. At the highest ρ0, there
is also a small peak at the second reciprocal lattice vector
q = 4π/a. The LL parameter obtained from S(q) agrees well
with that obtained from e(ρ0) and g(x).

three ρS/ρ0 for the three different lengths L look some-
what different. There does not appear to be accurate
scaling of ρS/ρ0 with LT as in the uniform nanopore. At
high density, the longer L appear to be associated with
lower ρS/ρ0, lower than predicted by Eq. (6).
If we interpret the PIMC ρS/ρ0 in terms of the LL

Hamiltonian, then the fit shown in Fig. 8 is a fit of Eq.
(6) with vJ/v

0
J in Eq. (8) as the fitting parameter. The

best fit ratio vJ/v
0
J is shown at each density in Fig. 8.

Also, since from Eq. (6) ρS/ρ0 = vJ/v
0
J at T = 0 K,

the value of vJ/v
0
J can be read directly from ρS/ρ0 at

T = 0 K in Fig. 8. In disorder, LL theory predicts
that ρS/ρ0 should continue to scale with LT but with
a constant ~vJ that is different from ~v0J and character-
istic of the disorder. We note firstly that vJ/v

0
J is not

accurately determined. For example, the low values of
vJ/v

0
J at some densities in Fig. 8 appear to be associated

with a lack of data at low LT where ρS/ρ0 may go to-
ward unity. Also as the homogeneous case, at the density
ρ = 0.1 Å−1, occasional separation into droplets in the
course of the simulation is observed, which contributes to
the low quality of the fit. Considering the remaining four
densities, a value of vJ/v

0
J = 0.85± 0.15 independent of

density could be proposed. At ρ = 0.2 Å−1, the density
for which we have most data, vJ/v

0
J = 0.95 ± 0.01 was

obtained, however with the χ2 ≈ 50. Excluding the data
for the shortest length L = 15 Å, a vJ/v

0
J = 0.86± 0.02

would be obtained with χ2 ≈ 25 at ρ0 = 0.2 Å−1.
The impact of disorder on ρS/ρ0 is predicted52 to be

a sensitive function of K. In the present 1D 4He, K
depends on ρ0 as shown in Fig. 3. For K ≥ 3/2 1D
superfluidity is predicted to be robust in disorder. For
K ≤ 3/2 (ρ0 >

∼ 0.14 Å−1) small amplitude disorder is
predicted52 to destroy 1D superfluidity. The suppression
of ρS/ρ0 at K ≤ 3/2 is observed here only in the longer
length samples investigated. At ρ0 = 0.2 Å−1 and 0.25

Å−1 where K < 3/2 a small ρS/ρ0 (near zero at ρ0 =
0.2 Å−1) is indicated at the longest L only. This suggests
that ρS/ρ0 can be suppressed to zero by disorder at K ≤
3/2 but a long sample is needed to reveal the suppression.
If we interpret the PIMC ρS/ρ0 in Fig. 8 as an oppor-

tunity to determine the “dynamical” superfluid fraction
ρDS /ρ0, then the fit in Fig. 8 is a fit of Eq. (16) with the
“dynamical” ρDS /ρ0 in Eq. (15) as a free fitting parame-
ter. The best fit values of ρDS /ρ0 are shown as vJ/v

0
J =

ρDS /ρ0 in Fig. 8 at each density. Clearly as quoted for
vJ/v

0
J , all ρ

D
S /ρ0 are less than one. Also from the fits

ρDS /ρ0 is at least approximately independent of temper-
ature over a temperature range of 0.2 ≤ T ≤ 2.5 K. The
ρDS /ρ0 are discussed further at the end of the Discussion.
Fig. 9 shows the impact of disorder on the OBDM,

n(x). The chief impact is a lowering of the height of the
long range tail of n(x) at x ≥ 5 Å. The lowering of the
height of the tail in n(x) may be interpreted as a modest
suppression of the superfluid order by disorder. This is
consistent with the modest suppression of ρS/ρ0 by dis-
order seen above. The oscillations in n(x) with x at high
density are little changed by disorder. Similarly, no oscil-
lations in n(x) are introduced by disorder at low density.
Generally, the OBDM is less impacted by disorder than
the ρS/ρ0. Similarly, the pair correlation function, g(x),
shown in Fig. 10 is little modified by disorder.

V. DISCUSSION

In the previous section, we presented PIMC and DMC
calculations of liquid helium confined to 1D in a nar-
row nanopore over a wide range of density. The Lut-
tinger Liquid parameter varied from K ≥ 2 to K ≤ 0.5.
Both uniform nanopores and nanopores containing dis-
order were investigated. The goal was to test how well a
1D liquid of 4He atoms is described by LL theory.

A. Uniform 1D fluids

The ρS/ρ0 of 1D liquid 4He in a uniform nanopore was
accurately described by LL theory. The LL expression,
Eq. (7), fitted the PIMC ρS/ρ0 well with vJ = v0J , the
Galilean invariant liquid value at all densities and for all
values ofK considered. At very low densities, close to the
spinodal density, the χ2 of the fit was large compared to
those at higher densities. This was attributed to the uni-
form fluid beginning to become unstable to 1D droplets
close to the spinodal density.
The DMC g(x) and S(q) were well described by the

T = 0 K LL predictions. At high density, g(x) has long-
range oscillations of wave vector q = 2πρ0 unique to 1D.
The oscillations are characteristic of nearly solid order in
the liquid at high density. The amplitude of the oscilla-
tions decreases with decreasing density, as the liquid be-
comes more gas like. The oscillations become unobserv-
able near the equilibrium density (p = 0) which is close
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FIG. 8. (Color online) PIMC superfluid fraction, ρS/ρ0, of 1D liquid 4He (data points) in a nanopore (radius R = 3 Å) having
disordered walls. Five linear densities ρ0 between ρ0 = 0.10 Å−1 and ρ0 = 0.25 Å−1 with corresponding LL parameters
K > 2 and K < 0.5 are shown. The solid line is the LL prediction fitted to the PIMC ρS/ρ0 with ~vJ a free fitting parameter.
The fit is not good. The χ2 is generally large, typically more than ten times the χ2 found for the uniform case. The best fit
~vJ differs from uniform liquid value ~v0J . When interpreted in terms of the dynamical superfluid fraction, ρDS /ρ0, defined by
Machta and Guyer54 and Prokof’ev and Svistunov45 as discussed in the text, the ratio vJ/v

0

J is interpreted as ρDS /ρ0.

to the spinodal density. The corresponding S(q) has
a large single peak at vector q = 2πρ0 at high densi-
ties, as expected for a g(x) that oscillates. The PIMC
OBDM, n(x), equally shows oscillations in its long-range
tail unique to 1D. Both the PIMC g(x) and n(x) were

well fitted by the LL expressions, Eqs. (3) and (4), re-
spectively for distances smaller than the thermal length.
For high enough temperatures and long lengths, expo-
nential decay of the correlation functions was observed.
Near the spinodal density, g(x) appeared to depend on
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FIG. 9. (Color online) As Fig. 8 for the PIMC OBDM n(x) at
three densities ρ0: solid lines in disorder, dashed lines in uni-
form pores. Disorder decreases the OBDM at longer x. In
contrast to ρS/ρ0, the LL prediction for n(x), shown in Fig.
5, fits the PIMC OBDM in disorder quite well, especially
at higher densities where the amplitude of the oscillations in
n(x) are observable. At ρ0 = 0.1 Å−1, the heavy dashed lines
show a fit of the finite temperature n(x) (e.g. Eq. (71) of

Ref. (58)), n(x) = ρ0B0[(π/LT )/ρ0 sinh(πx/LT )]
1/2K where

LT = σπρ0/T (σ = ~
2/mkB)) in the region of x >

∼
2LT where

n(x) decays exponentially with x. At shorter x, the finite T
n(x) reduces to the T = 0 K result, Eq. (4).
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FIG. 10. (Color online) As Fig. 8 for the DMC pair distribu-
tion function g(x).

temperature and to fall below unity, which is attributed
to close proximity to droplet formation. There were no
significant departures from LL predictions over the range
of densities and K values investigated.
For a LL the height of the sharp peak in S(q) at

q = 2qF = 2π/a is predicted to scale with number of
Bosons in the sample, N , as S(2π/a) = AN1−2K . We
tested this scaling at linear density ρ0 = 0.25 Å−1and
found that S(2π/a) does indeed scale as N1−2K and the
best fit K = 0.344(14) obtained from the scaling agrees
well with K calculated by other methods (see Fig. 3).
The scaling suggests that in the thermodynamic limit
the peak is infinite for K < 1/2. For density where K >
1/2 no increase of the main peak with the system size
is observed, suggesting a finite value of the peak in the
thermodynamic limit.
Liquid para-hydrogen (p-H2) in 1D48,49 or quasi-1D

(e.g. at the center of carbon nanotubes or in harmonic
potential confinement)24,49–51,59 is similar to the present
1D 4He liquid. The aim in confining p-H2 in porous me-
dia is to suppress the freezing temperature of the liquid
so that temperatures low enough to observe superfluid-
ity might be reached. Recent reviews of this literature
appear in Refs. 51 and 59. The aim of investigating 1D
is to discover 1D superfluidity and to compare with LL
theory. In these investigations, it is assumed that super-
flow in 1D liquid p-H2 is possible if (and only if) the LL
parameter K exceeds 3/2, a criterion predicted by LL
theory.52

At high linear density, S(q) of 1D liquid p-H2 shows
a large peak at q = 2πρ0 with corresponding large am-
plitude oscillations in g(x) characteristic of solid-like
atomic correlations, as found here for 1D liquid 4He at
high density. At high ρ0, the LL parameter is small, K ≤
0.5. However, when the density is reduced K increases,
as found here for 1D 4He. A K ≥ 3/2 at low density
(ρ0 . 0.75 Å−1) has been reported50. However, for 1D
and quasi 1D p-H2, the spinodal density is reported59,60
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at ρ0 = 0.20 Å−1. This means the low density where a
K ≥ 3/2 is reported50 cannot be reached.
Near the equilibrium density48,49,59, ρ0 = 0.22

Å−1(K ≃ 0.35), the S(q) and g(x) of 1D p-H2 are
very similar to those found here for 1D 4He at ρ0 = 0.22
Å−1. The two 1D liquids appear to be quite similar ex-
cept that a much lower density can be reached in 1D
liquid 4He before the liquid becomes unstable. K always
diverges at the spinodal density, but the density range
over which K is large can be very small.
Bertaina et al.

61 have evaluated the LL parameter K
and the dynamic structure factor of pure 1D 4He. At
high density, ρ0 > 0.2 Å−1, the K of pure 1D 4He and
4He in the present nanopore (Fig. 3) are the same. At
lower density, K is somewhat lower for pure 1D 4He since
the spinodal density is lower in pure 1D 4He (ρsp = 0.026

Å−1).
Similarities can also be found between the present sys-

tem and pure 1D 3He62 and spin-polarized hydrogen iso-
topes63, especially at high densities in the quasi-solid
regime where K <1/2. Due to hard-core interactions
the energy and diagonal properties do not depend on the
statistics but rather on the mass. At high linear densities
the LL parameter K as a function of density is almost
the same for all three hydrogen isotope systems.63 3He
enters62 the K <1/2 regime at a linear density of 0.19
Å−1 which is quite close to the value obtained in this
work. The difference arising from the mass becomes more
apparent at lower density. In particular, neither of the
1D systems mentioned posesses a two-body bound state.
Thus as the density is lowered the K parameter either
increases up to 1 (for spin-polarized hydrogen) or shows
a nonmonotonic behaviour, reaching a maximum higher
than 1 and decreasing towards 1 as the density goes to
zero. The height of the maximum increases in the vicinity
of the two-body bound states.

B. 1D fluid in disorder

A 1D fluid in a disordered nanopore may also be well
described by LL theory10. The present PIMC ρS/ρ0 for
1D 4He in disorder did not, however, obviously scale as
LT . At higher densities definite departures from LT scal-
ing appeared with a dependence on L evident. The fits of
Eq. (6) to the PIMC ρS/ρ0 in disorder also had a large
χ2, much larger than the χ2 found for a uniform 1D liq-
uid. The largest χ2 were found at the highest densities.
The fit suggested vJ/v

0
J = 0.85 ± 0.15 but with a large

χ2 , The general conclusion is that the LL expression de-
scribes the PIMC ρS/ρ0 in disorder only approximately
at best.
In the present model, disorder is introduced by adding

impurities at random locations in the pore walls near the
liquid. There can be a small variation in the magnitude of
the disorder with periodic length L, an end effect. This
variation with L would contribute to the departure of
ρS/ρ0 from LL scaling, i.e. to χ2. We performed some

exploratory calculations by creating disorder configura-
tions at larger L as multiples of those from smaller ones,
in particular L=60 Å as a multiple of L=30 Å or by
using different random configurations. That had a very
small effect on the quality of fits (χ2 changed from 16 to
20) and thus could not account for the increase of the χ2

from the homogeneous case, in particular for the highest
densities, where the largest χ2 were obtained. From the
pair distribution function at lower densities and creation
of faint aperiodic oscillations, it appears that particles are
affected by the creation of random pockets of attraction
and repulsion. The effect is larger for shorther lengths
and may explain in part the increase of the χ2 with re-
spect to the homogeneous case. In summary, since large
values of χ2 were found at high ρ0 and systematic depar-
tures from LL scaling at long L were obtained, we do not
think the end effect makes a significant contribution to
χ2 and departures from LL character.

LL theory52 also predicts 1D superfluidity to be fragile
in disorder for K ≤ 3/2, robust to disorder for K ≥ 3/2.
We found ρS/ρ0 to be robust at K ≥ 3/2. The fragility
of ρS/ρ0 in disorder at K ≤ 3/2 was observed only in
the long L samples. That is, at ρ0 ≥ 0.2 Å−1 where K <
3/2, ρS/ρ0 was suppressed in disorder at long L only,
e.g. at ρS/ρ0 = 0.2 Å−1 and L = 90 Å, ρS/ρ0 is nearly
zero at all T investigated. Since the prediction draws on
renormalization group methods, a long sample may be
required to observe the cross over. Similarly, the OBDM
was reduced by disorder more at long lengths (x) than at
short lengths in Fig. 9.

At lower densities, where K > 3/2 and we expect the
superfluidity to be robust, we have examined one addi-
tional, somewhat simpler model. Fixed fictitious parti-
cles of linear density 0.1 Å−1 were added randomly along
the length and all angles, at a distance 2.5 Å from the
axis. Half of the particles were interacting attractively,
and half repulsively with the He atoms via the potential
±D/r3, with D = 10 K Å3. The average of this ad-
ditional interaction potential is zero, and its maximum
within the space occupied by the helium atoms was less
than 10% of the potential energy per particle. Although
the values of the superfluid fraction were less suppressed
below the uniform case, Luttinger liquid scaling with LT
was not observed. Again, superfluidity was suppressed
more at long lengths than would be expected from the
suppression at shorter lengths.

The impact of disorder on superfluidity is predicted to
depend on the strength of the disorder38. It is thus pos-
sible that by reducing D or ǫd one could recover the LL
scaling in disorder. Our results, however, suggest, that
LL scaling would be preserved only for very weak disor-
der. The additional difficulty with 4He is the proximity
to the spinodal decomposition, which prevents access to
lower densities where K would be larger.

In an extensive study of hard core Bosons on a lat-
tice with weak on site disorder, Doggen et al.64 find a
critical value of Kc = 3/2 in agreement with the pre-
dictions of Giamarchi and Schultz52 (GS) . The disorder
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is white noise in the sense that the disorder on nearest
neighbor sites is uncorrelated. This agreement suggests
that although the prediction of GS was derived using
weak Gaussian correlated disorder the prediction may be
valid for weak disorder more generally. For strong dis-
order, Doggen et al. find Kc > 3/2 and Kc is no longer
constant. Rather Kc depends on the magnitude of the
disorder. Again, our findings are limited. At low linear
density, ρ0, where K > 3/2 we find ρS/ρ0 is not sup-
pressed by disorder. However, at higher density ρS/ρ0 =
0.2 Å−1where K = 0.7 we find ρS/ρ0 is suppressed to
near zero for the long L samples consistent with GS pre-
dictions.

We may also interpret the PIMC ρS/ρ0 as an op-
portunity to determine the dynamical ρDS /ρ0 proposed
in Refs. 45 and 54. In this case, the fits to ρS/ρ0 in
Fig. 8 are interpreted as fits of Eq. (16) to the PIMC
ρS/ρ0 with ρDS /ρ0 in Eq. (15) as the fitting parameter.
Before discussing the resulting ρDS /ρ0, we compare some
expressions for ρS/ρ0 in the literature.

1. Expressions for ρS/ρ

Using PIMC methods, we have calculated the “ther-
modynamic” superfluid fraction using the standard
expression53 Eq. (5), ρS/ρ0 = α0〈W

2〉. Specifically the
mean square 〈W 2〉 was evaluated using PIMC.

If the LL Hamiltonian, Eq. (1), describes the 1D liq-
uid, then the probability of observing a winding number
W is given by Eq. (9) and the “thermodynamic” ρS/ρ is
given by Eq. (7). In a disordered liquid vJ can differ from
v0J and in principle, depending on the fluid and disorder,
vJ > v0J is not excluded. The T = 0 K limit of Eq. (7) is
vJ/v

0
J . If vJ/v

0
J > 1, the LL Eq. (7) appears to permit

the unphysical result ρS/ρ0 > 1. In the present paper,
Eq. (7) was fitted to the PIMC ρS/ρ which is always less
than unity. Thus we found vJ/v

0
J = ρDS /ρS ≤ 1.

DelMaestro and Affleck46 have derived an expression
for ρS/ρ0 within LL theory,

ρS
ρ0

= 1−
4π2

α
〈J2〉. (20)

where α = α0(vJ/v
0
J)

−1, α0 = (TL/σρ0) as before. If the
LL Hamiltonian, Eq. (1), describes the liquid, the prob-
ability of observing a number J of phase twists across

the liquid of length L is46 P (J) ∝ e−(2π2/α)J2

. Since
〈J2〉 → 0 as T → 0, Eq. (20) gives ρS/ρ0 → 1 at
T = 0 K. Eqs. (6) and (20) are similar except Eq. (6)
gives ρS/ρ0 → vJ/v

0
J at T = 0 K, Eq. (20) ρS/ρ0 → 1.

The two expressions are identical for vJ = v0J . In earlier
publications20,22,43, Eq. (20) was fitted to PIMC values
of ρS/ρ0.

Prokof’ev and Svistunov45 have derived an expression
for ρS/ρ0 in terms of the “dynamical” superfluid fraction

ρDS /ρ0 introduced in section II ,

ρS
ρ0

=
ρDS
ρ0

[

1−
4π2

αD
〈J2〉

]

, (21)

where αD = α0(ρ
D
S /ρ0)

−1 as in Eq. (15). Eqs. (16)
and (21) are identical. Specifically, the T = 0 limits of
Eqs. (16) and (21) are ρS/ρ0 = ρDS /ρ0. Although the
physical meaning of Eq. (16) and (21) is very different
from that of Eq. (6), the equations are identical with
ρDS /ρ0 playing the role of vJ/v

0
J . Also, from Eq. (21)

we see clearly that since PIMC values of ρS/ρ0 satisfy
ρS/ρ0 ≤ 1, a fit of Eq. (16) or Eq. (21) to PIMC ρS/ρ0
will always give ρDS /ρ0 ≤ 1.

2. Dynamical superfluid fraction

From Eq. (21), we see clearly that the “dynamical”
ρDS /ρ0 and the “thermodynamic” ρS/ρ0 are the same at
T = 0 K. The central question is then, what is the tem-
perature dependence of ρDS /ρ0? For a uniform (Galilean
invariant) 1D liquid that is well described by the LL
Hamiltonian with vJ = v0J , given the identity of Eqs. (7)
and (16), we have ρDS /ρ0 = 1 for a uniform 1D liquid at all
temperatures. Similarly, for a 1D liquid in disorder, given
the fits shown in Fig. 8, there is no apparent tempera-
ture dependence in ρDS /ρ0 needed to get a reasonable fit
of Eq. (16) to the PIMC ρS/ρ. For example, at ρ0 = 0.2
Å−1 the fit is made over a range of LT values given by
0.5 < (L/~βv0J) < 5, where L/~βv0J = (LT/πσρ0). It
is difficult to translate this into a definite temperature
range, but a range 0 < T < 2.5 K was used in calcula-
tions. This suggests a ρDS /ρ0 roughly independent of T
up to T ≃ 2 K. A ρDS /ρ0 ≃ 0.85 ± 0.15 independent of
temperature is suggested at the considered densities.
The “dynamical” ρDS /ρ0 has been evaluated for atomic

gases in a periodic external potential27. Both ρDS /ρ0 and
ρS/ρ0 are found to go from unity to zero as the density
goes from incommensurate to commensurate, a super-
fluid to Mott insulator transition.

C. Comparison with experiment

The thermodynamic ρS/ρ given by Eq. (5) and eval-
uated using PIMC has been enormously successful in re-
producing the observed ρS/ρ in 2D and 3D fluids4,6,53,65.
It is tempting to compare the present model and thermo-
dynamic ρS/ρ and OBDM with measurements of liquid
4He in fully filled nanopores14,15,66 of diameter 28 Å and
47 Å. However, the ρS/ρ observed in these nanopores has
a transition temperature (e.g. Tc = 0.9 K for d = 28
Å) characteristic of 2D or 3D. In contrast, the ρS/ρ0 in
1D has no thermal Tc. The temperature dependence of
ρS/ρ in nanopores14 below Tc is also quite different from
that of ρS/ρ0 in 1D. In nanopores, the phase at tempera-
tures above Tc is a Bose glass (BG) phase18,19,67,68. The
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BG phase supports well defined phonon modes in puddles
of BEC separated by normal fluid66,68,69. The interpre-
tation of the BG phase in terms of puddles of BEC has
recently been made in Bose gases in traps70.

Rather than 1D like, the observed ρS/ρ in nanopores14

looks 2D like with a Tc. In nanopores of diameter 28
Å (liquid pore radius R ≃ 9 Å), the liquid 4He is de-
posited predominantly in 2D layers20,43. A PIMC cal-
culation of ρS/ρ and the OBDM, n(x), of 4He in the
liquid layers43 shows that both ρS/ρ0 and n(x) are 2D
like43 with a Tc = 1.4 K, which is close to the Tc =
0.9 K observed in nanopores, d = 28 Å. Extensive mea-
surements of ρS/ρ in films of 4He in nanopores have also
been made11,13. In interconnected gelsils, the superfluid-
normal transition is readily interpreted18,19,67,68,71 as a
superfluid-BG transition in 3D.

VI. CONCLUSION

The present DMC and PIMC results show that homo-
geneous liquid 4He confined to 1D in a uniform nanopore
is well described by LL theory. When disorder is added
to the same nanopore, the PIMC superfluid fraction,
ρS/ρ0, retains only roughly the shape expected for 1D.

The ρS/ρ0 does not scale well with LT and a fit of the LL
expression has a large χ2. In disorder the ρS/ρ0 becomes
length dependent and ρS/ρ0 is suppressed to near zero
by disorder at K < 3/2 only in the longer length samples.
The long range part of the OBDM is reduced most by dis-
order. The dynamical superfluid fraction, ρDS /ρ0, is cal-
culated in terms of the thermodynamic, PIMC ρS/ρ0 in
disorder. The two are the same at T = 0 K. Within pre-
cision we find ρDS /ρ0 is independent of temperature (e.g.
up to 2 K in 1D liquid 4He).
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