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We propose that the quasi-one-dimensional molybdenum selenide compound Tl2−xMo6Se6 is a
time-reversal-invariant topological superconductor induced by inter-sublattice pairing, even in the
absence of spin-orbit coupling (SOC). No noticeable change in superconductivity is observed in Tl-
deficient (0 ≤ x ≤ 0.1) compounds. At weak SOC, the superconductor prefers the triplet d vector
lying perpendicular to the chain direction and two-dimensional E2u symmetry, which is driven to a
nematic order by spontaneous rotation symmetry breaking. The locking energy of the d vector is
estimated to be weak and hence the proof of its direction would rely on tunnelling or phase-sensitive
measurements.

I. INTRODUCTION

Topological superconductivity stands out among all
the topological phases in part because the Majorana
fermions it allows at boundaries are not only funda-
mentally fascinating but also have potential applica-
tions in quantum computation1–5. A crucial element
for such superconductors is spin-triplet pairing, or odd-
parity pairing in the presence of inversion symmetry6,7.
Prime examples are unconventional superconductors
Sr2RuO4

8,9 and UPt3
10 and both of them act as chiral

superconductors11–13. However, their complex or nodal
Fermi surface properties make it difficult to host distinct
Majorana modes8,10,13,14. One could seek to exploit the
proximity effect between the surface states of an topolog-
ical insulator and an s-wave superconductor3,15–17. Such
a approach requires strong spin-orbit coupling (SOC)
to break the inversion symmetry in order to turn sin-
glet pairing into triplet pairing. Another rather un-
expected avenue toward realizing topological supercon-
ductors is through doping topological insulators. The
electron-doped topological insulator CuxBi2Se3 has just
been verified as a spin-triplet superconductor with a crit-
ical temperature Tc ∼ 3.2 K7,18,19, and possibly carrying
a nematic order19–21.

In this Letter, we propose the non-symmorphic
semimetal compound Tl2−xMo6Se6 as a spin-triplet
topological superconductor with time-reversal symme-
try. Being a representative of molybdenum selenides
M2Mo6Se6 (M=Na, Rb, In, or Tl), this compound be-
comes superconducting with Tc ∼ 3 − 6.5 K22–25, and is
fully gapped according to differential resistance studies26.
Tl deficiency x falls between 0 to 0.1. Another supercon-
ductor in the family is M=In compound with Tc ∼ 2.9
K25. Tl2−xMo6Se6 superconductor is particularly inter-
esting because a small SOC will suffice to fix the triplet

d vector27 and yield a two-component order parameter
in the E2u irreducible representation. Moreover, the su-
perconductivity is rather insensitive to doping within the
available experimental doping range (0 ≤ x ≤ 0.1). Simi-
lar to CuxBi2Se3 superconductor, we expect a concurrent
nematic order20, and a nematic vortex from the crossing
of nematic domain walls, around which (pseudo)spin-up
and spin-down order parameters gain phases of ±2π, will
bind the Kramers pair of Majorana modes robust against
disorder28.

II. CRYSTAL SYMMETRY AND ELECTRONIC
STRUCTURE

Non-symmorphic compound Tl2−xMo6Se6 has a
hexagonal lattice with inversion symmetry, characterized
by the space group P63/m (No. 176). Having highly

anisotropic lattice constants (a=8.934 Å, c=4.494 Å),
its crystal structure is quasi-one-dimensional (quasi-1D),
with Mo3Se3 chains arranged in a triangular lattice, as
shown in Figs. 1(a,b). A Tl atom is centered in each
triangle to couple the Mo3Se3 chains. It also act as an
electron donor, stable in a +1 valence state, much like an
alkali atom25. Two inverse closely-packed Mo3 triangles
at 3~c/4 and ~c/4, dubbed A and B, form a basis of the
Mo3Se3 chain. Owing to neighboring three Se anions and
one Tl cation, three Mo atoms of a triangle have to share
five 4d valence electrons, which implies a half-filled band
in the absence of Tl deficiency.

We have performed first-principles band calculations29

within density functional theory using generalized gradi-
ent approximation30. Tl2−xMo6Se6 band structures are
shown in Fig. 2. The bands close to the Fermi level
mainly come from the Mo dxz orbitals with lobes of their
Wannier wave functions pointing toward nearby Se atoms
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FIG. 1: (Color online) Hexagonal lattice and Brillouin zone
of Tl2Mo6Se6. (a,b) Top/Side view of a unit cell. Large pink,
median purple and small green spheres denote Tl, Mo and Se
atoms, respectively. In a unit cell, two Mo triangles, A and B,
form the (electronic) basis. (c) Wannier functions for A and
B sublattices come from dxz orbitals and are C3-invariant.
Red and blue colors in the Wannier function stand for oppo-
site signs. (d) The first Brillouin zone and high-symmetry k
points. Γ, M , A, and L are time-reversal invariant momenta.

[see Fig. 1(c)]. They are the basis states from which we
construct the low-energy Hamiltonians. Two A and B
sublattice states can interchange under inversion I, the
center of inversion being in the middle of the two sub-
lattices. They can also interchange by a two-fold screw
operation S2 along the z direction, plus a translation by
~c/2.

Consider first a simple 1D Mo3Se3 chain in the z di-
rection. (Throughout the paper we shall set lattice con-
stants to unity.) The two sublattices in a unit cell form
symmetric and anti-symmetric states and they modulate
with phase eikzz to be a bonding and a anti-bonding
band. At kz = π, the Bloch-state modulating phase is
equal to (−1)z and the bonding and anti-bonding states
become identical under inversion, IΨBond = ΨAntibond

(up to a phase), so that two bands touch.
By extending to three dimensions through introducing

inter-chain coupling, the band crossing evolves into a two-
dimensional (2D) nodal surface at kz = π31. The two-
band Hamiltonian reads

Ht(k) = ε0(k)σ0 + ε1(k)σ1 + ε2(k)σ2, (1)

where σ0 and σi are the identity and Pauli matrices for
sublattices. The σ3 term is forbidden by the T I sym-
metry (referred to Appendix A). Furthermore, (T S2)2

is a unit lattice translation by ~c and gives e−ikz by act-
ing on a Bloch eigenstate. Particularly, (T S2)2 = −1 at
kz = π, leading to a double degeneracy for all states,
analogous to the Kramers degeneracy31. As a result,
ε1(k) = ε2(k) = 0 at kz = π. As shown in Fig. 2(a),

(a)
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FIG. 2: (Color online) Band structures of undoped Tl2Mo6Se6

with (a) or without (b) SOC. Blue lines represent results from
first-principles calculations and red dots from fitting the tight-
binding model. The Fermi energy is set to zero.

states along the A-L-H-A path on kz = π plane are de-
generate.

Under time-reversal and inversion symmetries, the
Hamiltonian that includes SOC reads, derived in Ap-
pendix A,

H(k) = s0Ht(k) + ~ζ(k) · ~s σ3, (2)

where s0 and ~s = (s1, s2, s3) are the identity and Pauli
matrices for spin. As a consequence of T and I sym-
metries, ζ’s must be odd in k. This σ3 term will gap
out the surface node. According to first-principles cal-
culations, the SOC is quite weak for Tl atom, especially
along A − L, but gets larger for heavier M atom [see
Fig. 2(b)]. Since SOC vanishes at time-reversal invari-
ant momenta, residual point-like band crossings appear
at A and L points, namely three-dimensional (3D) Dirac
nodes. In particular, the band crossing at A point is a
cubic Dirac fermion due to its six-fold symmetry32.
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III. THEORY OF SUPERCONDUCTIVITY

Under time-reversal symmetry, the Tl2Mo6Se6 super-
conducting states, described by the mean-field Hamilto-
nian

HSC(k) =
(
H(k)−µ ∆(k)

∆(k) −[H(k)−µ]

)
(3)

in the basis Ψk = (ψT
k↑, ψ

T
k↓, ψ

†
−k↓,−ψ

†
−k↑)

T, can be clas-

sified into even (spin singlet) and odd parity (spin triplet)
pairing by I∆(k)I−1 = ±∆(−k). For a DIII topological
superconductor, the parity of the superconducting gap
has to be odd6. In conventional superconductivity, spin
singlet/triplet imposes that the gap function is even/odd
in k. However, additional sublattice degrees of freedom
plays a role much like in the orbital pairing theory in Fe-
based superconductors37: For spin singlet, to make parity
even, we can have sublattice and k parts to be both even
or both odd. For spin triplet, to make parity odd, we can
have sublattice even and k odd, or sublattice odd and k
even. Since I is a combination of the two-fold screw op-
eration S2 and mirror operation Mz (i.e., z → −z), we
can further classify the superconducting states in each
parity into screw even (+) and screw odd (−), according
to

S2(kz)∆(kx, ky, kz)S2(kz)
T = ±∆(−kx,−ky, kz).

Similarly for Mz.The full classification of the gap func-
tions according to C6h group is shown in Table I.

We consider attractive, intra- and inter-sublattice in-
teractions for pairing,

Hint = −
∑
r

{
U
[
nA↑(r)nA↓(r) + nB↑(r)nB↓(r)

]
(4)

+ V
[
nA(r)nB(r + ~c/2) + nA(r)nB(r− ~c/2)

]}
,

where r runs over the Bravais lattice and nX(r) =
nX↑(r) +nX↓(r) is the electron density for sublattice X.
Interactions between chains are neglected since we ex-
pect pairing to be the strongest within a chain. Table
I lists six possible pairing symmetries. While the intra-
sublattice interactions participate in the Ag pairing, the
inter-sublattice interactions contribute to all six pairings.
Details in Appendix A. Their critical temperatures Tc
are determined by

det

[(
U
4 χ0(Tc)

U
4 χ01(Tc)

V
2 χ01(Tc)

V
2 χ1(Tc)

)
− I

]
= 0, for ∆1

V

2
χi(Tc) = 1, for ∆i=2,3,4,5,6.

(5)

The pair susceptibility χi is given by

χi =
T

N

∑
k,iωn

Tr
(
Γi(k)G(k, iωn)Γi(k)G(k,−iωn)

)
, (6)

where G(k, iωn) = [iωn − H(k) + µ]−1 with ωn =
(2n + 1)πkBT is the fermion Green’s function, and N
is the number of lattice sites. The chemical poten-
tial µ is used to simulate doping effect. The vertex
functions are Γ0(k) = s0σ0, Γ1(k) = s0σ1 cos(kz/2),
Γ2(k) = s0σ2 sin(kz/2), Γ3(k) = s3σ1 sin(kz/2), Γ4(k) =
s3σ2 cos(kz/2), Γ5(k) = s1σ2 cos(kz/2), and Γ6(k) =
s1σ1 sin(kz/2). χ01 is obtained by replacing the first
Γi(k) in Eq. (6) by Γ0(k) and the second by Γ1(k).

Adopting the fitting parameters for the band structure
in Fig. 2(b), we computed the pair susceptibility for these
six channels [see Fig. 3(a)]. Three dominant channels
are χ0, χ3 and χ6 for, respectively, 1D Ag and Au, and
2D E2u irreducible representations, all having sublattice-
even and screw-even pairings. In Table I, those for gapful
superconductivity show the conventional logarithmic be-
havior, χ ∼ Neff ln (Λ/kBT ), where Neff stands for the
effective density of states at the Fermi energy and Λ is
the energy cutoff. The logarithmic law taken into Eq. (5)
determines the critical temperature for superconductiv-
ity.

We first consider Ag and E2u states. Depending on the
interaction strength ratio U/V , the superconductor can
fall into Ag or E2u state. From Eq. (5), the condition for
E2u to dominate over Ag is

U

2V
<

χ̃1 − 1

χ̃0 (χ̃1 − 1)− χ̃2
01

(7)

where χ̃0,01,1 = χ0,01,1(Tc)/χ6(Tc); otherwise, Ag domi-
nates over E2u. The phase diagram is shown in Fig. 3(b).
Doping would only slightly shift the phase boundary and
reduce Tc. At present little is known about the origin
of pairing and the values of U and V . If the attractive
interactions are phonon-mediated, the spin triplet state
could be stabilized by a weak electronic correlation, as
proposed for CuxBi2Se3

38. Then, considering that strong
on-site repulsion is common in 4d transition metals, the
E2u state is likely the winner.

The critical temperatures for Au and E2u states are
very close since their χ difference is small (the estimation
is found in Appendix B. In the absence of SOC, the E2u

state will be triply degenerate with the Au state because
of SU(2) spin symmetry. The SOC lifts their degeneracy,
favoring E2u. The solution to the fact is that the highest
Tc is obtained when the triplet d vector aligns with the

SOC field ~ζ(k) in Eq. (2)39. For the Fermi surface located

around kz = π, ~ζ(k) and hence the d vector, in principle
lies on the x-y plane.

IV. NEMATIC ORDER

To study spontaneous time-reversal and rotation
symmetry breaking, we consider the phenomenological
Ginzburg-Landau free energy for the spin-triplet E2u
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Rep. S2 Mz Basis functions ∆(k) Susceptibilities

Ag (∆1) + + 1 s0 ⊗ σ0; cos kz
2
s0 ⊗ σ1 χ0, χ01, χ1

Bg (∆2) − − Re k3
+kz; Im k3

+kz s0 ⊗ sin kz
2
σ2 χ2

E1g −2 −2

{
kxkz
kykz

}
N/A

E2g +2 +2

{
k2
x − k2

y

2kxky

}
N/A

Au (∆3) + − kz ẑ; kxx̂+ ky ŷ; kxŷ − kyx̂ s3 ⊗ sin kz
2
σ1 χ3

Bu (∆4) − + Re k3
+ẑ; Im k3

+ẑ s3 ⊗ cos kz
2
σ2 χ4

E1u (∆5) −2 +2

{
kxẑ
ky ẑ

}
;

{
kzx̂
kz ŷ

} {
s1

s2

}
⊗ cos kz

2
σ2 χ5

E2u (∆6) +2 −2

{
(k2

x − k2
y)kz ẑ

2kxkykz ẑ

}
;

{
kxx̂− ky ŷ
kyx̂+ kxŷ

} {
s1

s2

}
⊗ sin kz

2
σ1 χ6

TABLE I: Classification of gap functions for the interaction in Eq. (B1) in C6h group. g (u) subscript denotes even (odd) parity.
A’s and B’s are 1D representations, E’s are 2D representations. The second and third columns display traces of eigenvalues
of S2 and Mz for every representation. The gap function is defined by ∆(k) = si ⊗

∑3
j=0 ∆j(k)σj . s0 stands for spin singlet

(↑↓ − ↓↑), and s1,2,3 stands for spin triplet (↑↑ − ↓↓, ↑↑ + ↓↓, ↑↓ + ↓↑), respectively. σ0 and σ3 (σ1 and σ2) terms are intra-
(inter-)sublattice pairings. σ0 and σ1 (σ2 and σ3) terms are sublattice even (odd). The basis functions allude to gap functions
from the band particles (Here k’s are expanded around the A point and k+ = kx + iky).

state, which reads

F =α
(
|Ψ+|2 + |Ψ−|2

)
+ β1

(
|Ψ+|2 + |Ψ−|2

)2
+ β2 |Ψ+|2 |Ψ−|2 ,

(8)

where Ψ± = Ψ1 ± iΨ2. The two order parameters
for E2u, Ψ1 and Ψ2, correspond to the pairing states

i〈c†A↑c
†
B↑ − c

†
A↓c
†
B↓〉 and 〈c†A↑c

†
B↑ + c†A↓c

†
B↓〉, respectively.

Below Tc (α < 0), we obtain Ψ1,2 6= 0 and supercon-
ductivity occurs. The sign of β2 is crucial for determin-
ing whether time-reversal symmetry (β2 > 0) or rotation
symmetry (β2 < 0) breaks20. We shall rule out the T -
breaking scenario since no magnetic moment is found in
Tl2−xMo6Se6

24. In order to determine the nematic angle
θ in the crystal, we need the sixth-order term in the free
energy, given by

δF6 = −(γ1 + iγ2)
(
Ψ∗+Ψ−

)3
+ H.c. (9)

where (γ1, γ2) depend on microscopic models. This term

is proportional to −
√
γ2

1 + γ2
2 cos(6θ − φ) with φ =

arctan (γ2/γ1); so, θ is pinned at φ/6 + 2nπ/3 with ar-
bitrary integer n. (For a nematic order, θ and θ + π
are equivalent.) In contrast to CuxBi2Se3 whose nematic
state is possibly nodal20,40, Tl2−xMo6Se6 has a nematic
state that is fully gapped for any θ.

Regardless of the nematic angle, a Kramers pair of
Majorana flat bands will barbor on the (001) surface,
which is guaranteed by a nonzero 1D winding number
over k⊥ = (kx, ky)33,34. Although the Majorana sur-
face states can be gapped out by disorder which breaks
translational symmetry locally, they will be restored after
disorder averaging, similar to weak or crystalline topolog-
ical insulators35,36. Interestingly, there exists a kind of
disorder which can host Majorana modes locally. At a
nematic vortex core, where three degenerate nematic do-

main walls meet, the Majorana Kramers pair return and
pin to it28.

V. DISCUSSION

The non-symmorphic crystal structure provides a
proper electronic base for odd-parity pairing. Un-
der time-reversal and inversion symmetries, the SOC is
shown to favor equal-spin pairing and the E2u state in
which the triplet d vector is pinned to the x-y plane. This
2D representation state would then spontaneously break
the rotation symmetry and produce a nematic order, as in
CuxBi2Se3

19–21 which has being ultimately confirmed by
nuclear magnetic resonance (NMR) experiments19. How-
ever, NMR measurement would fail to answer the direc-
tion of the d vector as in Sr2RuO4 because E2u and Au
states are very close in energy (Tc difference being less
than 5%) and external magnetic fields can easily unpin
the d vector from the x-y plane. Therefore we suggest the
proof can be realized in scanning tunneling spectroscopy
or phase-sensitive measurements41. A salient point for
this quasi-1D crystal is that it is a type-II superconduc-
tor with huge κ24, thus forbidding vortex formation, so
that pure Zeeman effect can be used to study transitions
between superconducting states.

Recently, similar quasi-1D A2Cr3As3 (A=K,
Rb, Cs) superconductors with comparable Tc were
reported42–44, and suggested to be nodal unconventional
superconductivity44–47. Although they share identical
crystal structure as M2Mo6Se6, their different electron
valences48 lead to completely different Fermi surface
structures, and consequently, distinct superconductivity
theories. We also noted an unexpected superconductiv-
ity found in Na2−xMo6Se6 in which a large Na deficiency
makes the localized system superconducting49.
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FIG. 3: (Color online) (a) Pair susceptibilities of
Tl2−xMo6Se6 with x = 0 for relevant channels. Large χ0, χ3,
and χ6 correspond to Ag, Au, and E2u states, respectively.
χ3 and χ6 curves almost overlap. (b) Superconducting phase
diagram between Ag and E2u states as functions of intra- and
inter-sublattice interaction strengths, U and V . Doping has
weak effect on the phase boundary. The range of V corre-
sponds to Tc from about 10 K to 1000 K (nonlinear relation).
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Appendix A: Tight-binding model

We build up the low-energy Hamiltonian forMMo3Se3

according to symmetry. There are 12 symmetry elements
in space group of P63/m (No. 176). To derive the Hamil-
tonian, it suffices to use the inversion center (1̄), the
two-fold screw axis about z (21) and the three-fold ro-
tation axis about z (3), since combinations of these three
and their inverse elements can produce all possible opera-
tions. For example, the six-fold screw axis 63 corresponds
to a three-fold rotation 3̄ followed by the two-fold screw
21. Two A and B sublattices in this nonsymmorphic

crystal interchange under inversion and two-fold screw
operations. Mathematically, the Hamiltonian follows

IH(kx, ky, kz)I−1 = H(−kx,−ky,−kz), (A1)

S2H(kx, ky, kz)S−1
2 = H(−kx,−ky, kz), (A2)

C3H(kx, ky, kz)C−1
3 = H(k′x, k

′
y, k
′
z), (A3)

where I, S2, and C3 stand for inversion, two-fold screw
and three-fold rotation operators respectively. The mo-
menta k′’s in Eq. (A3) are given by k′x

k′y
k′z

 =

 cos 2π
3 sin 2π

3 0
− sin 2π

3 cos 2π
3 0

0 0 1

 kx
ky
kz

 . (A4)

In addition, time-reversal symmetry for the physical sys-
tem requires

T H(kx, ky, kz)T −1 = H(−kx,−ky,−kz). (A5)

1. Spinless case

We consider first the spinless two-band Hamiltonian,
given by

Ht(k) =

3∑
i=0

εi(k)σi, (A6)

where σ0 and (σ1, σ2, σ3) are the identity and Pauli ma-
trices in sublattice subspace. In this subspace, the sym-
metry operators are I = σ1, S2 = e−ikz/2σ1, C3 = σ0,
and T = σ0K. (K acting on φ gives the complex conju-
gate φ∗.)

Time-reversal symmetry (A5) imposes that ε2(k) must
be odd in k and the other ε’s even in k. Inversion sym-
metry (A1) imposes that both ε2(k) and ε3(k) must be
odd in k. As a result, we have

ε3(k) = 0. (A7)

Moreover, the two-fold screw symmetry (A2) imposes
that ε2(k) must be odd in k⊥ = (kx, ky), i.e.
ε2(−kx,−ky, kz) = −ε2(kx, ky, kz), and (ε0(k), ε1(k))
even in k⊥. Combining the time-reveral symmetry and
two-fold screw symmetry constraints on εi=0,1,2, we find
that they are all even in kz.

Moreover, three-fold symmetry (A3) requires that
εi=0,1,2 are three-fold-rotation invariant. So, εi(k) can
be written as a product of k⊥ and kz parts, namely∑
j=1,2,3 f(k⊥ · ~δj)g(kz). The Bravais vectors (~δ1, ~δ2, ~δ3)

are interchangeable under C3. As a result, we get

ε0(k) = E0 + 2t01 cos(kz) + 2t02 cos(2kz)

+ 2 Re [T1(k⊥)] [t′00 + 2t′01 cos(kz) + 2t′02 cos(2kz)]

+ 2 Re [T2(k⊥)] [t′′00 + 2t′′01 cos(kz) + 2t′′02 cos(2kz)] ,

(A8)
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ε1(k)− iε2(k) = 2t11 cos(kz/2) + 2t22 cos(3kz/2)

+ 2T1(k⊥) [t′11 cos(kz/2) + t′12 cos(3kz/2)]

+ 2T ∗1 (k⊥) [t′13 cos(kz/2) + t′14 cos(3kz/2)]

+ 2T2(k⊥) [t′′11 cos(kz/2) + t′′12 cos(3kz/2)]

+ 2T ∗2 (k⊥) [t′′13 cos(kz/2) + t′′14 cos(3kz/2)] ,

(A9)

where we consider finite hoppings up to second nearest
neighbors in the x− y plane and define

T1(k⊥) ≡
∑

i=1,2,3

exp(ik⊥ · ai), (A10)

T2(k⊥) ≡
∑

i=1,2,3

exp [ik⊥ · (ai+1 − ai)] , (A11)

with primitive vectors a1 = a4 = (
√

3
2 ,−

1
2 , 0), a2 =

(0, 1, 0), and a3 = (−
√

3
2 ,−

1
2 , 0). Equation (A9) is such

that ε1(k) = ε2(k) = 0 at kz = π, as required by the
T S2 symmetry (see the main text).

2. Spinful case

Now, we introduce spin-orbit coupling. The spinful
Hamiltonian then reads as H(k) =

∑3
i,j=0 dij(k)siσj ,

where s0 and (s1, s2, s3) are the identity and Pauli ma-
trices for spin. The symmetry operators from Eqs. (A1)
to (A5) in spin-sublattice subspace are I = s0σ1, S2 =
ie−ikz/2s3σ1, C3 = σ0e

iπ3 s3 , and T = is2σ0K.
The s0 terms in the Hamiltonian immediately give

d0j(k) = εj(k). For those si terms with i = (1, 2, 3),
inversion symmetry (A1) gives

dij(−k) = (−1)δj2+δj3dij(k), (A12)

and time-reversal symmetry (A5) gives

dij(−k) = (−1)δi1+δi2+δi3(−1)δj2dij(k). (A13)

So, they lead to

di0(k) = di1(k) = di2(k) = 0, (A14)

di3(−k) = −di3(k). (A15)

Considering two-fold screw symmetry in Eq. (A2), we
have for i = 1, 2, 3

di3(−kx,−ky, kz) = (−1)δi3di3(kx, ky, kz),

which imposes that (d13(k), d23(k)) are even in k⊥ and
odd in kz, while d33(k) is odd in k⊥ and even in kz.
Finally, the three-fold rotation symmetry (A3) imposes

d13(k′)− id23(k′) = ei
2π
3 (d13(k)− id23(k)) , (A16)

d33(k′) = d33(k). (A17)

We can use the rotation relations in Eq. (A4) to write
down all possible forms for di3.

Let’s define ζi(k) = di3(k) (i = 1, 2, 3). The full
Hamiltonian reads

H(k) = s0Ht(k) +
∑

i=1,2,3

ζi(k)siσ3, (A18)

where Ht is given in Eq. (A6). Again by writing ζi as a
product of k⊥ and kz parts, we get

ζ1(k)− iζ2(k) = 4R1(k⊥) [λ′11 sin(kz) + λ′12 sin(2kz)]

+ 4R2(k⊥) [λ′′11 sin(kz) + λ′′12 sin(2kz)] ,

(A19)

ζ3(k) = 2 Im [T1(k⊥)] [λ′00 + 2λ′01 cos(kz) + 2λ′02 cos(2kz)]

+2 Im [T2(k⊥)] [λ′′00 + 2λ′′01 cos(kz) + 2λ′′02 cos(2kz)] ,

(A20)

where in-plane functions R1,2 are

R1(k⊥) =
∑

i=1,2,3

e−iθi cos(k⊥ · ai), (A21)

R2(k⊥) =
∑

i=1,2,3

e−iθ
′
i cos [k⊥ · (ai+1 − ai)] , (A22)

where θi (θ′i) is the angle of ai (ai+1− ai) relative to the
x axis. Table II lists the hopping and spin-orbit coupling
parameters for our band fitting results for Tl2Mo6Se6.

Appendix B: Estimate Tc difference between Au and
E2u states

For the short-range interaction Hamiltonian

Hint = −
∑
r

{
U [nA↑(r)nA↓(r) + nB↑(r)nB↓(r)] (B1)

+ V [nA(r)nB(r + ~c/2) + nA(r)nB(r− ~c/2)]

}
,

where r runs over the Bravais lattice and nX(r) =
nX↑(r) +nX↓(r) is the electron density for sublattice X,
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TABLE II: Hopping and spin-orbit coupling parameters in Eqs. (A8), (A9), (A19), (A20) of the tight-binding model for
Tl2Mo6Se6. All numbers are in units of eV.

E0 t01 t02 t′00 t′01 t′02 t′′00 t′′01 t′′02

−0.1176 −0.0561 0.0023 −0.1041 −0.0449 −0.0023 0.0592 0.0365 0.0062

t11 t12 t′11 t′12 t′13 t′14 t′′11 t′′12 t′′13 t′′14

1.0508 −0.0034 0.0901 0.0 −0.1203 0.0 −0.0271 0.0 0.0077 0.0

λ′00 λ′01 λ′02 λ′′00 λ′′01 λ′′02 λ′11 λ′12 λ′′11 λ′′12

−0.0005 0.0015 −0.0005 −0.0001 −0.0001 −0.0002 0.0006 −0.0001 0.0 −0.0001

the possible order parameters are defined as follows

Ag : ∆1 =
U

4

∑
s=±(↑↓)

s
〈
c†As(r)c†As(r) + c†Bs(r)c†Bs(r)

〉
+
V

2

∑
s=±

s
∑
η=±

〈
c†As(r)c†Bs(r + ηĉ/2)

〉
,

Bg : ∆2 =
V

2

∑
s=±

s
∑
η=±

η
〈
c†As(r)c†Bs(r + ηĉ/2)

〉
,

Au : ∆3 =
V

2

∑
s

∑
η=±

η
〈
c†As(r)c†Bs(r + ηĉ/2)

〉
,

Bu : ∆4 =
V

2

∑
s

∑
η=±

〈
c†As(r)c†Bs(r + ηĉ/2)

〉
,

E1u : ∆5 =
V

2

∑
s

{
s
1

}∑
η=±

〈
c†As(r)c†Bs(r + ηĉ/2)

〉
,

E2u : ∆6 =
V

2

∑
s

{
s
1

}∑
η=±

η
〈
c†As(r)c†Bs(r + ηĉ/2)

〉
.

(B2)

The pair susceptibilities χ’s are defined in the main
text. Their numerical results are shown in Fig. 4, in
which undoped (x = 0) and 5% hole doping (x = 0.1) are
considered. No qualitative change in pairing susceptibil-
ities by doping is observed. Three prominent channels
χ0, χ3 and χ6 correspond to Ag, Au, and E2u symme-
tries, respectively, all for sublattice-even pairing. Inter-
estingly, the pairing susceptibilities for the Au and E2u

channels are very close, as shown in the insets of Fig. 4.
Pair susceptibilities for the gap functions in the form
of cos(kz/2), like Bu, are very weak since the normal-
state Fermi surface is close to or even beyond the kz = π
plane where gap functions vanish. Those for gapful su-
perconductivity show the conventional logarithmic be-
havior, χ ∼ Neff ln (Λ/kBT ), where Neff stands for the
weighted density of states and Λ is the energy cutoff.

To estimate the critical temperatures Tc,3 and Tc,6 for
the Au and E2u channels, we shall adopt the simple BCS
phenomenological formula,

χ = Neff ln (Λ/kBT ) (B3)

to fit χ3 and (χ6−χ3) calculated from the tight-binding
model, as shown in Fig. 5. The resulting fitting param-
eters are given in Table III. A simple way to estimate

their critical temperatures is to use

kBTc,3 = Λ exp

{
− 1

V (Neff,6 −∆Neff)

}
' Λ exp

{
− 1

VNeff,6

(
1 +

∆Neff

Neff,6

)}

= Λ

(
kBTc,6

Λ

)(
1+

∆Neff
Neff,6

)
= kBTc,6 ×

(
kBTc,6

Λ

)∆Neff
Neff,6

(B4)

where we take ∆Neff = Neff,6 − Neff,3 � Neff,6, and as-
sume Λ is the same for both susceptibilities (but at fitting
it is treated differently). By using the fitting parameters
given in Table III, we can estimate the Tc difference for
Au and E2u states. If we take Tc,6 = 6 K, Tc,3/Tc,6 ' 0.95
for x = 0 and Tc,3/Tc,6 ' 1 for x = 0.1 in Tl2−xMo6Se6.
So, within this doping range, the Tc difference is less than
5%.
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FIG. 4: (Color online) Pair susceptibilities of Tl2−xMo6Se6 for all channels for different dopings: (a) x = 0 (µ = 0), and (b)
x = 0.1 (µ = −0.176 eV). The most dominant channel χ0 corresponds to the Ag state, followed by χ3 and χ6 for Au and E2u

states, respectively. Differences of χ3 and χ6 are shown in the insets.

TABLE III: Fitting parameters of χ6 and χ3 from Fig. 5.

x N fit
eff,6 (eV−1) Λfit (eV) ∆N fit

eff (eV−1) ∆χfit
0 (eV−1)

0 0.56 1.8352 0.0033 −0.0066
0.1 0.53 2.1270 0.00056 −0.00064
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FIG. 5: (Color online) Fitting for χ6 and (χ6 − χ3) calculated from the tight-binding model (TB) for x = 0 (a,b) and x = 0.1
(c,d). The fitting formula for χ6 is given by Eq. (B3), but the formula for (χ6 − χ3) is given by ∆χfit

0 −∆N fit
eff ln (kBT ). The

resulting fitting parameters are given in Table III. We have chosen to fit the high temperature range above kBT = 10−3 eV
due to numerical limit.
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