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We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb
lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in
the spin dynamics with various exchange interactions. We show that the ferromagnetic structure
produces bosonic Dirac and Weyl points due to the competition between the interactions. Further-
more, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure
and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects
the antiferromagnetic configurations. The tunability of the nodal points through variation of the
exchange parameters leads to the possibility of controlling Dirac symmetries through an external
manipulation of the orbital interactions.

I. INTRODUCTION

In the past few years, Dirac and Weyl materials
have gained much attention in the field of condensed
matter physics due to their unique properties, primar-
ily the relativistic transport of fermions in low-energy
excitations.1–3,5–8,24 Dirac materials provide an interest-
ing symmetry protection; especially for 2D and topolog-
ical materials,2,9 which provides the potential for tech-
nological applications through the tunability of the elec-
tronic interactions to external fields.10–13

The main criteria of a Dirac material is the presence of
a Dirac cone, which is a multi-band crossover of at least
two distinct modes in the electronic structure that typ-
ically occurs near the Fermi level and produces a nodal
point called a Dirac node or point.1 Therefore, the system
or structure in question must have a non-Bravias lattice
(two sublattice (2SL) or greater). Furthermore, Dirac
nodes have a four-fold degeneracy produced through a
coupling of momentum to a spin or pseudospin, where
the Dirac coupling provides a chirality in the lattice of
a Dirac material, thus creating a positive and negative
mode and a linear crossover at the Fermi level.1,2 Here,
the presence of a Dirac node inhibits direct backscat-
tering of electrons by requiring the addition of a flip of
the (pseudo)spin due to a real space inversion.1 However,
if inversion symmetry is broken, then a gap can form,
and the Dirac cone is destroyed. These two criteria lay
down the general foundation for a Dirac material as a
non-Bravias lattice in the presence of inversion symme-
try, which is a challenge since inversion symmetry can be
broken easily through structure distortions, impurities,
and dopants, or the presence of external fields.

Furthermore, Dirac nodes should not be confused with
Weyl nodes or points, where a Weyl point is typically de-
scribed as a topological phenomenon that is essentially
in the massless limit of the Dirac equation.1 Through
the breaking of parity or time-reversal symmetry, the
four-fold degeneracy of the Dirac point can split into two
Weyl points,3 which tends to make Weyl points more sta-

FIG. 1: Illustrated honeycomb structure (a) and recipro-
cal space (b). The honeycomb structure has two sublattices
(black and white) that are related through inversion symme-
try (c). When magnetic structure is imposed, a ferromagnetic
structure (d) maintains inversion symmetry. However, an an-
tiferromagnetic configuration breaks inversion symmetry (e)
and produces a 180o rotation (f).

ble against perturbations since their degenerate crossover
cannot be broken with changing symmetries24. Overall,
Weyl points can be determined by the Chern number of
the valence band, which requires that Weyl points occur
in two at k and -k with equal Chern number.14,15

Graphene is the most well-known electronic Dirac ma-
terial due to the non-Bravias honeycomb lattice that pro-
duces a two-sublattice (2-SL) structure with a real-space
inversion (illustrated in Fig. 1(a))16. The honeycomb
lattice produces four Dirac fermions, which consists of
two spin-degenerate cones in each of the two valleys near
symmetry points K and K ′. This creates two Dirac cones
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at K and K′ in the first Brillouin zone (Fig. 1(b)),17,18

where the nodes can shift in k-space depending on vari-
ous parameters.19

As demonstrated above, the majority of the research
on Dirac materials has been focused on the creation and
evolution of Dirac fermions in the electronic structure
with a few groups examining the presence of Dirac sym-
metries in the magnetic structure.20–22 Therefore, we set
out to investigate the existence of Dirac bosons in honey-
comb lattices in hopes of providing further insights into
the nature of Dirac symmetries and the possible realiza-
tion of spintronic applications for materials with these
properties. There have been a number of studies on
magnetic honeycomb lattices investigating various mod-
els and effects.23–25 However, a deeper understanding the
spin dynamics and bosonic excitations for honeycomb lat-
tices may provide further insight into current experimen-
tal systems like CrBr3 and α-RuCl3.26–28

In this study, we show the presence of magnetic
Dirac and Weyl bosons in the ferromagnetic and anti-
ferromagnetic honeycomb structures by examining the
presence of mode crossovers in the spin-wave spectra.
Using a Holstein-Primakoff expansion of the Heisenberg
spin-spin exchange Hamiltonian, we determine the phase
diagram and spin dynamics for various magnetic configu-
rations and show that the development of Dirac magnons
is dependent on the magnetic structure due to the break-
ing of inversion symmetry in certain phases. Further-
more, we examine the evolution of the magnetic Dirac
and Weyl points with the addition of multiple exchange
interactions. The presence of Weyl nodes in the magnetic
structure is a product of frustration produced by next
and next-next nearest neighbor interactions. Addition-
ally, we show that a more complicated interaction system
allows for the stability of at least three other collinear
phases that produce various nodal points.

II. MAGNETIC HAMILTONIAN AND
CLASSICAL ENERGY

To examine the creation of Dirac bosons in the mag-
netic structure, the starting point is to use a similar
structure that is used for Dirac fermions. Therefore, one
should be able to create a basic magnetic Dirac structure
through the use of the honeycomb lattice. The most com-
mon collinear magnetic structures for the honeycomb lat-
tice are ferromagnetic (FM), antiferromagnetic (AFM),
zig-zag (ZZ), dimerized (DIM), and armchair (ARM) (il-
lustrated in Fig. 2). While there are most undoubtedly
non-collinear phases in this structure, we consider only
select collinear configurations that exist above the critical
anisotropy points.

The introduction of spin into the honeycomb lattice
creates a complication to the presence of inversion sym-
metry in the 2-SL structure. Shown in Fig. 1(d) the
FM configuration will maintain the inversion symme-
try of the honeycomb lattice and will produce a Dirac

FIG. 2: (a) An illustration of the exchange parameters with
nearest neighbor interactions J1 and J ′

1, next-nearest neigh-
bor interactions J2, and next-next-nearest neighbor interac-
tions J3. In most cases, J1 = J ′

1. However, J ′
1 is used to

explore the effects of asymmetry some phases. (b) A ferro-
magnetic (FM), (c) An anti-ferromagnetic (AFM), (d) zig-zag
(ZZ), (e) dimerized (DIM), and (f) an armchair (ARM). Using
the classical energy for each configuration, we can determine
various phase diagrams for these configurations (f-j), where
(g) J1 = 1, (h) J1 = −1, (i) J1 = 0, (j) J2 = 0, and (k)
J3 = 0.
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FIG. 3: (a, b) The 2-D spin waves of a FM and AFM hon-
eycomb structure with added levels of exchange-interactions,
respectively. (c, d) The 3-D spin waves of the FM and AFM
honeycomb structure with just a J1 spin exchange interac-
tion, respectively. (e, f) The 3-D spin waves of the FM and
AFM honeycomb structures with J1, and J2 spin exchange
interactions, respectively. (g, h) The 3-D spin waves of the
FM and AFM honeycomb structures with J1, J2, and J3 spin
exchange interactions, respectively.

cone. This has been discussed in Ref [20]. However, in
an antiferromagnetic configuration, the inversion symme-
try is broken due to the spin-flip from SL1 to SL2 (Fig.
1(e)). The antiferromagnetic configuration produces a
180◦ rotation that makes SL1 magnetically equivalent to
SL2. Therefore, it is expected that only a single-band
mode will appear in the spin-wave spectra. Therefore, as
the other configurations are examined, we expect to find
further complication, since the appearance of magnetic
Dirac nodes is contingent, not only on the structural in-
version and sublattice but the magnetic degree of freedom
as well.

To model the spin dynamics in the honeycomb lattice,
nearest (J1 and J ′1), next nearest (J2), and next-next
nearest (J3) neighbor interactions on the sublattices of

the honeycomb lattice are considered (shown in Fig. 2).
Using a Holstein-Primakoff expansion of the Heisenberg
spin-spin exchange Hamiltonian

H = −1

2

∑
i 6=j

JijS̄i · S̄j −D
∑
i

S2
iz, (1)

the energies and spin dynamics for the aforementioned
configurations are determined29,30. Here, Jij are the ex-
change interactions between spins S̄i and S̄j at sites i
and j. D is an anisotropy which will keep the collinear
phases stable.30 J > 0 denotes a FM exchange and J < 0
is AFM. In most cases, J1 = J ′1. However, J ′1 is used
to explore the effects of asymmetry in some phases. The
ZZ, DIM, and ARM phases are produced through a com-
petition of exchange interactions due to the frustration
introduced by J2 and J3.

Through a (1/S) expansion, the nature of the various
orders of this Hamiltonian can be shown as

H = E0 +H1 +H2 + · · ·, (2)

where E0 gives the classical energy, H1 is the vacuum
contribution to the spin waves, and H2 provides the spin
dynamics. Since we are considering the semi-classical
approximation, we may ignore higher-order terms due to
quantum fluctuations being negligible at T = 0 and large
S.30

For each configuration, the classical energy can be writ-
ten as,

EFM = −S
2

2
(3J1 + 6J2 + 9J3)

EAFM = −S
2

2
(−3J1 + 6J2 − 9J3)

EZZ = −S
2

2
(J1 − 2J2 − J3)

EDIM = −S
2

2
(−J1 − 2J2 + J3)

EARM = −S
2

2
(J1 − 2J2 − 3J3).

(3)

where S is the magnetic spin, which is typically set to one.
In the absence of J2 and J3, the FM configuration is dom-
inant for J1 > 0 and the AFM configuration for J1 < 0.
The competition between higher-order exchange param-
eters produces the ZZ, DIM, and ARM phases. It should
be noted that the collinear phases are not always sta-
ble without an easy-axis anisotropy.30 This indicates that
non-collinear phases may be the global ground state for
many exchange combinations. While there may be other
collinear phases that can occur, as well as non-collinear
phases, due to this competition of exchange parameters,
we have chosen to focus on the most likely cases.31,32

Further consideration of other phases will be examined
in future studies.
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FIG. 4: (a) Evolution of Dirac and Weyl nodes as next-next
nearest neighbor interactions are introduced.(b) The creation
of the two Weyl modes along ky with increasing J3.

Through a comparison of the configuration energies, it
is possible to create phase diagrams for various combi-
nations of exchange parameters, which is shown in Fig.
2(f-j). These diagrams show the general relationship of
the various phases and provide an avenue for understand-
ing the competition within the various structures.

The phase diagrams in Fig. 2(f-j) are quite complex.
Therefore, for simplification, the classical energies are
normalized to |J1|, where a ferromagnetic J1 assumed
for Fig. 2(f) and an anti-ferromagnetic J1 for Fig. 2(g).
Figures 2(h-j) show the phase diagram iterations in which
the exchange parameters are set to 0.

From these phase diagrams, it becomes clear that in
the limit where J2 = J3 = 0, only the FM and AFM are
present. The other collinear phases only become a stable
ground state in the presence of next and next-next near-
est interactions. Furthermore, effects from vacuum fluc-
tuations and/or finite temperature will impact the phase
boundaries, as well as introduce other more complicated
phases.

Furthermore, with the known regions of stability for
the magnetic phases, parameters for the exchange inter-
actions can be determined and used to construct a dy-
namics matrix using a similar technique to that discussed
in Ref. [30]. A table of the coordinates and anisotropy
used are shown in table I. Through a diagonalization of
this matrix, the spin-wave dynamics can be determined.

FIG. 5: Evolution of Dirac and Weyl nodes as J3/|J1| is in-
creased. The panels show the nodal points for J ′

1/|J1| = 1,
J2 = 0, J3/|J1| = (a) 0, (b) 0.15, (c) 0.3, (d) 0.45, (e) 0.6, (f)
0.75, (g) 0.90, (h) 1.05, (i) 1.20, (j) 1.35.

III. SPIN-WAVE MODES AND DIRAC
MAGNONS

Magnetic Dirac nodes are the crossing points of two
distinct spin-wave modes; typically at a high-symmetry
point. Here, the spin waves are determined for each con-
figuration. It should be pointed out that for more com-
plex structures, there are more SL structures. This will
inherently lead to more spin-wave modes. To illustrate
the spin-wave dynamics, we show the progressive evolu-
tion of the spectra as each exchange parameter (J1, J2,
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FIG. 6: Evolution of Dirac and Weyl nodes as J ′
1/|J1| is in-

creased. The 3D plots show the spin waves for the FM con-
figuration with J2 = J3 = 0 and J ′

1/|J1| = (a) 0, (b) 0.5, (c)
1.0, (d) 1.5, (e) 2.0, (f) 2.5.

and J3) is added, which is shown in a 2D plot. Here,
the modes are shown along the high-symmetry pathway
(Γ,M,K,Γ), as well as, in 3D plots that cover the full
Brillouin zone. Table I shows the parameters used to
calculate the spin waves for each honeycomb structure,
as well as the critical anisotropy term used to stabilize
each collinear phase. We do find several Dirac nodes in
these phases, and this is because in these configurations
the SLs have inversion symmetry through specific paths
and not others.

A. Ferromagnetic Honeycomb Lattice

The FM structure consists of a structural and mag-
netic 2-SL structure. As mentioned above, this maintains
inversion symmetry and should produce magnetic Dirac
bosons in the same way that one observes Dirac fermions
in the electronic structure. Using the Hamiltonian dis-
cussed above, we determine the spin-wave frequencies for
the FM configuration as a function of the exchange pa-
rameters to be

ω±FM = ±(2D + 2 J1 + 6 J2 + 9 J3 + J ′1)∓ 2 J2

(
cos
(√

3ky
)

+ cos
(

3
2 kx −

√
3
2 ky

)
+ cos

(
3
2 kx +

√
3
2 ky

))
+
[
2 J1

2 + 9 J3
2 + J ′1

2 ±
(

6 (J3 + J1)
(
J3 +

J′
1

3

)(
cos
(

3
2 kx −

√
3
2 ky

))
+
(

6 (J3 + J1)
(
J3 +

J′
1

3

))(
cos
(

3
2 kx +

√
3
2 ky

))
+ 4 J3

(
J1 + J3 +

J′
1

2

)(
cos
(

3
2 kx + 3

√
3

2 ky

)
+ cos

(
3
2 kx −

3
√
3

2 ky

)
+ cos (3 kx) + (J3 + J1) cos

(
2
√

3ky
) )

+ 4 J3
2
(

cos
(

3
2 kx −

5
√
3

2 ky

)
+ 1

2 cos
(

9
2 kx −

3
√
3

2 ky

)
+ cos

(
9
2 kx −

√
3
2 ky

)
+ cos

(
9
2 kx +

√
3
2 ky

)
+ 1

2 cos
(

9
2 kx + 3

√
3

2 ky

)
+ cos

(
3
2 kx + 5

√
3

2 ky

)
+ cos

(
3 kx − 2

√
3ky
)

+ cos
(
3 kx + 2

√
3ky
) )

+2 J3
2 cos

(
3
√

3ky
)

+ 2 J3 (J1 + 2 J3 + J ′1)
(

cos
(
3 kx −

√
3ky
)

+ cos
(
3 kx +

√
3ky
) )

+
(
6 J3

2 + (4 J1 + 4 J ′1) J3 + 2 J1
2
)

cos
(√

3ky
) ]1/2

,

(4)

which consists of two distinct modes due to the 2-SL
magnetic structure. Fig. 3(a-d) shows the spin waves
of the FM configuration of the honeycomb lattice with
three different exchange configurations are considered.

Fig. 3(b) shows a 3D representation of the spin waves
considering only J1 (with J1 = J ′1), which produces a
magnetic structure that is similar to the observed and cal-

culated electronic structure. Here, the presence of clear
Dirac nodes at the K and K ′ symmetry points is easily
observed by the black line in Fig. 3(a). As J2 is intro-
duced (Fig. 3(c)), the Dirac node is shifted up in energy
and the Dirac character is weakened, as observed by the
loss of the linearity in the red dashed line of Fig. 3(a).
Interestingly, the further introduction of J3 in Fig. 3(d)



6

shifts the modes and produces two new crossing points.
One at the high-symmetry M point and one off-symmetry
point that can be hard to observe in the 3D plot. There-
fore, the blue dot-dashed line in Fig. 3(a) shows the
spin-wave modes and crossover nodes.

The presence of multiple mode crossovers with J3 sig-
nals to an interesting break in symmetry that introduces
Dirac and Weyl points. To investigate this generation
of non-symmetric modes, Fig. 4 shows the evolution of
the spin waves for J1 = J ′1 = 1 with increasing J2 and
J3. From Fig.4(a) the creation of the Weyl points is
due solely to the implementation of the next-next-nearest
neighbor interaction J3, where Fig. 4(b) shows the cre-
ation of multiple Weyl crossover points at a critical value
of J3/J1 = 4/13. We can quantify the nodal pathway is
dictated by

knpy =


4
√
3π
9 , allJ3J1

2
√
3

3 cos−1
(
−1−
√
−4J1/J3+13

4

)
, 4

13 <
J3
J1

2
√
3

3 cos−1
(
−1+
√
−4J1/J3+13

4

)
, 4

13 <
J3
J1

(5)

Furthermore, the original Dirac node at the K symme-
try point remains independent of the higher-order inter-
actions.

To examine the creation of these nodes further, Figs.
5(a-j) show the production of the nodal points in k-space
as J3 is introduced. In Fig. 5(a), the standard six Dirac
nodal points are located at K and K ′ are present for J3 =
0. As J3 is increased, the sharp Dirac nodal point begins
to lose its linearity (shown in Figs. 5(b) and (c)). Once
beyond the critical value of J3/J1 = 4/13, the presence
of three sharp Weyl points are formed, while three more-
rounded Weyl points also form at 60◦ angles in k-space
(shown in 5(d)). In Figs. 5(e-j), the Weyl nodes moving
towards theM symmetry point will collide and annihilate
each other leaving only the inner Weyl modes.

The annihilation of the Weyl points is likely due to
the nature of the Chern number for the nodes. Since
they have equal and opposite Chern number, the nodal
energy is increased when they come together at the M
point, which produces an energy gap in the spin-wave
dynamics.

The change in the modes is fascinating because the
Dirac node itself remains at the K symmetry point. Only
the created Weyl points move, which is different than
the merging of Dirac point discussed by Montambaux et
al. in 2009,14 where it was demonstrated that the Dirac
nodes could be shifted in the electronic structure with
an implementation of asymmetry in the nearest-neighbor
hopping parameter t.14 The shifting of the Dirac node is
due to an asymmetry placed into the interactions that

increase the coupling of the two SLs and slowly shifts
them towards the M point. This shift can be observed
in the magnetic structure as well by adding a similar
asymmetry to the magnetic exchange interaction J ′1.

Figure 6 shows the evolution of the mode crossing in
the FM configuration as J ′1/|J1| is increased from 0 to
2.5. At J ′1/|J1| = 0, the magnetic structure consists of
1D bands of interacting spins. Therefore, the system pro-
duces distinct Dirac lines.33 As J ′1/|J1| is increased to
1, where the standard Dirac nodes are produced. How-
ever, as J ′1/|J1| > 1, the Dirac nodes shift towards the M
points and eventually merge in a similar manner observed
for the J3 modes.

Therefore, we observe two separate phenomena. (1)
the shifting of the Dirac point due to asymmetry in the
exchange parameter, and (2) the production of Weyl
points due to the shifting topology of the spin-wave
modes with J3.

TABLE I: A list of values used to determine the spin waves
in Figures 3 and 7.

Spinwave Calculation Parameters

Structure
(

J1
|J1|

, J2
|J1|

, J3
|J1|

)
Anisotropy, D

J1

FM (1, 0, 0) 0

(1, 1, 0) 0

(1, 1, 1) 0

AFM (−1, 0, 0) 0

(−1, 1, 0) 0

(−1, 1,−1) 0

DIM (−1,−8, 0) 3.516

(−1,−8, 3) 3.783

ZZ (1,-4,0) 1.531

(1,-4, 1
2
) 1.759

ARM (1,-1,0) 0.1250

(1,-1,-1) 0.0396

B. Antiferromagnetic Honeycomb Lattice

In the AFM configuration (Fig. 2(b)), the 2-SL sites
have opposite collinear spins (up and down). While this
is a small and simple change, it has a dramatic effect on
the modes. Using the same method as the FM configura-
tion, the spin-wave modes can be determined analytically
as
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ωAFM =
[
2 J1

2 + 42 J2
2 + 72 J3

2 − 4 J3
2
(

cos
(

3
2kx + 5

√
3

2 ky

)
+ cos

(
3
2 kx −

5
√
3

2 ky

)
+ cos

(
9
2 kx +

√
3
2 ky

)
+ cos

(
3 kx + 2

√
3ky
)

+ cos
(
3 kx − 2

√
3ky
)

+ cos
(

9
2 kx −

√
3
2 ky

))
−2 J3

2
(

cos
(

9
2 kx + 3

√
3

2 ky

)
+ cos

(
3
√

3ky
)

+ cos
(

9
2 kx −

3
√
3

2 ky

))
+J3

(
−36D + 36 J1 − 108 J2 + 18 J1

′)+ J2
(
24D − 24 J1 − 12 J1

′)
+J1

(
−8D + 4 J1

′)+ 4D
(
D − J1

′)+ cos (3 kx )
(
−4 J3

2 + J3
(
−4 J1 − 2 J1

′)+ 4 J2
2
)

+ cos
(√

3ky
) (
− 6 J3

2 + J3
(
−4 J1 + 36 J2 − 4 J1

′)− 20 J2
2 + J2

(
−8D + 8 J1 + 4 J1

′)− 2 J1
2
)

+
(

cos
(
3 kx +

√
3ky
)

+ cos
(
3 kx −

√
3ky
) )(

− 4 J3
2 − J3

(
2 J1 + 2 J1

′)+ 2 J2
2
)

+
(

cos
(

3
2 kx + 3

√
3

2 ky

)
+ cos

(
3
2 kx −

3
√
3

2 ky

))(
− 4 J3

2 − J3
(
4 J1 + 2 J1

′)+ 4 J2
2
)

+
(

cos
(

3
2 kx −

√
3
2 ky

)
+ cos

(
3
2 kx +

√
3
2 ky

))(
− 6 J3

2 − J3
(
6 J1 − 36 J2 + 2 J1

′)
−20 J2

2 + J2
(
−8D + 8 J1 + 4 J1

′)− 2 J1 J1
′
)

+ cos
(
2
√

3ky
) (
−4 J1 J3 + 2 J2

2 − 4 J3
2
) ]1/2

,

(6)

As shown in Fig. 3(e), the AFM configuration does not
produce two modes. There is a single mode at the Γ point
that will become gapped in the presence of anisotropy,
which is typically needed for two-dimensional systems.
The reduction in modes is due to the flip of spin between
the structural sublattices reduces the system to a 1-SL
system. Therefore, the AFM configuration will only pro-
duce a single spin-wave mode or more precisely double
degenerate modes. Furthermore, these modes are not af-
fected by the addition of higher-order interactions (J2
and J3).

The loss of Dirac symmetry becomes clear when only
the spin interactions are considered, such as in Fig.
1(e). Geometrically, the structure remains chiral, how-
ever magnetically, the AFM configuration loses its inver-
sion symmetry, and SL2 becomes similar to SL1, without
regard to the geometric position. The energy for each
sublattice is identical, creating degenerate modes in this
phase and therefore only showing one mode. Therefore,
there are no Dirac modes in AFM configuration regard-
less of interactions.

In comparison to the FM configuration, the magnetic
environment at site 2 is a simple flip of inversion symme-
try from site 1 (as shown in Fig. 1(c)). However, in the
AFM configuration, the magnetic environment at site 2
is equal to an inversion of the site 1. It is a 180◦ rotation
about the dashed line shown in Fig. 1(e). This break
in inversion symmetry reduces the system to a single SL
system and eliminates the Dirac nodes that are present
in the FM phases.

C. Other Antiferromagnetic Honeycomb Lattices

To examine the other AFM phases, the spin model
requires next and next-next nearest neighbor interac-
tions. Furthermore, we need the introduction of easy-axis

anisotropy in order stabilize the phases32. The need for
anisotropy reveals the presence of non-collinear phases
below the critical anisotropy. While we do not investi-
gate the non-collinear phases in this study, the ordering
wave-vectors for the non-collinear spin-waves can be de-
termined by the k points of the single-band modes that
are present at the critical anisotropy values31.

From Fig.2, the dimerized (DIM) configuration con-
sists of spin up-up and down-down dimers, while the zig-
zag (ZZ) and armchair (ARM) configurations include of
alternating stripes of up and down spins along the zig-zag
and armchair directions, respectively.

The DIM, ZZ, and ARM configurations complicate
the Hamiltonian matrix due to the increase in the mag-
netic sublattices. The DIM and ZZ structures produce a
four sub-lattice (4-SL) magnetic system, while the ARM
structure produces an eight sub-lattice (8-SL) magnetic
system. Because of the complicated magnetic structures,
analytical solutions for the spin-waves were not able to
be obtained. However, the spin-wave dynamics were cal-
culated numerically.

Figure 7 shows the calculated spin-wave spectra for
the DIM, ZZ, and ARM configurations. These do in-
dicate that you may obtain Weyl nodes depending on
the specific configuration and the included interactions.
However, it is clear from the broken inversion symmetries
in the magnetic structures that you should not produce
Dirac nodes, which is consistent with the sample spectra
that are provided.

Due to their complicated magnetic structures, inver-
sion symmetry is not consistently held through all three
structures. For the DIM and ZZ configurations, inver-
sion symmetry is only held between two nearest neighbor
spins, which also reduces the number of modes to two.
While the ARM configuration has inversion symmetry
on downward facing like spins, the number of modes is
reduced to four.
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FIG. 7: To the left, the 2-D spin waves of a DIM, ZZ, and
ARM honeycomb structures with added levels of exchange-
interactions. Here only the J2 and J3 spin exchange interac-
tions have been mapped due to the fact that at J2 = 0 and
J3 = 0 only a FM or an AFM structure is left. To the right,
the 3-D spin waves of the DIM, ZZ, and ARM honeycomb
structures with all three spin exchange interactions, as show-
ing the other spin exchange interactions is no more conducive
to their understanding. The parameters are given in table I.

Understanding these more complicated magnetic
structures and their underlying non-collinear states can
help lead to further insight into the character of Dirac
and Weyl modes and materials.

IV. CONCLUSION

In this study, we examine the creation and evolution of
Dirac and Weyl nodes in the magnetic honeycomb lattice.

Using linear spin-wave theory, we determined the spin
dynamics and phases diagrams for five common collinear
phases.

In the AFM configuration, the breaking of inversion
symmetry in the magnetic structure eliminates the pres-
ence of a Dirac node. However, in more complex AFM
configurations (DIM, ZZ, and ARM), the crossing of spin
waves can produce other Dirac-like nodes. It should be
noted that only selected collinear phases have been con-
sidered. The more complicated AFM configurations are
only stable with easy-axis anisotropy, which indicates
the presence of non-collinear phases below that critical
anisotropy. In the future, we plan to investigate the non-
collinear phases further using Monte Carlo simulations,
which is currently out of the scope of this study.

With regards to the FM configuration, we observe two
main phenomena. The introduction of asymmetry in
the honeycomb lattice can shift the Dirac nodes in k-
space, while additional higher-order interactions can pro-
duce multiple Weyl nodes from the K and K ′ symme-
try points. This ability to control the creation of Dirac
and Weyl nodes through variations in exchange interac-
tions leads to the possibility of topological manipulation
through the use of external fields in the time domain.
Since magnetic exchange is controlled through the na-
ture of orbital overlap, the presence of superficial fields
can affect exchange pathways in the time domain through
dynamic interactions in the topology.
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