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We	 investigate	the	 influence	of	 lateral	variations	of	 the	second-order	perpendicular	anisotropy	 in	 thin	
films	on	the	effective	anisotropies	required	to	represent	this	structure	using	a	macrospin	approximation.	
Second-order	and	fourth-order	effective	anisotropies	are	required	for	the	macrospin	approximation.	In	
the	case	of	quasi-static	calculations,	the	fourth-order	effective	anisotropy	is	closely	linked	to	deviations	
of	the	average	magnetization	angle	from	the	field	direction	and	lateral	variations	of	the	magnetization	
direction	 in	 the	 structure	 leading	 to	 dependence	 on	 the	 field	 strength	 and	 the	 lateral	 length	 scale	 of	
anisotropy	 variations	 of	 the	 effective	 anisotropies.	 We	 find	 that	 the	 field	 and	 lateral	 length	 scale	
dependence	of	the	effective	anisotropies	extracted	from	simulations	of	the	magnetization	dynamics	are	
profoundly	different	from	those	of	the	quasi-static	simulations.	This	is	caused	by	resonance	localization	
that	depends	on	the	orientation	of	the	external	magnetic	field.	
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I. INTRODUCTION	

The	presence	of	a	strong	perpendicular	anisotropy	is	of	significant	importance	for	materials	intended	for	
use	 in	 spintronic	 devices.	 For	 example,	 a	 significant	 reduction	 of	 the	 switching	 current	 density	 while	
maintaining	the	thermal	stability	for	spin	transfer	torque	magnetic	random-access	memories	(STT-MRAM)	
can	be	achieved	by	utilizing	a	perpendicular	anisotropy	[1,2].	One	common	observation	in	these	materials	
is	that	 in	order	to	accurately	describe	their	quasi-static	or	dynamic	properties	one	has	to	 include	both	
second-order	 (𝐾#)	 and	 fourth-order	 uniaxial	 anisotropy	 (𝐾%)	 contributions	 to	 the	 anisotropy	 energy	
density	𝐸()*+,	[3-7]:	
𝐸()*+, = 𝐾# ∙ 𝑐𝑜𝑠#𝜃3 +

56
#
∙ 𝑐𝑜𝑠%𝜃3	 	 (1)	

where	 𝜃3	 is	 the	 angle	 of	 the	 magnetization	 with	 respect	 to	 the	 film	 normal.	 We	 note	 that	 the	
nomenclature	for	the	anisotropy	constants	is	inconsistent	in	the	literature,	as	they	are	also	referred	to	as	
first-order	and	second-order	anisotropy	constants.	With	the	above	definition,	the	film	normal	is	an	easy	
axis	of	 the	corresponding	anisotropy	contribution	 for	𝐾* < 0,	but	 the	opposite	 sign	convention	 is	also	
commonly	used	in	the	literature.		
By	using	a	second	order	perturbation	of	the	tight	binding	model,	Bruno	was	able	to	show	the	connection	
of	the	asymmetry	in	the	orbital	moment	and	the	second-order	anisotropy	𝐾#	[8].	However,	currently	a	
clear	 theoretical	picture	 for	 the	origin	of	 the	 fourth-order	anisotropy	𝐾%	 is	 lacking.	While	 recent	 fully-
relativistic	ab	initio	calculations	have	shown	the	presence	of	such	a	term,	its	magnitude	was	only	3%	of	
the	 second-order	 anisotropy	 [9].	 Recently	 the	 possibility	 of	macroscopic	 anisotropies	 induced	 by	 the	
Dzyaloshinsky-Moriya	interaction	(DMI)	[10,11]	has	regained	interest	[12],	but	we	are	currently	not	aware	
of	work	investigating	the	possibility	of	DMI	induced	higher	order	anisotropies.	
However,	 using	 analytical	 models	 it	 has	 been	 shown	 that	 lateral	 fluctuations	 of	 the	 second-order	
perpendicular	anisotropy	can	lead	to	the	emergence	of	higher	order	anisotropy	terms	[13,14].	Here	we	
report	 on	 detailed	 micromagnetic	 [15-19]	 investigations	 of	 lateral	 variations	 of	 the	 second-order	
perpendicular	anisotropy	and	its	influence	on	the	magnetization	dynamics	and	the	quasi-static	properties	
of	 thin	 films.	We	 analyze	 these	micromagnetic	 simulations,	 by	 determining	 the	 parameters	 that	 best	
describe	the	results	using	a	macrospin	model,	i.e.	a	model	that	represents	the	entire	system	as	a	single	
macrospin	with	effective	anisotropies.	This	is	a	common	approach	[20-24]	and	has	the	advantage	that	it	
closely	resembles	the	way	experimental	data	of	these	systems	is	typically	analyzed.	We	show,	that	in	order	
to	 achieve	 a	 good	 macrospin	 description	 of	 the	 micromagnetic	 simulations	 a	 fourth-order	 uniaxial	
anisotropy	contribution	is	required,	although	the	micromagnetic	model	does	not	include	such	a	term.	
The	manuscript	is	structured	as	follows.	First,	we	start	with	a	description	of	the	theoretical	background	
and	explanation	of	the	methodology	relevant	for	the	micromagnetic	calculations	and	their	analysis	in	the	
framework	of	 the	macrospin	model.	 In	 the	next	 section,	we	discuss	 the	quasi-static	 properties	 of	 the	
system,	starting	with	a	detailed	discussion	of	the	angular	dependence	of	the	different	contributions	to	the	
energy	 of	 the	 system	 and	 how	 they	 contribute	 to	 the	 effective	 anisotropies	 that	 are	 required	 when	
representing	 the	 system	 with	 a	 macrospin	 model.	 We	 also	 investigate	 the	 field	 dependence	 of	 the	
effective	anisotropies	[25].	In	the	subsequent	section,	we	discuss	the	influence	of	the	length	scale	of	the	
lateral	variations	of	the	second-order	anisotropy	on	the	effective	anisotropies.	After	this	we	analyze	the	
dynamic	 properties	 of	 the	 system	 and	 compare	 their	 dependence	 on	 the	 length	 scale	 of	 the	 lateral	
variations	of	the	second-order	uniaxial	anisotropy	with	those	of	the	quasi-static	properties.	We	conclude	
with	a	summary	and	discussion	of	our	results.	

II. RESULTS	AND	DISCUSSION	

A. Theoretical	background	(Methodology):	
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A	 common	 approach	 when	 trying	 to	 describe	 the	 quasi-static	 and	 dynamic	 properties	 of	 a	 complex	
magnetic	system	is	to	utilize	the	so	called	macrospin	model,	which	does	not	take	into	account	the	spatial	
variations	of	the	magnetization	in	the	system.	Even	for	systems	that	are	known	to	have	spatial	variations	
the	macrospin	model	is	often	used	to	analyze	experimental	data.	To	investigate	the	influence	of	spatial	
variations	 of	 the	 second-order	 uniaxial	 anisotropy	 on	 the	magnetic	 properties	 we	model	 the	 system	
micromagnetically	[15-19].	We	then	determine	the	parameters	of	the	macrospin	model	that	best	describe	
the	micromagnetic	results.	In	section	B	&	C	we	focus	on	the	quasi-static	properties	of	the	system	that	are	
obtained	 after	 the	 system	 has	 relaxed	 to	 equilibrium,	 whereas	 section	 D	 focusses	 on	 the	 dynamic	
properties,	that	are	obtained	by	analyzing	the	time	dependence	of	the	magnetization.	

For	 the	 micromagnetic	 modeling	 we	 use	 our	 finite	 differences	 code	M3	 [26]	 written	 in	 the	MATLAB	
scripting	 language.	 M3	 uses	 a	 fast	 Fourier	 transform	 (FFT)	 method	 to	 calculate	 the	 magnetostatic	
interactions.	M3	utilizes	Newell’s	formulation	to	calculate	the	demagnetizing	tensor	at	short	distances	[27]	
and	a	dipole	approximation	for	the	far	field.	For	the	current	work,	we	used	the	6-neighbor	method	for	the	
exchange	interaction	and	Neuman	boundary	conditions	[28].		

For	 the	 simulations,	 the	 perpendicular	
magnetic	 anisotropy	 is	 assumed	 to	 be	
constant	across	the	film	thickness,	i.e.	in	
our	 model	 we	 use	 the	 thickness-
averaged	 perpendicular	 anisotropy.	
However,	the	model	takes	into	account	
lateral	 variations	 of	 this	 thickness-
averaged	 perpendicular	 anisotropy,	
which	 could	 for	 example	 be	 caused	 by	
lateral	variations	of	 the	strength	of	 the	
interfacial	 perpendicular	 anisotropy	 or	
by	 lateral	 variations	 of	 the	 film	
thickness.	 Instead	 of	 attempting	 to	
model	a	 specific	 system,	 for	which	one	
would	have	to	make	assumptions	about	
the	 details	 of	 the	 interfacial	 roughness	
and	its	influence	on	the	length	scale	and	
amplitude	of	the	lateral	variations	of	the	
perpendicular	anisotropy,	our	aim	 is	 to	
capture	 the	 basic	 physics	 by	 using	 a	
simplified	model.	

Our	 model	 incorporates	 lateral	
variations	 of	 the	 second-order	 uniaxial	
anisotropy	in	the	form	of	a	periodic	checkerboard	structure,	as	pictured	in	figure	1.	For	all	simulations	
regions	A	have	a	second-order	perpendicular	anisotropy,	𝐾#,: = −1.5×10@ 	𝐽 𝑚C,	which	is	sufficient	to	
overcome	the	demagnetizing	field	and	thus	results	in	an	easy	axis	of	these	regions	along	the	film	normal.	
While	 the	strength	of	 the	second-order	perpendicular	anisotropy	𝐾#,D ≥ 0	of	 regions	B	was	varied	 for	
different	 simulations,	 the	 film	 normal	 for	 these	 regions	 is	 always	 a	 hard	 axis.	 In	 the	 micromagnetic	
simulations	both	regions	have	no	intrinsic	fourth-order	uniaxial	anisotropy,	i.e.	𝐾%,: = 𝐾%,D = 0.	However,	

	
Figure	 1:	 (a)	 Periodic	 checkerboard	 pattern	 used	 for	 the	 simulations,	
regions	 A	 have	 a	 second-order	 perpendicular	 anisotropy	 𝐾#,: =
−1.5×10@	 𝐽 𝑚C⁄ 	 whereas	 for	 regions	 B	 𝐾#,D ≥ 0.	 (b)	 Relaxed	
magnetization	with	an	external	magnetic	field	of		𝜇H𝐻 = 1	𝑇		applied	at	
an	angle	of	𝜃K = 5°	with	respect	to	the	film	normal.	
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as	will	be	shown	below,	the	frustration	between	these	two	regions	caused	by	their	different	second-order	
uniaxial	 anisotropies	 leads	 to	 the	 emergence	 of	 a	 fourth-order	 anisotropy	 contribution	 of	 the	 system	
when	analyzed	in	the	macrospin	approximation.	For	the	saturation	magnetization	of	the	system	we	chose	
𝑀N = 1000 𝑘𝐴 𝑚,	while	the	exchange	constant	was	set	to		𝐴 = 1×10QRR 𝐽 𝑚.	The	wavelength	𝐿T,U	of	
the	pattern	was	chosen	to	be	the	same	along	both	in-plane	directions	and	for	the	following	discussion	
was	set	to	𝐿T = 𝐿U = 30	𝑛𝑚,	the	cell	size	was	1	𝑛𝑚	×1	𝑛𝑚	×1	𝑛𝑚.	The	influence	of	the	length	scale	of	
the	lateral	anisotropy	variations	is	investigated	in	detail	in	section	C.		

B. Magnetic	field	dependence	of	the	quasi-static	properties	

To	determine	the	quasi-static	properties	of	the	system,	an	external	magnetic	field	𝐻	is	applied	at	different	
angles	𝜃K 	with	respect	 to	 the	 film	normal.	After	 relaxing	the	system,	 the	magnetization	will	 locally	be	
aligned	with	the	effective	field,	i.e.	the	sum	of	all	internal	fields.	Overall	the	magnetization	appears	to	be	
mostly	 aligned	 along	 the	 direction	 of	 the	 strong	 external	magnetic	 field.	 However,	 a	 close	 inspection	
shows	that	the	degree	of	alignment	differs	in	the	two	regions,	as	shown	in	figure	1	(b).	To	quantitatively	
analyze	 these	 simulations,	 we	 calculate	 the	 average	 angle	 of	 the	 magnetization	 𝜃3 = R

X
𝜃3,** 	 with	

respect	 to	 the	 film	 normal	 and	 the	 different	 contributions	 to	 the	 total	 energy	 density	 of	 the	 relaxed	
structure	averaged	over	all	𝑁	cells	in	the	simulation	volume.	The	micromagnetic	simulations	enable	the	
determination	of	the	different	contributions	to	total	energy	density	𝐸Z,Z([ 	of	the	system	[15-19,26].	This	
includes	the	demagnetizing	energy	𝐸\]^(_	caused	by	the	dipole-dipole	interaction	between	the	magnetic	
cells	 in	 the	simulation	volume	 [27].	 In	addition,	 the	orientation	of	 the	magnetization	 in	each	cell	with	
respect	 to	 the	 film	 normal	 will	 lead	 to	 an	 energy	 density	 contribution	 𝐸()*+,Z`,aU	 due	 to	 the	 local	
anisotropy	described	by	equation	(1).	Furthermore,	the	orientation	of	the	magnetization	in	each	cell	with	
respect	 to	 the	external	magnetic	 field	 leads	 to	a	 spatially	varying	Zeeman	energy	density	contribution	
𝐸b]]^()	 [29].	 Finally,	 the	exchange	 interaction	 [29]	 leads	 to	an	exchange	energy	density	 contribution	
𝐸]Tcd()_],	that	depends	on	the	misalignment	of	the	magnetizations	in	neighboring	cells	[28]:	

𝐸Z,Z([ = 𝐸\]^(_ + 𝐸()*+,Z`,aU + 𝐸b]]^() + 𝐸]Tcd()_] 	 (2)	

The	 micromagnetic	 model	 enables	 us	 to	 determine	 all	 energy	 contributions	 independently	 after	 the	
system	has	relaxed	to	its	equilibrium.	

In	figure	2,	the	total	energy	density	and	the	individual	contributions	are	shown	as	a	function	of	the	average	
angle	 of	 the	 magnetization	 for	 a	 perpendicular	 second-order	 anisotropy	 in	 regions	 A	 of	 𝐾#,: =
−1.5×10@ 	𝐽 𝑚C	and	a	second-order	anisotropy	in	regions	B	of	𝐾#,D = 0	 𝐽 𝑚C.	For	these	simulations,	
the	applied	magnetic	field	was	varied	from		𝜇H𝐻 = 1	𝑇	to	50	𝑇.		
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As	can	be	seen	in	figure	2	(a)	for	applied	fields	less	than	2	𝑇	the	total	energy	density	of	the	system	has	
maxima	along	the	out-of-plane	(𝜃3 = 0°)	and	the	in-plane	(𝜃3 = 90°)	orientations	of	the	magnetization	
and	a	minimum	at	an	intermediate	angle.	This	is	a	clear	indication	that	a	higher-order	anisotropy	term	will	
be	required	to	describe	this	system	using	a	macrospin	approximation,	although	the	microscopic	model	

did	not	include	such	a	term.	Furthermore,	this	canted	state	of	the	magnetization,	also	known	as	easy-cone	

	
Figure	2:	Dependence	of	(a)	the	total	energy	density,	(b)	the	demagnetizing	energy	density,	(c)	the	anisotropy	energy,	(d)	the	
exchange	energy	density	and	(e)	the	Zeeman	energy	density	on	the	average	magnetization	angle	𝜃3	obtained	after	relaxing	
the	magnetization	with	the	indicated	external	magnetic	field	applied	at	different	angles.	The	solid	lines	are	a	fit	using	the	
macrospin	model,	 see	equation	 (3).	 The	 dashed	 lines	 in	 (b)	 and	 (c)	 represent	 the	expected	 angular	 dependence	 for	 the	
demagnetizing	energy	density	of	an	infinite	thin	film	and	the	volume	averaged	anisotropy	energy	density	respectively.	
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state	[30],	requires	that	the	second	and	fourth-order	anisotropy	term	have	opposite	signs	[31,32].	The	
solid	lines	in	figure	2	(a)	show	a	fit	to	the	simulation	results	using	both	a	second-order	and	fourth-order	
anisotropy	contribution:	

𝐸 = 𝐸H + 𝐾#,]gg ∙ 𝑐𝑜𝑠#𝜃3 +
56,hii
#

∙ 𝑐𝑜𝑠%𝜃3		 (3)	

where	we	use	effective	quantities	to	indicate	a	macrospin	representation	of	the	system.	𝐸H	is	an	angle-
independent	offset.	The	effective	anisotropy	𝐾#,]gg	in	equation	(3)	contains	both	shape	anisotropy	and	
the	uniaxial	anisotropy	contributions.	 In	particular,	 for	an	 infinite,	homogenously	magnetized	thin	 film	

one	could	separate	these	two	contributions	as	follows:	𝐾#,]gg =
jk3lm

#
+ 𝐾#,]gg.	However,	in	the	case	of	

lateral	 variations	 of	 the	 microscopic	 second-order	 perpendicular	 anisotropy	 𝐾#	 the	 film	 is	 not	
homogeneously	magnetized	 (see	 figure	3	 (b))	 and	 thus	 the	 shape	anisotropy	 contribution	 to	𝐾#,]gg	 is	
expected	to	be	reduced	from	the	value	for	an	infinite	film.	This	can	be	seen	in	figure	2	(b)	where	𝐸\]^(_,	
the	energy	contribution	due	to	dipole-dipole	interaction	in	the	structure	is	shown	separately	as	a	function	
of	 the	 average	 magnetization	 angle.	 For	 comparison,	 we	 also	 show	 the	 expectation	 for	 the	 angular	

dependence	of	this	contribution	for	a	homogeneously	magnetized	thin	film	(jk3l
m

#
∙ 𝑐𝑜𝑠#𝜃3,	dashed	line).	

The	main	difference	between	the	micromagnetic	and	the	analytical	result	for	a	homogenously	magnetized	

	
Figure	3:	(a)	Deviation	of	the	average	angle	of	the	magnetization	𝜃3	from	the	angle	of	the	applied	field	𝜃K	shown	as	a	function	
of	 the	 average	 angle	of	 the	magnetization	𝜃3.	 The	 symbols	 represent	 the	 results	 from	micromagnetic	 simulations	with	
different	strengths	of	the	applied	field.	The	red	dash	dotted	line	is	the	result	obtained	by	ignoring	exchange	interaction	and	
treating	each	region	as	a	separate	macrospin	for	an	applied	field	𝜇H𝐻 = 5𝑇.	(b)	Standard	deviation	𝜎op 	of	the	magnetization	
angle	 from	 its	average	orientation	𝜃3	as	a	 function	of	 the	same.	The	symbols	represent	 the	results	 from	micromagnetic	
simulations	with	different	strengths	of	the	applied	field.	The	red	dash	dotted	line	is	the	result	obtained	by	ignoring	exchange	

interaction	and	treating	each	region	as	a	separate	macrospin	for	an	applied	field	𝜇H𝐻 = 5𝑇,	here	the	difference	Δop = orQos
#

	
between	the	angle	of	the	magnetization	in	region	A	and	B	is	shown.	
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thin	 film	 is	 indeed	a	 small	 reduction	
of	the	amplitude	of	the	second-order	
uniaxial	 anisotropy.	 However,	 we	
also	 observe	 that	 a	 fourth-order	
contribution	 is	 required	 to	 fit	 the	
angular	 dependence	 of	 the	 energy	
contribution	 of	 the	 dipole-dipole	
interaction	 using	 equation	 (3).	With	
increasing	 external	 magnetic	 field,	
the	 magnetization	 in	 the	 structures	
becomes	more	homogenous	(figure	3	
(b))	 and	 thus	 the	 effective	 second-
order	uniaxial	anisotropy	approaches	
the	thin	film	limit	(see	figure	4(a))	and	
the	 fourth-order	 anisotropy	
contribution	diminishes	(see	figure	4	
(b)).			

In	 figure	 2	 (c),	 we	 show	 the	
anisotropy	 contribution	 to	 the	 total	
energy	 density	 of	 the	 system	 as	 a	
function	of	 the	magnetization	angle.	
For	 comparison,	 the	 angular	
dependence	 of	 the	 anisotropy	
contribution	 of	 a	 homogeneously	
magnetized	 thin	 film	with	 a	 second-
order	uniaxial	anisotropy	equal	to	the	
volume	 averaged	 anisotropy	 of	 the	

two	 regions	 𝐾#,]gg =
5m,st5m,r

#
=

−0.75×10@ 	𝐽 𝑚C	 is	 also	 shown	
(dashed	 line).	 One	 notes	 that	 the	
energy	 difference	 between	 the	 out-
of-plane	 easy	 axis	 and	 the	 in-plane	
hard	axis	is	well	approximated	by	the	
volume	 average	 𝐾#,]gg.	 However,	 a	
significant	 fourth-order	 anisotropy	
𝐾%,]gg	 is	 required	 to	 fit	 this	 energy	
contribution	 using	 equation	 (3).	
Because	 the	 fourth-order	
contribution	has	the	opposite	sign	compared	to	the	second-order	contribution,	this	causes	the	second-
order	anisotropy	𝐾#,]gg	extracted	from	the	fit	 to	be	smaller	than	the	volume	averaged	anisotropy,	 i.e.	
𝐾#,]gg < 𝐾#,]gg.	 With	 increasing	 external	 applied	 field,	 the	 effective	 second-order	 anisotropy	 of	 this	
contribution	 approaches	 the	 volume	 average	 𝐾#,]gg	 (see	 figure	 4	 (a)),	 whereas	 the	 fourth-order	

	

Figure	 4:	 (a)	 Field	 dependence	 of	 the	 effective	 second-order	 uniaxial	
anisotropy	determined	by	fitting	equation	(3)	to	the	angular	dependence	of	
the	different	contributions	to	the	total	energy,	cp.	figure	2.	The	dashed	red	
line	 is	 the	 volume	 averaged	 second-order	 uniaxial	 anisotropy.	 The	 pink	
dashed	 line	 represents	 the	 demagnetization	 energy	 density	 for	 a	
homogenously	 magnetized	 infinite	 film.	 The	 dash	 dotted	 red	 line	 is	 the	
anisotropy	 contribution	 to	 the	 effective	 second-order	 uniaxial	 anisotropy	
obtained	 by	 ignoring	 exchange	 interactions	 between	 the	 regions	 and	
treating	 them	 each	 as	 a	macrospin.	 The	 dark	 red	 dash	 dotted	 line	 is	 the	
Zeeman	 contribution	 to	 the	 effective	 second-order	 anisotropy	 using	 the	
same	 simplified	model.	 (b)	Field	dependence	of	 the	effective	 fourth-order	
uniaxial	 anisotropy.	 The	 dash	 dotted	 red	 lines	 represent	 contribution	
obtained	 by	 ignoring	 exchange	 interactions	 between	 the	 regions	 and	
treating	them	each	as	a	macrospin,	the	anisotropy	and	Zeeman	contribution	
are	shown	in	red	and	dark	red	respectively.	The	blue	symbols	in	both	graphs	
are	the	effective	anisotropies	determined	from	dynamical	calculations,	see	
section	D.	
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contribution	𝐾%,]gg	 approaches	 zero	 (see	 figure	 4	 (b)).	 Again,	 this	 is	 caused	 by	 the	 reduction	 of	 the	
inhomogeneity	of	the	magnetization	with	increasing	magnetic	field	(see	figure	3	(b)).		

In	figure	2	(d)	we	show	the	exchange	contribution	to	the	total	energy	density	of	the	system	as	a	function	
of	the	magnetization	angle.	At	high	fields,	this	contribution	closely	follows	the	angular	dependence	of	the	
inhomogeneity	 of	 the	 magnetization	 as	 shown	 in	 figure	 3	 (b).	 However,	 at	 low	 fields	 the	 average	
magnetization	of	the	structure	is	not	well	aligned	with	the	direction	of	the	external	magnetic	field	(see	
figure	3	(a))	leading	to	a	more	complicated	magnetization	distribution	and	thus	a	more	complex	angular	
dependence	of	the	exchange	contribution.	As	shown	in	figure	2	(d),	this	energy	contribution	can	again	be	
reasonably	fitted	using	equation	(3).	The	second-order	uniaxial	anisotropy	contribution	due	to	exchange	
interaction	is	positive,	while	the	fourth-order	contribution	is	negative	but	comparable	in	magnitude.	Both	
contributions	diminish	with	increasing	external	magnetic	field	(see	figure	4	(a)	and	(b))).	

Finally,	 in	 figure	2	 (e)	 the	 angular	 dependence	of	 the	 Zeeman	 contribution	 to	 the	 total	 energy	of	 the	
system	 is	shown.	The	angular	dependence	of	 this	energy	contribution	 is	mainly	caused	by	the	angular	
dependence	of	 the	deviation	of	 the	magnetization	 from	the	 field	direction	 (see	 figure	3	 (a))	while	 the	
inhomogeneity	of	the	magnetization	only	plays	a	minor	role.	We	would	like	to	point	out	that	even	for	a	
system	with	no	lateral	variations	of	the	second-order	uniaxial	anisotropy,	i.e.	𝐾#,: = 𝐾#,D,	the	system	will	
show	a	similar	angular	dependence	as	the	one	 in	figure	2	(e)	 for	the	Zeeman	contribution	to	the	total	
energy.	This	is	because	for	finite	external	fields	applied	other	than	along	the	film	normal	(𝜃K = 0°)	or	in	
the	film	plane	 𝜃K = 90° 	the	magnetization	is	never	fully	aligned	with	the	field	direction.	The	description	
of	the	angular	dependence	shown	in	figure	2	(e)	using	equation	(3)	does	not	capture	some	of	the	more	
complex	behavior	at	 low	fields	caused	by	 large	changes	and	variations	of	 the	magnetization	direction.	
However,	the	agreement	of	the	fit	using	equation	(3)	significantly	improves	with	increasing	field.	Like	the	
exchange	contribution,	the	Zeeman	contribution	leads	to	a	positive	second-order	and	a	negative	fourth-
order	uniaxial	anisotropy	contribution	(see	figure	4	(a)	and	(b)).	The	magnitude	of	both	contributions	is	
comparable	 to	 the	 exchange	 contributions.	 However,	 the	 Zeeman	 contribution	 to	 the	 fourth-order	
uniaxial	anisotropy	drops	off	slower	with	the	applied	field	than	the	exchange	contribution,	see	figure	4	
(b).	

Figures	4	(a)	and	(b)	provide	a	visual	summary	of	the	results	discussed	in	this	section.	Lateral	variations	of	
the	second-order	uniaxial	anisotropy	 lead	to	the	presence	of	a	 fourth-order	uniaxial	anisotropy,	 if	one	
attempts	to	describe	the	system	using	a	macrospin	approximation.	The	main	contributions	to	the	total	
effective	anisotropies	are	caused	by	the	anisotropy	contribution	to	the	total	energy.	The	total	effective	
fourth-order	anisotropy	has	the	opposite	sign	as	the	total	effective	second-order	anisotropy,	which	is	a	
requirement	 for	easy	cone	 [33-35],	 that	are	often	observed	experimentally.	The	effective	anisotropies	
show	a	complex	field	dependence	that	can	be	understood	by	considering	all	contributions	to	the	energy	
of	the	system,	as	discussed	in	detail	in	this	section.	Also	shown	in	figures	4	(a)	&	(b)	as	dash-dotted	lines	
(𝐾#,:)*+,Z`,aU^*) 	&	𝐾#,b]]^()^(T 	in	(a)	and	𝐾%,:)*+,Z`,aU^(T 	&	𝐾%,b]]^()^*) 	(b))	is	the	asymptotic	behavior	one	expects	
by	treating	both	regions	separately	as	macrospins	and	ignoring	exchange	interaction.	As	can	be	seen	in	
these	figures,	the	micromagnetic	results	approach	this	asymptotic	behavior	for	very	large	magnetic	fields,	
well	beyond	what	can	typically	be	achieved	experimentally.	We	note	here	that	 the	curves	 for	 treating	
each	region	separately	as	a	macrospin	and	ignoring	exchange	interaction	are	obtained	by	minimizing	the	
free	energy	for	region	A	and	B	separately,	as	if	each	region	was	an	infinite	thin	film	with	anisotropy	𝐾#,:	
and	𝐾#,D.	The	resulting	deviation	of	the	average	angle	of	the	magnetization	𝜃𝑀 =

𝜃𝐴+𝜃𝐵
2 	from	the	external	
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magnetic	field	direction	and	the	difference	Δ𝜃𝑀 =
𝜃𝐵−𝜃𝐴
2 	between	the	angles	in	the	two	regions	are	shown	

exemplary	in	figure	3	(a)	and	(b)	respectively	as	red	dash	dotted	lines	for	an	external	magnetic	field	of	
𝜇H𝐻 = 5𝑇.	This	in	turn	enables	to	separately	calculate	the	anisotropy	energy	and	the	Zeeman	energy	as	
a	function	of	the	magnetization	angle	𝜃𝑀	and	obtain	the	effective	anisotropies	𝐾#,:)*+,Z`,aU^*) ,	𝐾#,b]]^()^(T ,	
𝐾%,:)*+,Z`,aU^(T 	and	𝐾%,b]]^()^*) 	 shown	 in	 figure	4,	here	 the	superscripts	 indicate	 that	 these	values	are	an	
upper	or	lower	limit	for	the	corresponding	fully	micromagnetic	calculations.	

C. Influence	of	the	length	scale	of	lateral	anisotropy	variations	on	the	quasi-static	properties	

So	 far,	 we	 have	 discussed	 the	 case	 of	 variations	 of	 the	 second-order	 uniaxial	 anisotropy	 for	 a	 fixed	
wavelength	 𝐿T = 𝐿U = 30	𝑛𝑚.	 However,	 in	 physical	 samples	 one	 expects,	 for	 example	 interfacial	
roughness	to	lead	to	variations	of	the	second-order	uniaxial	anisotropy	over	a	continuum	of	length	scales.	
For	the	following	discussion,	we	use	the	same	simulation	parameters	as	in	in	the	previous	section,	but	
now	change	the	length	scale	of	the	lateral	variations	of	the	second-order	uniaxial	anisotropy	by	changing	
𝐿T = 𝐿U.			

In	figures	5	(a)	and	(b)	we	show	the	results	of	quasi-static	simulations	carried	out	in	an	external	magnetic	
field	𝜇H𝐻 = 5	𝑇.	As	discussed	previously	the	angular	dependence	of	the	individual	energy	contributions	
was	fitted	using	the	macrospin	model	description	of	equation	(3).	As	expected	for	anisotropy	fluctuations	
on	short	 length	 scales	 the	energy	contribution	due	 to	dipole-dipole	 interaction	 leads	 to	a	 significantly	
lower	 effective	 second-order	 uniaxial	 anisotropy	 𝐾#,]gg	 contribution	 than	 one	 expects	 for	 a	
homogenously	magnetized	film	(dashed	magenta	line	in	figure	5	(a)).	However,	as	the	length	scale	of	the	
anisotropy	 fluctuations	 increases	 the	 effective	 second-order	 uniaxial	 anisotropy	 contribution	 due	 to	
dipole-dipole	 interaction	 approaches	 this	 value.	 As	 mentioned	 previously,	 the	 fourth-order	 uniaxial	
anisotropy	contribution	due	to	dipole-dipole	interaction	is	small,	given	that	the	applied	field	is	sufficiently	
large.		

The	 anisotropy	 contribution	 to	 the	 effective	 second-order	 uniaxial	 anisotropy	 approaches	 the	 volume	

average	𝐾#,]gg =
5m,st5m,r

#
	 (red	dashed	 line	 in	 figure	 5	 (a))	 for	 anisotropy	 fluctuations	over	 very	 short	

length	scales.	This	is	expected,	because	in	this	case	the	exchange	interaction	dominates	and	forces	the	
moments	in	neighboring	regions	to	be	parallel,	thereby	effectively	averaging	over	them.	The	decrease	of	
the	 effective	 second-order	 uniaxial	 anisotropy	 𝐾#,]gg	 with	 increasing	 lengthscale	 of	 the	 anisotropy	
fluctuations	 is	 correlated	 with	 the	 increase	 of	 the	 fourth-order	 uniaxial	 anisotropy	 contribution.	 As	
discussed	 in	 the	previous	section	 this	 fourth-order	contribution	 is	driven	by	 the	 inhomogeneity	of	 the	
magnetization,	 which	 vanishes	 along	 the	 in-plane	 and	 out-of-plane	 orientation	 of	 the	 applied	 field.	
However,	 for	 any	 other	 angle	 of	 the	 applied	 field,	 the	magnetization	 varies	 spatially.	With	 increasing	
length	scale	of	the	lateral	anisotropy	fluctuations	this	 inhomogeneity	increases,	as	neighboring	regions	
are	less	rigidly	coupled,	therefore	leading	to	an	increase	of	the	effective	fourth-order	uniaxial	anisotropy	
contribution.	 Furthermore,	 the	 energy	 difference	 between	 these	 in-plane	 and	 out-of-plane	 field	
orientations	 is	 always	 given	 by	 the	 volume	 average	 𝐾#,]gg,	 because	 in	 these	 two	 orientations	 the	
magnetization	 is	 homogenous	 and	 aligned	 along	 the	magnetic	 field	 direction	 (see	 figure	 3	 (a)	 &	 (b)).	
Therefore,	with	increasing	length	scale	of	the	anisotropy	fluctuations	the	effective	second-order	uniaxial	
anisotropy	 decreases	 as	 the	 fourth-order	 uniaxial	 anisotropy	 increases.	 Both	 effective	 anisotropies	
extracted	 from	 the	 full	 micromagnetic	 model	 approach	 the	 values	 expected	 based	 on	 treating	 the	
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individual	 regions	 as	macrospins	 and	 ignoring	 the	exchange	 interaction.	 See	 the	dash-dotted	 lines	 for	
𝐾#,:)*+,Z`,aU^*) 	in	figure	5	(a)	and	for	𝐾%,:)*+,Z`,aU^(T 	in	figure	5	(b).		

Due	to	the	large	applied	magnetic	field,	the	contribution	of	the	exchange	interaction	to	both	the	effective	
second-order	 and	 fourth-order	
uniaxial	anisotropy	remain	relatively	
small	 over	 the	 entire	 range	 of	 the	
length	 scales	 investigated.	 For	 very	
short	 length	 scales	 of	 the	 lateral	
anisotropy	 fluctuations	 the	
contributions	 are	 small	 because	
neighboring	 regions	 are	 rigidly	
coupled	to	each	other.	For	very	large	
length	scales	on	the	other	hand	the	
contributions	 due	 to	 the	 exchange	
interaction	 diminish	 because	 the	
individual	 regions	 are	
homogeneously	 magnetized	 and	
only	 the	boundaries	between	 them	
lead	 to	 an	 angle	 dependent	
exchange	 interaction	 contribution	
to	the	total	energy	of	the	system.	At	
intermediate	 length	 scales,	 this	
leads	to	a	maximum	for	the	effective	
second-order	 uniaxial	 anisotropy	
(figure	5	(a))	and	to	a	minimum	for	
the	 effective	 fourth-order	 uniaxial	
anisotropy	(figure	5	(b)).	

On	the	other	hand,	the	large	applied	
magnetic	 field	 combined	 with	 the	
deviation	 of	 the	 magnetization	
direction	 from	 the	 applied	 field	
direction,	 as	 discussed	 in	 the	
previous	 section,	 also	 leads	 to	 an	
angular	dependence	of	the	Zeeman	
contribution	 to	 the	 energy	 of	 the	
system.	With	increasing	length	scale	
of	 the	 lateral	 anisotropy	variations,	
the	 effective	 second	 and	 fourth-
order	 anisotropies	 of	 the	 full	
micromagnetic	model	approach	the	
values	 expected	 based	 on	 treating	
the	individual	regions	as	macrospins	

	
Figure	5:	(a)	Dependence	of	the	effective	second-order	uniaxial	anisotropy	on	
the	lateral	length	scale	of	the	second-order	anisotropy	variations.	The	dashed	
red	 line	 is	 the	volume	averaged	 second-order	uniaxial	anisotropy.	The	pink	
dashed	 line	 represents	 the	 demagnetization	 energy	 density	 for	 a	
homogenously	 magnetized	 infinite	 film.	 The	 dash	 dotted	 red	 line	 is	 the	
anisotropy	 contribution	 to	 the	 effective	 second-order	 uniaxial	 anisotropy	
obtained	by	ignoring	exchange	interactions	between	the	regions	and	treating	
them	 each	 as	 a	 macrospin.	 The	 dark	 red	 dash	 dotted	 line	 is	 the	 Zeeman	
contribution	 to	 the	 effective	 second-order	 anisotropy	 using	 the	 same	
simplified	model.	The	black	dash	dotted	 line	 is	the	sum	of	demagnetization	
energy,	 the	 anisotropy	 and	 Zeeman	 contribution	 in	 the	 macrospin	
approximation.	 (b)	 Dependence	 of	 the	 effective	 fourth-order	 uniaxial	
anisotropy	 on	 the	 lateral	 length	 scale	 of	 the	 second-order	 anisotropy	
variations.	 The	 dash	 dotted	 red	 lines	 represent	 contribution	 obtained	 by	
ignoring	exchange	interactions	between	the	regions	and	treating	them	each	
as	a	macrospin,	the	anisotropy	and	Zeeman	contribution	are	shown	in	red	and	
dark	 red	 respectively.	 The	 black	 dash	 dotted	 line	 is	 the	 sum	 of	 these	
contributions.	The	gray	vertical	dashed	lined	is	the	length	scale	𝜆]gg ,	see	text	
for	details.	
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and	 ignoring	 the	exchange	 interaction,	 see	 the	dash-dotted	 lines	 for	𝐾#,b]]^()^(T 	 in	 figure	5	 (a)	 and	 for	
𝐾%,b]]^()^*) 	in	figure	5	(b).	

In	 summary,	 the	 total	 effective	 fourth-order	 anisotropy	 caused	by	 large	 scale	 lateral	 variations	of	 the	
second-order	anisotropy	has	two	main	contributions:	from	the	Zeeman	and	the	anisotropy	contribution	
to	the	total	energy	of	the	system.	As	can	be	seen	in	figure	5	(b)	these	two	contributions	have	opposite	
signs.	 For	 lateral	 variations,	 over	 shorter	 length	 scales	 the	 exchange	 interaction	 also	 contributes	
significantly	 to	the	total	effective	 fourth-order	anisotropy	of	 the	system.	Furthermore,	 in	this	case	the	
contribution	 of	 the	 dipole-dipole	 interaction	 to	 the	 effective	 second-order	 anisotropy	 deviates	
significantly	from	the	thin	film	limit	and	thus	needs	to	be	taken	into	account.	Finally,	we	can	compare	the	
variations	seen	in	figure	5	with	characteristic	length	scales	of	the	system.	For	the	system	discussed	here,	

the	 demagnetizing	 energy	 results	 in	 a	 characteristic	 length	 of	 𝜆\ = 2𝐴/(𝜇H𝑀N
#) ≈ 4	𝑛𝑚	 while	 the	

characteristic	 length	associated	with	 the	uniaxial	 anisotropy	 in	 regions	A	with	a	 second-order	uniaxial	
anisotropy	𝐾#,: = −1.5×10@ 	𝐽 𝑚C	is	𝜆: = 𝐴/|𝐾#,:| ≈ 3	𝑛𝑚	[36].	However,	for	a	system	comprised	of	
regions	A	and	B	with	different	second-order	uniaxial	anisotropies	one	can	expect	the	length	scale	𝜆]gg =

𝐴/ jk3lm

#
+ 𝐾#,]gg ≈ 9	𝑛𝑚	,	 associated	 with	 the	 sum	 of	 shape	 anisotropy	 and	 volume	 averaged	

anisotropy	to	play	a	more		important	role	[36].	This	length	scale	is	shown	as	a	gray	vertical	dashed	line	in	
figure	5	and	can	indeed	be	considered	a	characteristic	length	scale	of	the	system.	

D. Dynamic	properties	

To	probe	the	dynamical	 response	
of	 the	 system	 a	 static	 magnetic	
field	𝐻	is	applied	either	along	the	
film	normal	(𝐻 = 𝐻 ∙ 𝑧)	or	 in	 the	
film	 plane	 (𝐻 = 𝐻 ∙ 𝑦).	 Initially	
the	 system	 is	 relaxed	 in	 the	
presence	 of	 an	 additional	 small	
field	ℎa	perpendicular	to	the	static	
magnetic	 field,	 i.e.	 𝐻Z,Z([ = 𝐻 +
ℎa	 (see	 figure	 6).	 At	 𝑡 = 0	 the	
small	 perpendicular	 field	 is	
removed	and	the	time	evolution	of	the	relaxation	of	the	magnetization	is	recorded.	The	time	evolution	of	
the	magnetization	 in	each	cell	of	 the	micromagnetic	model	 is	described	by	 the	Landau-Lifshitz-Gilbert	
equation	of	motion		[29,37-39]:	

\3
\Z
= −𝛾𝑀×𝐻]gg +

R
3�
𝑀×𝛼 \3

\Z
			 (3)	

where	𝑀	is	the	magnetization	vector,	𝑀N	is	the	saturation	magnetization,	𝛾	is	the	gyromagnetic	ratio	and	
𝛼	 is	 the	 damping	 parameter.	 For	 the	 simulations	 discussed	 below,	 we	 used	 𝛾 = 	2.21	𝑚/(𝐴	𝑠)	 and	
𝛼=0.007.	The	effective	 field	𝐻]gg	entering	 the	Landau-Lifshitz-Gilbert	equation	of	motion	 includes	 the	
external	magnetic	field,	dipole	field,	anisotropy	field	and	exchange	field.	In	figure	7	(a)	an	example	of	the	

	

Figure	6:	Sketch	of	the	configuration	for	determining	the	dynamic	properties	of	
the	 system.	 In	 (a)	 the	 out-of-plane	 configuration	 and	 in	 (b)	 the	 in-plane	
configuration	 is	 shown.	 The	 small	 additional	 field	 ℎ�⃗ a	 is	 only	 present	 during	
relaxation	of	the	initial	state	and	is	removed	at	t=0.	
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resulting	time	evolution	of	the	average	magnetization	is	shown	when	the	external	magnetic	field	is	applied	
along	 the	 film	 normal.	 To	 enable	 a	 quantitative	 analysis	 of	 the	 time	 dependence	 of	 all	 cells	 in	 the	
simulation	volume,	we	calculate	the	power	spectral	density	for	each	cell	and	calculate	the	average	power	
spectral	density	[19,40],	as	shown	in	figure	7	(b).	The	resulting	spectrum	reveals	a	number	of	resonant	
features	that	correspond	to	the	fundamental	resonance	mode	and	higher	order	lateral	standing	spin	wave	
modes	in	the	structure.	By	plotting	the	contribution	of	each	cell	to	the	average	power	spectral	density	at	
the	different	resonant	frequencies,	one	can	visualize	the	mode	profiles	(see	power	spectral	density	maps	
shown	as	insets	of	figure	7	(b)). 
For	the	fundamental	mode	in	the	out-of-plane	configuration	one	notes	that	regions	B	with	K#,D = 0	𝐽/𝑚C	
contribute	significantly	more	to	the	power	spectral	density.	In	other	words,	the	resonance	is	preferably	
localized	 in	 region	B.	 In	 figure	8	 the	dependence	of	 this	 localization	on	 the	 lateral	 length	 scale	of	 the	
anisotropy	variations	is	quantified	by	plotting	the	ratio	of	the	power	spectral	density	contribution	𝑃:	of	
region	A	to	the	total	power	spectral	density	𝑃Z,Z([.	As	expected	in	the	limit	of	vanishing	small	length	scales	
both	 regions	 contribute	 equally	 to	 the	 resonance,	 due	 to	 the	 strong	 exchange	 coupling	 between	
neighboring	regions	effectively	averaging	out	the	variations.	As	discussed	above,	when	the	static	magnetic	
field	 is	 applied	 perpendicular	 to	 the	 film	 plane	 with	 increasing	 length	 scale	 of	 the	 lateral	 anisotropy	
variation	the	resonance	becomes	increasingly	localized	in	region	B,	as	expected	[41].	However,	in	the	in-
plane	 case	 the	 situation	 is	 reversed,	 i.e.	 here	 with	 increasing	 length	 scale	 the	 resonance	 becomes	
increasingly	localized	in	region	A.	In	both	cases	the	resonance	is	localized	in	the	region	of	the	structure	
with	 the	 lower	excitation	energy,	as	can	be	expected.	Correspondingly	 this	 increased	 localization	with	
increasing	length	scale	of	the	lateral	anisotropy	variations	causes	the	resonance	frequency	to	approach	
the	resonance	frequency	 fD	of	a	 film	with	an	anisotropy	K#,D	 in	 the	out-of-plane	case,	whereas	 in	the	
same	limit	the	resonance	frequency	in	the	in-plane	case	approaches	the	resonance	frequency	f:	of	a	film	

	

Figure	7:	(a)	Time	evolution	of	the	average	magnetization	components	⟨MT⟩	and	�MU�	for	a	20nm	x	20nm	structure	with	
K#,: = −1.5𝑥10Q@𝐽/𝑚C	and	KD = 0	𝐽/𝑚C	with	an	external	magnetic	field	of	𝜇H𝐻 = 2𝑇	applied	along	the	film	normal	𝜃K =
0°.	A	small	additional	field	ℎa = 0.006	𝑇	along	the	x-axis	was	removed	at	𝑡 = 0.	The	inset	shows	the	time	evolution	during	
the	first	tenth	of	a	nanosecond.	(b)	Shows	�P(𝑀U)�,	i.e.	the	power	spectral	density	of	the	y-component	of	the	magnetization	
averaged	over	all	cells	in	the	simulation	volume	for	the	same	parameters	as	in	(a).	The	insets	of	this	figure	show	the	power	
spectral	density	maps	for	the	first	 three	resonances	at	frequencies	 f�R = 54.9	GHz	(fundamental	resonance	mode),	 f�# =
184	GHz	and	f�C = 288	GHz.	Here	the	color	indicates	the	contribution	of	each	cell	to	the	power	spectral	density,	with	dark	
red	indicating	the	largest	and	dark	blue	zero	contribution.	
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with	an	anisotropy	K#,:.	This	has	important	consequences	for	the	effective	anisotropies	that	one	extracts	
from	the	dynamical	data.	The	Kittel	equations	for	systems	with	a	second-	and	fourth-order	perpendicular	
anisotropy	are	given	by	[33,42]:	

f� = 𝛾′ 𝐻 − 𝑀]gg,� 	 (4a)	

f∥ = 𝛾′ 𝐻(𝐻 + 𝑀]gg,∥)	(4b)	

with	𝛾� = 𝛾/2𝜋	and	the	effective	out-of-plane	and	in-plane	magnetizations	given	by:	

𝑀]gg,� =
#5m,hii

���

jk3�
+

#56,hii
���

jk3�
	 (5a)	and	

𝑀]gg,∥ =
#5m,hii

���

jk3�
		 (5b)	

respectively.	From	the	numerical	simulations,	one	can	therefore	extract	the	dynamic	effective	second-
order	uniaxial	anisotropy	𝐾#,]gg

\U) 	and	effective	fourth-order	uniaxial	anisotropy	𝐾%,]gg
\U) 	 that	describe	the	

dynamical	data	in	a	macrospin	approximation	(see	
blue	 data	 points	 in	 figure	 9).	 The	 definitions	 of	
𝐾#,]gg
\U) 	and	𝐾%,]gg

\U) 	are	the	same	as	those	of	𝐾#,]gg	
and	𝐾%,]gg,	 the	 additional	 superscript	 indicating	
that	 these	 quantities	 are	 determined	 from	 the	
magnetization	 dynamics	 of	 the	 system.	 For	
comparison,	 the	 results	 from	 the	 quasi-static	
calculations	 (cp.	 figure	 5	 (a)	 &	 (b))	 are	 also	
included	 in	 figure	 9	 (black	 data	 points).	 The	
limiting	cases	for	the	quantities	determined	from	
dynamical	 simulations	 can	 be	 understood	 as	
follows.	 For	 lateral	 anisotropy	 variations	 at	
vanishingly	 small	 length	 scales,	 i.e.	𝐿T,U → 0	 the	
exchange	 coupling	 will	 effectively	 average	 out	
these	 variations	 and	 thus	 the	 effective	 second-
order	 uniaxial	 anisotropy	 will	 approach	 the	
volume	average	of	the	two	anisotropies	𝐾#,]gg.	In	
this	 limit	 the	 resonance	 has	 equal	 contributions	
from	 regions	 A	 and	 B	 for	 both	 the	 in-plane	 and	
out-of-plane	 configurations.	 Therefore,	 the	
effective	magnetizations	 for	 both	 configurations	
will	be	equal	and	thus	𝐾%,]gg

\U) 	vanishes	for	𝐿T,U →
0	 (see	 figure	 9	 (b)).	 For	 lateral	 anisotropy	
variations,	 over	 very	 large	 length	 scales,	 i.e.	
𝐿T,U → ∞,	 the	 resonance	 in	 the	 out-of-plane	
configuration	 will	 become	 localized	 in	 region	 B	
whereas	 the	 resonance	 in	 the	 in-plane	

	

Figure	8:	(a)	Dependence	of	the	contribution	of	region	A	to	
the	total	power	spectral	density	of	the	fundamental	mode	on	
the	 lateral	 length	 scale	 𝐿T,U	 of	 the	 variations	 of	 the	
anisotropy.	 (b)-(d)	 show	 spectral	maps	with	 the	 static	 field	
applied	in-plane	whereas	(e)-(g)	show	spectral	maps	with	the	
static	 field	 applied	 out-of-plane.	 For	 (b)	 &	 (e)	 𝐿T = 𝐿U =
10	𝑛𝑚,	for	(c)	&	(f)	𝐿T = 𝐿U = 20	𝑛𝑚 	and	for	(d)	&	(g)	𝐿T =
𝐿U = 60	𝑛𝑚 .	
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configuration	will	become	localized	in	region	A.	Therefore	

f� ��,�→�
fD		 (6a)	and		

f∥ ��,�→�
f:	 (6b)	

and	consequently:	

𝐾#,]gg
\U)

��,�→�
jk3lm

#
+ 𝐾#,:		 (7a)	and	

𝐾%,]gg
\U)

��,�→�
𝐾#,D − 𝐾#,:		 	 (7b)		

As	can	be	seen	in	figures	9	(a)	and	(b)	our	simulation	results	for	the	dynamic	higher	order	anisotropies	
approach	these	predicted	values	 (blue	dashed	 lines)	 for	 large	 length	scales.	However,	 the	 length	scale	
dependence	 of	 the	 effective	 anisotropies	 obtained	 from	 the	 dynamic	 response	 of	 the	 system	 is	
significantly	different	 from	those	obtained	from	quasi-static	calculations	 for	the	same	applied	field.	As	
these	differences	persist	over	the	entire	range	of	length	scales	of	the	anisotropy	variations,	including	the	
asymptotic	behavior	at	short	and	large	length	scales,	we	also	expect	a	difference	between	the	anisotropies	
obtained	 from	 quasi-static	 and	 dynamic	 measurements	 for	 physical	 samples.	 For	 those,	 interface	
roughness	will	lead	to	a	continuous	distribution	of	the	second-order	uniaxial	anisotropy	and	the	relevant	
length	 scales	will	 be	 determined	 by	 the	 type	 of	 interface	morphology	 present	 in	 the	 samples	 and	 its	
characteristic	parameters	[43].	The	dynamic	response	of	the	system	also	shows	a	markedly	different	field	

							 	
Figure	9:	 Effective	 second-order	uniaxial	anisotropy	as	a	 function	of	 the	 lateral	 length	scale	𝐿T,U 	of	 the	variations	of	 the	
anisotropy.	 The	 anisotropy	𝐾�#,]gg

\U) 	 for	 the	 dynamic	 simulations	 is	 shown	as	blue	 symbols	whereas	 the	 anisotropy	𝐾�#,]gg	
determined	from	quasi-static	simulations	is	shown	as	black	symbols.	The	dashed	black	line	shows	the	thin	film	limit	with	an	

average	 anisotropy,	 i.e.	 jk3l
m

#
+ 5m,st5m,r

#
.	 The	 dashed	 blue	 line	 represents	 the	 large	 length	 scale	 limit	 for	 the	 dynamical	

simulations	jk3l
m

#
+ 𝐾#,:.	 (b)	Effective	 fourth-order	uniaxial	anisotropy	as	a	 function	of	 the	 lateral	 length	scale	𝐿T,U 	of	 the	

variations	 of	 the	 anisotropy.	 The	 anisotropy	𝐾%,]gg
\U) for	 the	 dynamic	 simulations	 is	 shown	 as	 blue	 symbols	 whereas	 the	

anisotropy	𝐾%,]gg	determined	from	quasi-static	simulations	is	shown	as	black	symbols.	The	dashed	blue	line	represents	the	
large	length	scale	limit	for	the	dynamical	simulations	𝐾#,D − 𝐾#,:.	In	both	figures	the	dash	dotted	black	lines	are	the	limiting	
values	expected	for	 the	quasi-static	 effective	anisotropies,	obtained	by	 treating	 each	region	as	a	macrospin	and	 ignoring	
exchange	interaction,	see	section	C.	
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dependence	of	the	effective	anisotropies	when	compared	to	the	quasi-static	results	(see	figure	4).	While	
the	effective	anisotropies	are	weakly	dependent	on	the	external	applied	field	through	its	influence	on	the	
equilibrium	configuration	of	the	magnetization	the	amount	of	localization	has	a	much	stronger	influence.	
This	 is	particularly	evident	 for	 the	dynamic	 fourth-order	effective	anisotropy	which	 remains	at	a	 finite	
positive	value	even	for	the	largest	fields	used	in	figure	4	(b),	whereas	the	quasi-static	results	approach	
zero	in	this	limit.	We	would	like	to	point	out	that	recent	experimental	observations	of	a	field	dependent	
of	the	second-order	effective	anisotropy	[25]	appear	to	be	consistent	with	the	predicted	sensitivity	of	the	
effective	anisotropies	to	the	equilibrium	configuration	at	low	fields.	Clearly	more	systematic	experimental	
work	is	needed	to	verify	whether	spatial	variations	of	the	second-order	anisotropy	are	indeed	responsible	
for	these	observations.	

III. Summary	and	Discussion	

In	 summary,	we	have	analyzed	how	 lateral	 variations	of	a	 second-order	uniaxial	 anisotropy	affect	 the	
effective	anisotropies	required	to	describe	the	system	in	the	framework	of	a	macrospin	model.	For	both	
quasi-static	and	dynamic	calculations,	we	find	that	second-order	and	fourth-order	effective	anisotropies	
are	 sufficient	 to	 capture	 the	 properties	 of	 the	 system	 in	 the	 macrospin	 model.	 For	 the	 quasi-static	
properties,	we	find	that	the	effective	fourth-order	uniaxial	anisotropy	is	closely	linked	to	deviations	of	the	
average	 magnetization	 angle	 from	 the	 field	 direction	 and	 the	 lateral	 variation	 of	 the	 magnetization	
direction	 in	 the	 structure.	 This	 results	 in	 a	 strong	 field	 dependence	 of	 the	 effective	 anisotropies.	 The	
dependence	of	the	effective	anisotropies	on	the	lateral	length	scale	of	the	variations	of	the	second-order	
uniaxial	anisotropy	are	profoundly	different	for	the	quasi-static	and	dynamic	calculations.	The	underlying	
reason	for	this	difference	is	that	the	quasi-static	properties	are	averaged	over	the	entire	sample	volume	
whereas	 the	 observable	 dynamic	 properties	 depend	 sensitively	 on	 the	 degree	 of	 localization	 of	 the	
resonance.	This	localization	depends	not	only	on	the	lateral	length	scale	of	the	anisotropy	variations,	but	
also	 on	 the	 field	 orientation.	 While	 there	 have	 also	 been	 some	 reports	 on	 the	 differences	 between	
anisotropies	 determined	 using	 quasi-static	 and	 dynamic	methods	 [44-46],	more	 experimental	work	 is	
needed	 to	 clarify	 this	 aspect,	particularly	 for	 systems	with	perpendicular	 anisotropy.	 Interpretation	of	
experimental	results	for	systems	where	lateral	variations	of	the	second-order	anisotropy	are	caused	by	
interfacial	 roughness	will	be	complicated	by	 the	continuous	distribution	of	anisotropies	 in	 the	system.	
Thus,	in	order	to	make	a	quantitative	comparison,	a	careful	characterization	of	the	interfacial	roughness	
will	be	required	[43,47].	However,	we	would	like	to	point	out	that	a	continuous	distribution	of	the	second-
order	anisotropy	is	expected	to	result	in	a	significant	inhomogeneous	broadening	of	the	resonance	that	
increases	with	the	distribution	of	the	anisotropy	fields	[41],	very	much	in	line	with	what	has	recently	been	
reported	for	CoFe/Ni	multilayers	[48].	
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