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We compute the real-space spin correlations and frquency and wave-vector resolved dynamic
structure factors S(~q, ω) for the nearest-neighbor Kagome-Lattice Heisenberg Model (KLHM) at
finite temperatures using Numerical Linked Cluster Expansion (NLCE) method. A triangle-based
NLCE is used to calculate frequency moments of the dynamic structure factors in the thermodynamic
limit, which show excellent convergence for T > J/4. A Gaussian approximation and the fluctuation-
dissipation relation are used to to reconstruct the frequency dependence. We find that some features
of the low temperature KLHM structure-factors begin to set in at temperatures of order J . Our
results are in very good agreement with powder diffraction measurements reported earlier on the
Herbertsmithite materials ZnCu3(OH)6Cl2 . However, the calculated properties differ from the low
temperature (T ≈ J/100) experimental measurements in one important regard. In line with the
experimental observations, the spectral weight has a diffuse nature, which is predominantly spread
along the extended Brillouin-Zone boundary. However, the maximum intensity is found in our
calculations to be at the K point of the extended Brillouin Zone in contrast to the low temperature
experiments, where it is at the M point. We suggest that experiments should be done at various
temperatures to look for such a crossover of the maximum from the K point to the M point. In the
absence of such a crossover, the Herbertsmithite materials must differ from KLHM in a significant
manner.

I. INTRODUCTION

The spin-half nearest-neighbor Kagome Lattice
Heisenberg Model (KLHM) is one of the best studied
models of quantum magnetism1,2. Recent computational
studies have established a quantum spin-liquid ground
state for the model, although the full nature of the
quantum spin-liquid phase and the existence of a spin-
gap remains under debate3–6. While the breakthrough
DMRG studies suggested a gapped spin-liquid with a
robust spin-gap of order or larger than a tenth of the
exchange constant J3, several recent studies suggest a
Dirac spin-liquid with gapless excitations6.

On the experimental front, the Herbertsmithite mate-
rials ZnCu3(OH)6Cl2 have been celebrated as possibly a
nearly ideal realization of a Kagome antiferromagnet7,8.
The lack of structural distortions and magnetic isola-
tion of copper based Kagome planes by intervening non-
magnetic zinc planes, makes these materials well suited
to the exploration of the rich quantum spin-liquid physics
in these systems. Recent neutron-scattering9 and NMR10

measurements on large single-crystal materials find no
evidence for magnetic order down to temperatures many
orders of magnitude below the exchange energy scale.
While the as obtained neutron-scattering spectra clearly
shows gapless excitations, a recent analysis of the spectra
taking into account the anti-site copper impurities in the
zinc planes, assigns the low energy scattering entirely to
these impurities11. The authors conclude a gap of order
J/20 for the KLHM, in agreement with the eariler NMR
study and somewhat below the DMRG calculations of
Yan et al

3.

In this work, we aim to calculate the real-space spin
correlations and structure factors at intermediate tem-

peratures, where the gap issue is not relevant. Our main
goal is to benchmark the structure factor for the KLHM,
in a temperature regime where they can be accurately
calculated in the thermodynamic limit, and thus be di-
rectly compared to the experiments. Despite the many
theoretical studies, this quantity has not been calculated
before apart from a high temperature expansion study at
selected wave-vectors12, and is important for addressing
the question of how good the Heisenberg Model is for
these materials13. The static structure factors, we calcu-
late, should be very accurate down to the lowest tempera-
tures studied. The prominent features of the wave-vector
dependence of the structure factor begin to develop at
relatively high temperatures of order J . The frequency
dependence is obtained through the Gaussian approxi-
mation, which should be a good approximation for the
short-time dynamics14.

We find that, in the static structure factors as well as
the low-energy structure factors, the intensity is mostly
spread near the extended Brillouin-Zone boundary once
the temperature is below the exchange energy scale J .
However, we find that the intensity peaks at the K-point
in the extended Brillouin Zone. This is in contrast to the
low temperature experimental observation at T = J/100,
where the peak is at the M point9,15,16. We note that the
finite size calculation of Shimokawa and Kawamura18 also
found a crossover of the maximum in the structure factor
from the K point to the M point at T ≈ J/100. Thus, our
results are fully consistent with their studies. Our work
suggests that measuring the temperature dependence of
the structure factors as a function of temperature can
help clarify how good the KLHM is for these materials
and determine an important crossover energy scale.
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II. MODEL AND METHODS

We consider the Heisenberg model with Hamiltonian:

H = J
∑

〈i,j〉

(Sx
i S

x
j + Sy

i S
y
j + Sz

i S
z
j ), (1)

where the sum runs over all nearest-neighbor bonds of the
Kagome lattice. The Sα

i (α = x, y, z) represent spin-half
operators associated with the spin at site i.
The Kagome Lattice consists of 3-sublattices, which we

can label by a, b = 1, 2, 3. A site on the Kagome lattice
has location:

~r = n1
~R1 + n2

~R2 +~la (2)

where ~R1 and ~R2 are the lattice translational vectors of
the underlying triangular Bravais-lattice, n1 and n2 are

integers, and ~la for a = 1, 2, 3 are the 3 basis vectors in
a unit cell. One explicit representation (taking nearest
neighbor distance of unity) is:

~R1 = 2x̂, ~R2 = x̂+
√
3ŷ,

with basis vectors,

~l1 = 0, ~l2 = x̂, ~l3 =
1

2
x̂+

√
3

2
ŷ.

Neutron scattering measures the scattering cross-
section resolved by momentum transfer ~q and energy
transfer ω (we set ~ = 1). Let us begin with the cor-
relations in time t instead of energy transfer ω. For mo-
mentum transfer ~q, the dynamic structure factor is a 3×3
matrix:

Sab(~q, t) =
∑

n1,n2

[

〈e−iHtSa(0, 0)e
iHtSb(n1, n2)〉 (3)

× e−i~q·(n1
~R1+n2

~R2)
]

ei~q·(
~la−~lb)

Fourier transforming in time gives

Sab(~q, ω) = ei~q·(
~la−~lb)

∑

n1,n2

Sab(n1, n2, ω)e
−i~q·(n1

~R1+n2
~R2)

(4)
where Sab(n1, n2, ω) is the time Fourier transform of
〈e−iHtSa(0, 0)e

iHtSb(n1, n2)〉, which by translational
symmetry only depends on vector distance given by n1,
n2. The neutron scattering cross-section is the sum over
all 9 matrix elements of the Sab matrix.
The equal-time correlation function is obtained by

summing over all frequencies, and leads to the expres-
sion

Sab(~q) =
∑

n1,n2

[〈Sa(0, 0)Sb(n1, n2)〉 (5)

× e−i~q·(n1
~R1+n2

~R2)
]

ei~q·(
~la−~lb)

In this work, we calculate real-space spin-spin correla-
tion functions 〈Sa(0, 0)Sb(n1, n2)〉, as well as static and
dynamic structure factors Sab(~q) and Sab(~q, ω) using the
Numerical Linked Cluster method. In all subsequent cal-
culations we sum over all values of the subscript pair
(a, b), thus leaving no subscript for the quantities.

III. NUMERICAL LINKED CLUSTER METHOD

The essence of the Numerical Linked Cluster Expan-
sion (NLCE) method is to express an extenive property
P for a large lattice L with N -sites as

P (L)/N =
∑

c

L(c)×W (c). (6)

Note that given an intensive property p such as spin-
spin correlation function, one can always construct an
extensive property by defining P = Np. Here, the sum
over c runs over all distinct linked clusters of the lattice
L. L(c) is called the lattice constant of the cluster c, and
is the number of embeddings of the linked-cluster in the
lattice per site. The quantity W (c) is called the weight of
the cluster and is determined entirely by a calculation of
the property on the finite cluster c and all its sub-clusters.
It is defined as

W (c) = P (c)−
∑

s

W (s), (7)

where the sum over s is over all proper subclusters of the
cluster c. In a high temperature expansion, the property
P (c) is expanded in powers of inverse temperature. In
NLCE, one carries out a calculation at a given tempera-
ture by exact diagonalization of the finite system.
For the Kagome lattice, it is useful to consider clus-

ters made up of complete triangles only. It was found
in Ref. 17 that whereas an NLCE based on bond or
site based graphs starts to breakdown as soon as the
high temperature expansion diverges, the triangle based
NLCE converges down to much lower temperatures. We
define the order of the calculation by the clusters with
largest number of triangles included in the calculation.
We carry out complete calculations for up to 7 triangles
or 7th order.
We first calculate the spin correlations in real space and

then Fourier transform to get the correlations in momen-
tum space. The order of the NLCE calculation limits the
largest vector distance for which the correlations can be
non-zero. The range of real-space correlations studied in
7th order NLCE is depicted in Fig. 1. The figure depicts
all sites that are within 7 triangles of a given site. We will
find that these distances are large enough that, at least
at temperatures of interest in this work, the correlations
become very small well before the largest distances ac-
cessed in the study.
In order to calculate the real-space correlations for all

relevant vector distances (a, b, n1, n2), we group the vec-
tor distances into symmetry distinct sets. The correla-
tions will be identical for two vector distances that are
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FIG. 1. A section of the Kagome lattice. Shown are the sites
whose correlations with respect to a given site denoted by a
star are calculated in the NLCE expansion up to 7 triangles.

related by a symmetry of the Kagome-lattice. Up to 7th
order, there are 29 distinct vector distances. The follow-
ing steps are needed to carry out the calculations:

• First we prepare a list of topological graphs, their
subgraphs and their lattice constants up to some
order n. An n-th order graph, with n triangles
will have Ns sites and Nb bonds. The topology of
the graph is fully specified by the connectivity or
adjacency matrix of the graph and this informa-
tion is sufficient for calculating distance indepen-
dent properties.

• Coordinate-dependent embeddings of the graphs in
the lattice are needed for calculating distance de-
pendent spin-spin correlation functions. For each
topological graph, all possibe lattice embeddings
are determined up to symmetries of the lattice, to-
gether with their symmetry related count.

• A list is prepared of all relevant vector distances
(a, b, n1, n2) divided into 29 distinct sets (for order
n = 7). That is, every vector between pair of spins
in all graphs must be in one and only one of the
vector distances in the set.

• For all embeddings, an identification for every pair
of sites with one of the 29 elements is made. That
is, the vector-distance the pair belongs to in the
embedding, is determined.

• Using an exact diagonalization program, spin-spin
correlations are determined for every pair of spins
of a topological graph.

• Using the assignment of vector-distances to each
pair, the spin-spin correlation sum (and frequency
moments) for all the 29 distinct vector distances

and sub-lattice combinations are calculated for
each graph. These define the extensive properties
for which weights can now be obtained by subgraph
subtraction.

• Once weights have been determined, summing over
all topological graphs gives us the spin-spin correla-
tion functions for the infinite lattice. This process
gives us a sum over all symmetry related spin-spin
correlations, per lattice-site. Knowing the number
of equivalent vectors in each case, the spin-spin cor-
relation between pairs of spins follows.

• Fourier Transforming the results gives us the wave-
vector dependence.

The frequency moments of the structure factors can
be written as thermal expectation values of commutation
relations of on-site spin operators and the Hamiltonian.
This ensures that linked-cluster expansion exists. In our
NLCE calculations, we do not use the commutation rela-
tions. We have the exact eigenstates of the graph. Then,
for spins at site i and j, the frequency moments can be
calculated from the expression,

ρkij =
1

Z
∑

n,m

e−βEn〈n|Sz
i |m〉〈m|Sz

j |n〉(Em − En)
k (8)

Where {(|n〉, En)} are the eigenvectors and eigenvalues
of the Hamiltonian, β is inverse temperature, and Z is
the partition function. Due to the spin rotational sym-
metry of the Heisenberg model, it suffices to calculate the
zz correlation functions. After subgraph subtraction, we
sum over all sub-lattice configurations for each vector dis-
tance, defining moments ρk and corresponding structure
factor S(~r). We note that the zeroth moment is the equal
time correlation function. All results are Fourier trans-
formed to wave-vector space ~q. To obtain the frequency
dependence for any ~q, we use the Gaussian approxima-
tion. For this, we first introduce the spectral density
defined by

Φ(~q, ω) =
1

2

(

1 + e−βω
)

S(~q, ω) (9)

which is an even function in ω, and also shares all of its
even moments with S. Since this function is even, we
assume that it is a Gaussian with zero mean. Thus it
is determined from its zeroth and second moment. Af-
ter NLCE and Fourier transformation is performed for
the zeroth and second moments, we construct Φ in the
Gaussian approximation and use equation (9) to deter-
mine S(~q, ω). The benefit of going through the spectral
density is that this function is even in ω, and so a Gaus-
sian with mean zero preserves the fluctuation-dissipation
relations.

IV. RESULTS

We begin with the correlations in real space. There
are 29 relevant vector distance labels, and Table-1 gives
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Label x
(

a

2

)

y
(

a
√

3

2

)

0 0 0
1 1 1
2 0 2
3 4 0

TABLE I. Representative vectors of the first four symmetry-
distinct vector distance labels in the Kagome lattice.
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FIG. 2. The zeroth and second frequency moments of S(~r)
for the first four vector distances in the Kagome AFM Heisen-
berg model. Plot (a) corresponds to the zeroth, and plot (b)
corresponds to the second moment.

representative vectors for the first four of them. Note
in particular that the vector distances with labels 0 and
1 correspond to on-site and nearest neighbor vector dis-
tances respectively.
The zeroth and second moment for the first four vector

distances are shown in Figure 2. Here we show the result
for 5th, 6th and 7th order. It is clear that convergence is
excellent, with hardly much difference between 6th and
7th orders down to a temperature of T = 0.25J . Thus,
for the remainder of this paper we only show results from
calculations for our highest order that is 7th order (that
is up to 7 triangle graphs), and do not show temperatures
below 0.25J where differences between 6th and 7th order
begin to arise.
Next we show pictorially the real-space correlations be-

tween spins on the Kagome lattice in Figure 3. In these
plots we illustrate the equal-time, spin-spin correlation
between a given site with the site labelled by a green
star. On each site we draw a colored circle, whose area
quantitatively illustrates the magnitude of the correla-
tion. The color of the circle specifies the sign of the cor-
relation, with red signifying a negative correlation and
blue positive. We see that even down to a temperature
of 0.25J , significant correlations do not extend beyond a
few lattice constants.
Since these correlations die off so rapidly, it means ter-

minating the Fourier transform over space at finite dis-
tances, as we have from only considering up to 7 trian-
gles, is a very good approximation. The Fourier trans-
form of the zeroth-moment yields the full q-dependence
for the equal-time correlations as shown in Figure 4. We
see the characteristic development of dark nearly circu-
lar patches at the centers of the extended Brillouin Zone

(a) (b)

(c) (d)

FIG. 3. The equal time spin-spin correlations between sites
in the Kagome AFM Heisenberg model. The correlations are
between each site, and the site depicted by a green star. The
area of the circle corresponds to the magnitude of the corre-
lation, and the color red means a negative correlation, and
blue is a positive correlation. The four plots depict the tem-
peratures 0.25J, 0.5J, J, and 2J for plots (a), (b), (c), and (d)
respectively.
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FIG. 4. The q-dependence of the equal time spin-spin corre-
lation functions for the Kagome AFM Heisenberg model. The
four plots depict the temperatures 0.25J, 0.5J, J, and 2J for
plots (a), (b), (c), and (d) respectively.

(BZ) at relatively high temperatures of order J , and the
intensity starts to concentrate on the boundaries of the
extended BZ. Focusing on the bright zone boundary re-
gions, for all temperatures in this study, the maximum
spectral weight is found at the K point, with a decrease
in magnitude as we move towards the M point, and a
rapid drop-off as we move from the K point to the origin
Γ.
We calculate the dynamic structure factors using the
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FIG. 5. Comparison of the frequency moments of S obtained
directly from NLCE, with those obtained in the Gaussian ap-
proximation (Note that the kth moment is denoted as ρk).
Subplot (a) shows moments for S(~r = 0, ω), (b) and (c) show
moments of S(~q, ω) for the K and M wave-vectors, as defined
in Figure 4, respectively.

Gaussian approximation. To assess the limitations of this
approximation, we show in Figure 5 a comparison be-
tween higher moments obtained from NLCE with those
obtained by the Gaussian approximation. We show this
comparison for S(~r = 0, ω), as well as S(~q, ω) for the K
and M points, as defined in Figure 4. We find that for
the on-site calculation the Gaussian approximation re-
produces the higher moments very well and gives a good
approximation over the temperature range. However, for
the K and M points, we find that the deviations from
Gaussianity changes sign at a temperature below J . At
high temperature the skew is towards lower frequencies,
where as it develops a high-frequency asymmetry at lower
temperatures.

For the dynamic structure factor in the Gaussian ap-
proximation, the intensity accumulates most prominently
at the K point, and the line towards the M point from
K holds the most spectral weight. The frequency depen-
dence for the K and M points for several temperature
values is shown in Figure 6. The intensity peaks around
ω = 0.7J . On general grounds, one expects the spectral
weights to decrease rapidly above ω = 2J13. That rapid
decrease is ensured by the Gaussian approximation. For
the same q values, we show the temperature dependence
of S(q, ω) for several values of ω in Figure 7. The inten-
sity grows monotonically with decreasing temperature for
the temperatures shown, and the overall behavior is very
similar to the equal-time correlation functions.

We also compare directly with powder experiments by
integrating over all points at equal |~q|. Here it is impor-
tant to perform a 3D powder average as appropriate for
the experiments of de Vries et al.19 The angular averages
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FIG. 6. The frequency dependence of S(q, ω) within the Gaus-
sian approximation for the Kagome AFM Heisenberg model.
We show the K and M points as defined in Figure 4. The four
plots depict the temperatures 0.25J, 0.5J, J, and 2J for plots
(a), (b), (c), and (d) respectively.
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FIG. 7. The temperature dependence of S(q, ω) within the
Gaussian approximation for the Kagome AFM Heisenberg
model. We show the K and M points as defined in Figure
4. The four plots depict the frequencies 0.25J, 0.5J, J, and 2J
for plots (a), (b), (c), and (d) respectively.

reduce to

[exp{i~q · ~r}]av =
sin qr

qr
. (10)

Thus, they are easy to obtain from the real-space correla-
tions. Assuming the lattice spacing between neighboring
copper ions in Herbertsmithite is a = 3.4Å as stated by
de Vries et al

19, we show S(q) vs |q| in Figure 8. We
find peaks at |q| ≈ 1.3Å−1 and |q| ≈ 3.2Å−1, and a
trough near |q| = 2.2Å−1, in very good agreement with
the experiments19 which found a peak at |q| ≈ 1.3Å−1.
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FIG. 8. The q-dependence of the powder-average equal time
spin-spin correlation functions for the Kagome AFM Heisen-
berg model, where we integrated over all values with the same
|q|.
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FIG. 9. Powder average structure factors as a function of q
and ω within Gaussian approximation for the Kagome AFM
Heisenberg model. The four plots depict the temperatures
0.25J, 0.5J, J, and 2J for plots (a), (b), (c), and (d) respec-
tively.

We also show plots of powder-average S(q, ω) for various
temperatures in Figure 9. We show a range of values
of |q|, and find peaks developing at |q| ≈ 1.1, 3.0 and
ω ≈ 0.6 and this intensity diminishes in all direction in
the ω − |q| plane from there.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have calculated the real-space spin
correlations and wave-vector and frequency dependent

structure factors of the Kagome Lattice Heisenberg
Model (KLHM) at finite temperatures using the Numer-
ical Linked Cluster Expansion (NLCE) method. These
calculations should be very accurate for the static struc-
ture factors, in the thermodynamic limit, for T > J/4.
The frequency dependence is obtained using the Gaussian
approximation maintaining the fluctuation-dissipation
relations.

The development of short-range antiferromagnetic or-
der sets in at temperatures of order J and leads to dark
patches at the extended Brillouin Zone centers and en-
hanced spectral weights along the boundaries of the ex-
tended Brillouin Zone. Our results for powder diffraction
are in very good agreement with the Neutron spectra
on the Herbertsmithite materials obtained earlier by de
Vries et al19. Earlier NMR relaxation rates, which are a
sum over wave-vectors, calculated using the NLCE, were
also found to be in good agreement with experiments13.

Recently full wave-vector resolved neutron spectra
were measured on single crystals of Herbertsmithites at
low temperatures (T = J/100)9. We are not aware of
any such measurements at higher temperatures. Com-
parison of our calculated spectra at much higher temper-
atures than the experiments show agreement with the
broad features where spectral weight begins to get con-
centrated at the boundaries of the extended Brillouin
Zone. However, our results differ from the experiments
in one rather striking regard. We find the intensity max-
imum at the K point on the corners of the extended
Brillouin Zone. In contrast, the low temperature experi-
ments show a peak at the M points at the middle of the
boundary of the extended Brillouin Zone. We suggest
that these measurements should be done as a function
of temperature. In the absence of a crossover of a max-
imum from the M -point to the K-point as a function
of temperature16,18, the Herbertsmithite materials must
differ from the KLHM in some important regard. How-
ever, if such a crossover is found, its temperature will
provide an important crossover energy scale for the ma-
terial.

From a theoretical point of view, a peak in the struc-
ture factor at the K point is consistent with order in the√
3 ×

√
3 pattern, which is favored in classical, large-

S and many computational approaches16,20–24 , where
as a peak at the M point is consistent with order at
q = 0. As the computational studies show, these two clas-
sical patterns are very close in energy but the spin-half
Heisenberg model does not have long-range order in the
ground state at all. Nevertheless, there may be compe-
tition for short-range order reflected in the dominance of
different q points15. The higher temperature behavior fa-
vors the semiclassical and perturbative approaches. But,
the ground state studies of the largest clusters studied
show otherwise18,25. A recent theoretical work discusses
a crossover from a conventional spin-liquid to an alge-
braic spin-liquid at a temperature above J/226. It would
be interesting to have experimental input to the compe-
tition and crossover between these ordering tendencies,



7

which would require the wave-vector resolved measure-
ments to be done at higher temperatures.
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