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Abstract 

We theoretically and experimentally investigate magnetization reversal and associated 
spin wave dynamics of isolated threefold vertices that constitute a Kagome lattice. The three 
permalloy macrospins making up the vertex have an elliptical cross section and a uniform 
thickness. We study the dc magnetization curve and the frequency vs. field curves 
(dispersions) of those spin wave modes that produce the largest response. We also investigate 
each macrospin reversal from a dynamic perspective, by performing micromagnetic 
simulations of the reversal processes, and revealing their relationships to the soft mode 
profile calculated at the equilibrium state immediately before reversal. The theoretical results 
are compared with the measured magnetization curves and FMR spectra. The agreement 
achieved suggests that a much deeper understanding of magnetization reversal and 
accompanying hysteresis can be achieved by combining theoretical calculations with static 
and dynamic magnetization experiments.  

1. Introduction 

Artificial spin ices (ASI), originally conceived to physically emulate atomic spin ices at a 
mesoscopic scale[1,2,3,4], have recently emerged as an independent topic in the field of magnonics 
[5 ,6 ,7 ,8 ,9 ,10]. An ASI consists of an array of elongated nanomagnets (macrospins) with width, 
thickness and length dimensions adjusted to promote an approximately uniform magnetization 
constrained to two “Ising” polarization states (1 and 0) by shape anisotropy.  Magnetization reversal, 
which occurs as a sequence of partial reversals within the ASI, remains incompletely understood, 
and depends upon underlying symmetries (e.g., periodicity) and defects (e.g., variations of 
macrospin shape and/or dimensions over the array). Typically, the spatial-temporal sequence of 
macrospin reversals follows a clear path, and propagates as a “signal” from one edge of the network 
to another, usually via transitory domain wall (DW) formation and motion.  

However, the reversal of individual macrospins can occur by various mechanisms, including 
uniform rotation of the magnetization as a whole in very small particles where exchange 
interactions dominate. As the macrospin size increases, reversal can occur via domain wall (DW) 
nucleation, which can be viewed as an emission of a “+2 magnetic charge” that moves from one 
end of a nanomagnet to the other [11,12,13]. Alternatively the reversal of a single macrospin is likely 
to trigger a cascade of reversals through neighboring nanomagnets in an array; such a magnetic 
charge redistribution can result in the formation of a “Dirac string”[ 14 , 15 , 16 , 17 ] consisting of 
oppositely charged vertices separated by a chain of sequentially reversed segments. The movement 
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of magnetic charge distributions has potential applications, such as the transport of magnetic beads 
(or functionalized nanomagnets) trapped in their concomitant stray fields [18]. 

Regions within an array where macrospins are anti-parallel to the applied field have interesting 
consequences for the spin wave (SW) dynamics. In those regions, the internal effective field 
experienced by various spin modes is consistently lower than elsewhere, and, as a result, the lowest 
frequency modes are localized in those regions [19,20]. Hence, in a given macrospin network, a 
particular subset of reversed macrospins arising from a given applied field history [21] will display 
“its own” characteristic SW modes, confined within these reversed macrospins, and with a unique 
SW frequency spectrum, as a fingerprint of that specific subset at that specific applied field[22]. This 
“tunability” is particularly attractive for addressing SW excitation/detection issues in spintronic 
devices [23,24,25,26]. Clearly, the subset of macrospins that will exhibit an inverse magnetization at a 
given applied field, can act as a tunable path, or waveguide, across the array, which we refer to as 
an “artificial Dirac string”[27,28,29]. The influence of shape anisotropy on the reversal of macrospin 
networks has been discussed [30].  

In this paper, we will address the relationship between macrospin reversal and the evolution of 
associated SW frequencies (together with the spatial extent of corresponding modes), in selected, 
simple systems that can be quantitatively modeled in detail. In particular, we will show how 
macrospin reversals affect the spin wave frequency and behavior with the applied field, and, in a 
mutual influence, how “special” spin waves (i.e., the soft modes) affect the macrospin reversal 
order. The system studied involves isolated vertices formed from three macrospins with long axes 
oriented 120° relative to each other, a structure that mimics a typical vertex-configuration in 
periodic Kagome (honeycomb) arrays [2,12,31]. The present study consists of two parts: first, a 
theoretical study of ideal (regular) systems having standard magnetic parameters; second, an 
experimental investigation to reveal how the real sample departs from the ideal one, thereby 
highlighting the more robust behaviors predicted by the calculations.  

The theoretical calculations were performed using the dynamical matrix method [32,33], which is 
based on both the solution of the Hamilton’s equations of motion for the spin harmonic precession 
and a micromagnetic representation of the magnetic system. Each macrospin is modeled as a 
permalloy dot with an elliptical cross section, with major and minor axis of 500 and 200 nm, and a 
uniform thickness of 15 nm. This choice was guided by the fact that overly elongated ellipses are 
known to have low-frequency excitations localized in narrow areas at the ends of the sample 
(longitudinally), and those modes are unlikely to give strong ferromagnetic resonance (FMR) 
signals, especially because in real samples imperfections affect the particle edges randomly in the 
array [34,35,36,37]. Hence, our choice of elliptical macrospins with aspect ratio 2/5 exhibits many low-
frequency excitations (“bulk” modes) that occupy most of the dot surface. We performed additional 
calculations for a three-macrospin-vertex in which one of the ellipses had half the width of the other 
two (aspect ratio 1/5) to address the effects of shape anisotropy. For all the systems, we investigated 
the SW dynamics across each macrospin reversal, with special emphasis on those modes with the 
largest FMR response, since they are most easily detected experimentally and are hence more 
suitable to carry information in spintronic/magnonic applications. Our theoretical investigation 
addresses the mode-softening process in some detail.  
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In the experimental part of the work, we measured DC magnetization curves (at different 
temperatures) and FMR spectra (room temperature) for samples fabricated to closely mimic the 
modeled structures.  

2. Modelling an isolated vertex 

We used OOMMF [38] to compute the equilibrium magnetization configuration; as noted, each 
macrospin consists of a 15-nm-thick-dot with elliptical cross section, 500-nm major axis, 200-nm 
minor axis (Fig. 1). The simulations considered macrospins constructed from 5×5×15 nm3 
micromagnetic cells (“pixels”). One of three macrospins was assumed to be aligned with an applied 
magnetic field directed along the x-axis, and the two additional macrospins were symmetrically 
rotated away from the x-axis by ± 120°. A second sample type (Fig. 1-b) was fabricated with a 
narrower, 100-nm, minor axis for one of the 120° ellipses. The magnetic moment of each macrospin 
is about 1.0×108 μB (where μB denotes a Bohr magneton), while that of the thinner one is about 0.6 
× 108 μB. The magnetic parameters utilized for Permalloy are: saturation magnetization Ms = 860 
kA/m, and exchange stiffness parameter A = 1.3 x 10-11 J/m.  

For each applied field, we used the equilibrium magnetization texture generated by OOMMF as 
input for the dynamical matrix software [32,33], which outputs the frequency and phase profile of all 
the possible spin modes, with no constraint on their symmetry or amplitude. In what follows, we 
will plot the real, out-of-plane, z-component of each mode, which mainly determines, through a 
volume integration over the sample, the mode strength for relevant measurement techniques (e.g., 
FMR[39] and Brillouin light scattering[40]). 

3. Calculated results: static hysteresis loops 

In Fig. 1 we show the hysteresis cycles calculated for the two vertex types: symmetric (a), 
and asymmetric (b). In general, magnetization reversal in larger macrospins is not an abrupt event, 
but occurs gradually by partial rotation of the individual magnetic moments of the pixels making up 
each macrospin. The magnetic moment of each pixel experiences the action of a local effective field 
Heff, which is the sum of an external field and the internal fields determined by the magnetization 
configuration, the latter being the sum of the exchange and demagnetizing fields. Since our macro 
spins have uniform thickness and elliptical cross-section, and therefore are not ellipsoids of 
revolution, this effective field Heff is highly inhomogeneous (even in a uniform external field) and 
consequently, the reversal of the individual moments within each macrospin is non-uniform and not 
simultaneous. We show the effective internal field distribution close to each of the reversals in Fig. 
2. 

3.1  Symmetric vertex 
 
We prepare a reference state of the system by applying an external field of 100 mT, to 
generate an “Ising-saturated” state; i.e., in each element the magnetization is aligned to 
the macrospin axis (Fig. 2-a), apart from slight misalignment of the magnetic moments 
closer to the ends, due to shape anisotropy. As the external field is decreased, the 
magnetization gradually decreases as well, down to the first critical field, Bc1 = μ0Hc1 = –
29 mT, at which both oblique macrospins reverse their magnetization. At this stage, all 
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three macrospins point into the vertex (a “three-in” configuration), thereby generating 
the largest possible magnetic charge at that point. In practice, the magnetization of any 
macrospin is not uniform due to shape anisotropy effects. The joint reversal of both 
oblique macrospins is of course a consequence of symmetry, so that in real samples, 
with unavoidable fabrication defects/irregularities, there would be slight differences in 
their reversal fields.  

As the external field approaches μ0Hc1 = –29 mT the individual (i.e., the pixels’) 
magnetic moments in a macrospin undergo a gradual rotation that depends on the 
position of that magnetic moment at a given applied field, since it is controlled by the 
local position-dependent effective field it actually experiences. As shown in Fig. 2-c, the 
“minimum” of the effective field (i.e., the largest negative value) is located near the 
outer ends of the ellipses, and hence the magnetic moments that rotate first (and the most) 
lie within that region. This effect is determined by the SW dynamics, in particular by the 
soft mode phase profile and operation [41], and will be discussed in Section 5.  

On decreasing the external field further, the “3-in” configuration holds with little 
modification to the equilibrium magnetization (in Fig. 1, this corresponds to a “plateau” 
region), until a second critical field is reached at μ0Hc2 = − 41.5 mT. Below this value, 
the magnetization of the horizontal macrospin undergoes an instability involving the 
generation of a transitory vortex at the end close to the vertex center The vortex is 
gradually driven to the other end, and eventually expelled, thereby completing the 
evolution to the new equilibrium state, i.e., with the magnetization reversed. This 
reversal, which creates a macrospin parallel to the direction of the applied field, 
produces a large discontinuity in the magnetization curve MH(H), Fig. 1. At this point, 
the three-macrospin vertex is in a reversed Ising state. As shown in Fig. 2, the internal 
effective field minimum occurs in the region close to the vertex, especially for the 
horizontal macrospin, but also for the other two macrospins, even if only limited to a 
small area close to the vertex, where the magnetization is still misaligned with the ellipse 
axis: in those regions, the magnetic moments are the first to undergo instability, as 
discussed in Sec. 5, and drive the vertex to a completely reversed Ising-saturated state. 
 

3.2 Asymmetric vertex 
 
For the asymmetric vertex, we repeat the procedure followed in the previous section, 
starting from an “Ising-saturated state”, at 100 mT (Fig. 2-b). In this system, the broken 
mirror symmetry with respect to the x-axis results in a different value of the reversal 
field for each of the oblique macrospins. Note that even though the macrospin with the 
lower aspect ratio has an average magnetic moment only 0.6 times that of the other two, 
its reversal is retarded by the stronger dipolar fields arising from its larger shape 
anisotropy (smaller width). As is apparent in Fig. 1 (dashed line), the upper right 
macrospin reverses first beyond the critical field μ0Hc1= − 29 mT, followed by the 
horizontal macrospin at μ0Hc2 = − 34.5 mT; the narrow macrospin reverses last at μ0Hc3 =
− 77 mT (a counterclockwise reversal order). 
 Similar to the symmetric case, the mechanisms of reversal are moment rotation for 
the oblique macrospins, and vortex generation for the horizontal one. As shown in Fig. 2, 
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the areas corresponding to the minima of the effective internal field correspond to the 
regions where magnetic moments rotate first. The specific mechanism of reversal for 
each macrospin will be discussed in Sec. 5. As apparent from Fig. 1 (dashed line), the 
first reversal is characterized by a small discontinuity in the magnetization curve MH(H) 
followed by a small “plateau” where the variation of the magnetization is small, and the 
vertex maintains a “2-in-1-out” configuration. A large discontinuity in the MH curve 
occurs next, corresponding to the reversal of the horizontal macrospin, followed by a 
larger plateau (the magnetization curve varies less dramatically), corresponding to the 
“1-in-2-out” configuration, where only the thinner macrospin is still not reversed; it 
persists longer (in terms of applied reverse field) because of the larger shape anisotropy 
of the thinner macrospin. Finally, the thinner macrospin undergoes reversal, but causes 
only a small magnetization discontinuity due to its size and inclination with respect to 
the applied field. 
 

3.3 Conclusions 
 
These above results show how shape anisotropy can alter the order of macrospin reversal, 
which is particularly important for understanding the sequence of reversals of adjacent 
macrospins (i.e., for a “Dirac string”) in macrospin networks. In the case of atomic spin 
ices, the string path has a near-random direction; but in magnonics, where ASI are 
specifically designed for magnonic/spintronic applications, the path of a particular Dirac 
string can be engineered by tailoring the shape anisotropy, and thereby made to mimic 
wires in ordinary electronics and information delivery systems. 

 
4. Calculated results: spin wave dynamics 

 
4.1  Symmetric sample  
 If the magnetization of a system is approximately uniform and aligned with the applied 

field, one can observe a fundamental mode that is reminiscent of the uniform Kittel 
mode predicted for saturated ellipsoids. For the three-macrospin vertices under 
discussion here, the magnetization is generally quite far from being uniformly polarized 
along the applied field, and, correspondingly, the effective internal field is also quite far 
from uniform. Hence, the analogue of the fundamental mode is not uniform, but splits 
into additional modes with similar features, and amplitude localized in different regions 
of the system where the internal field has different average values (Fig. 2-c,d) and is 
slowly varying [42]. We plot the frequency as a function of the applied field for some 
principal modes (those likely to give large FMR signals) of a symmetric, threefold 
vertex in Fig. 3; the corresponding spatial profiles are shown in the insets. The mode 
expected to have the strongest absorption, and which also has the lowest frequency, is 
localized within the two oblique macrospins (Fig. 3-a). As shown by the red line in Fig. 
3, this mode softens at the first reversal field (μ0Hc1).  The mode expected to have the 
next largest strength (Fig. 3-c) is localized within the horizontal macrospin, and exhibits 
a higher frequency. Another volume mode, which should also give a large FMR signal, 
has two nodal lines orthogonal to the local magnetization direction, and is localized in 
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the horizontal macrospin (Fig. 3-b). Finally, we show the soft mode that triggers the 
second reversal at μ0Hc2 (Fig. 3-d). 

 
We now discuss the spin wave dynamics within three different regimes that are 
separated by the two critical fields lying in the reversal regime (Fig. 1). 

 
4.1.1  First regime (from μ0H = 100 mT to μ0Hc1= –29 mT). In this field region, 

where the applied field is being decreased from 100 mT, the magnetization 
is initially in the Ising-saturated state (Fig. 2-a). As apparent from Fig. 3, 
the (nodeless) fundamental mode that is localized in the oblique macrospins 
(bold straight line) has a frequency that decreases with decreasing applied 
field (apart from a region where, due to the coherent rotation of its inner 
magnetic moments, the frequency slightly increases), ultimately crossing 
all the other modes, after which the frequency rapidly goes to zero as the 
external field approaches μ0Hc1. This mode has the largest strength at high 
fields, but loses intensity on approaching μ0Hc1. This is a characteristic of 
all soft modes, as will be discussed in the next section. At a somewhat 
higher frequency, we find the “backward volume mode” with (almost) two 
nodal lines, leading to weaker absorption for a locally uniform excitation 
field. Finally, at even higher frequency, we find the fundamental mode 
localized in the horizontal macrospin: the profile that we calculate is 
hybridized with a backward volume mode with 6 nodal lines, which lies 
very close in frequency. Its field behavior is quite simple: a continuous 
linear decrease down to μ0Hc1, where it undergoes a slight discontinuity. 

4.1.2  Second regime – This is a narrow region (spanning from Bc1 = –29 mT to 
Bc2 = –41.5 mT) wherein the magnetization of the two oblique macrospins 
has reversed, while the horizontal macrospin has not (yielding a “three-in” 
vertex configuration). Due its antiparallel configuration, we find the 
minimum of the internal effective field is located in the horizontal 
macrospin (see Fig. 2-b), and consequently the lowest frequency modes 
occur here. As is apparent from Fig. 3, the only mode with non-vanishing 
strength is the fundamental mode of the horizontal macrospin. The lowest 
frequency mode is shown in Fig. 3-d, which is the soft mode associated 
with the second transition, as discussed in the next section. 

4.1.3  Third regime – This regime (B < –41.5 mT) is by symmetry exactly 
equivalent to the first one, only rotated by 180 degrees and hence will not 
be discussed. 

 
 
4.2 Asymmetric sample 

For the asymmetric vertex, the effective internal field is again nonuniform, and 
(independently of the applied field) shows three different average values in the three 
macrospins (Fig. 2-e,f,g): hence we expect that the ideal Kittel mode is split here into 
three similar modes, each one at a different frequency, determined by the average 
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internal field value of the macrospin in which it is confined. The behavior of the mode 
frequencies with decreasing applied field for the asymmetric vertex is shown in Fig. 4, 
starting from the Ising-saturated state at high fields. We again have different regimes, 
depending on which macrospin is reversed. With reference to Fig. 1 inset b), the order of 
reversal is counterclockwise. 

4.2.1 First regime – (from 100 mT to –29 mT) In this field region, three modes 
are expected to yield strong absorption, corresponding to the fundamental 
modes of each macrospin (Fig. 4-a,b,c): even though localized in nearly 
identical areas, mode a) has a frequency lower than mode b) because the 
local magnetization is tilted with respect to the applied field direction, and 
consequently there is a larger (negative) demagnetizing field, which in turn 
decreases Heff and hence the mode frequency; on the other hand, mode c) 
has the largest frequency because, even though the local magnetization is 
tilted with respect to the applied field direction (in common with mode a), 
it is confined in a narrower region, with smaller demagnetizing fields along 
the direction of the magnetization; finally, we note that the amplitudes all 
three of these modes are hybridized with backward-like volume modes. In 
addition to these modes, there is a localized mode with much lower 
amplitude (Fig. 4-d), which is nevertheless important since it becomes the 
soft mode at the critical field Bc1= − 29 mT (i.e., at the edge of the first 
macrospin reversal). Note that the frequency-field curves of the b) and c) 
modes are quite linear, following a Zeeman behavior (though with different 
slopes), since the magnetization of the corresponding macrospins is 
essentially unchanged in that field range. 

 
4.2.2  Second regime – (ranging from –29 mT to –34.5 mT) We note that the 

magnetization map of the upper-right macrospin shown in Fig. 2-e, must be 
interpreted as an “averaged texture”, since (due to the chosen shape) a 
residual curled magnetization persists at the macrospin end close to the 
vertex. Due to this nonuniform magnetization, the rather uniform mode a) 
is not found in this regime, while a new nodeless mode arises (Fig. 4-e), 
which is mainly localized at the right end of the horizontal macrospin, but 
with important structure visible in the upper-right macrospin: this 
hybridization is reminiscent of mode a) that survives in such a curled 
magnetization texure. Also note that modes b) and c) undergo a negligible 
discontinuity across the first macrospin reversal field because the 
macrospins supporting these modes are not affected by the transition. Mode 
a) lies at much higher frequencies (not shown), while mode e) is the new 
soft mode. At a field slightly larger than Bc2=– 34.5 mT, mode e) triggers 
an instability that generates a transient vortex and, after its expulsion, the 
reversal of the entire horizontal macrospin.  Note that in this regime, theory 
predicts only low-intensity modes (i.e., hardly detectable) localized in the 
thin macrospin, a soft mode, and mode b) in the horizontal macrospin, 
which has an undulated dynamic magnetization.  
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4.2.3  Third regime – In this field interval (ranging from –34.5 mT to –75.8 mT), 

the magnetizations of the two large macrospins are reversed, while that of 
the thinner macrospin remains in its initial direction. Modes a) and b) now 
belong to relatively stable macrospins since they experience a decreasing 
demagnetizing field with increasing (negative) field; hence their 
frequencies increase almost linearly. Moreover, mode d), missing in the 
second regime, now reappears, and its frequency increases for the same 
above reason. Conversely, modes c) and f), which have different locations 
within the macrospin but are otherwise rather similar 43 , belong to a 
macrospin that is becoming more and more unstable, and hence have 
frequencies that rapidly decrease and cross other modes: in particular, at the 
applied field B =–50 mT, modes a) and c) cross at the frequency 8.2 GHz, 
and hence at this point, both oblique macrospins are simultaneously 
involved in the magnetic oscillation of the corresponding fundamental 
modes (shown in the figure insets). At a field slightly larger than the critical 
field Bc3 =–75.8 mT, mode f) becomes soft and triggers the reversal of the 
corresponding macrospin. 

 
4.2.4  Fourth regime – Below –75.8 mT, the magnetization reversal is completed 

for all the macrospins, hence this regime is by symmetry exactly equivalent 
to the first one, only rotated by 180 degrees. 

 
 

5. Spin wave softening and macrospin reversal 

In the linear picture of mode dynamics, whenever a discontinuity is present in the magnetization 
curve, or in its first derivative, a specific mode (among the many in the full spectrum) belonging to 
some equilibrium texture of the magnetization, becomes “a soft mode”[44,45]. This means that its 
frequency goes to zero as the applied field approaches a critical transition field value. Since the 
restoring torque is proportional to the frequency, at the critical field no restoring torque is acting to 
limit that specific oscillation. The symmetry of this soft mode oscillation then determines the 
generalized “direction” in which the system initially “moves” during the transition. However, the 
evolution into high amplitude oscillation necessarily involves nonlinear dynamics, and hence lies 
outside the framework of any linear, Hamiltonian-based calculation. However, by adiabatic 
continuation, the initial modifications of the static magnetization are definitely determined by the 
soft mode symmetry, and this is demonstrated by any simulation tool that traces the early stages of 
the time evolution of the magnetization texture, when a magnetic field beyond the critical value is 
applied. Since the soft mode is a low-frequency excitation close to transition, it must be localized at 
the minima of the effective internal field map Heff = Heff(x,y), which is the sum of the Zeeman, 
demagnetizing and exchange fields. Depending on the magnetic system’s aspect ratio, shape, and 
various magnetic parameters, the soft modes can have non-zero amplitude in an extended or 
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restricted fraction of the total system surface [46,47], and correspondingly, they are addressed as bulk 
or localized soft modes. 

We performed OOMMF simulations to verify the theoretical picture presented above.  We first 
constructed an equilibrium magnetization M(H;ݐ) for H just before an instability (ݐ is a given 
arbitrarily large time). We then incremented the field to H+߳ (i.e, after instability), and took a 
snapshot at time M(H+߳;ݐ   of the early stages of the non-linear, non-equilibrium evolution of (ݐ߲
the system. Continuing the simulation for much longer, the new equilibrium magnetization at H+߳, 
M(H+߳;∞) ultimately emerges. For all the cases, the field increment ߳ was arbitrarily set to 1 mT.  
In Fig. 5 we show the results of these simulations for all 5 different transitions discussed above (see 
details in Fig. 5 caption). By comparing the maps M(H+߳;ݐ   of Fig. 5, it is (ݐ;H)and ߲m (ݐ߲
possible to check, case by case, how the soft mode profile, calculated at H, is imprinted onto the 
quasi-static magnetization thereby determining the early stages of evolution as some incremental 
increase, H+߳, is applied, well before the final new equilibrium configuration is found. We leave it 
to the reader to verify the above correspondence by checking how the magnetic moments 
(illustrated by arrows in the figure) move according to the soft mode phase map. Below, we recall a 
few only general points: 

i. The area where the soft mode profile is the most intense will experience the largest 
magnetization changes at a transition. 

ii. Opposite soft mode phases in different regions produce opposite motions of the 
magnetization in those regions. 

iii. The initial instability in M(H+߳;ݐ   can have a symmetry or profile completely (ݐ߲
different from the future equilibrium configuration M(H+߳;∞): when the time interval is 
very large, the above linear picture breaks down, since adiabatic continuation is broken.  

iv. Approaching the reversal field, the out-of-plane component ߲ܕ௭  of the soft mode 
decreases while the in-plane component (transverse to the applied field, i.e.,  ߲ܕ௬ ) 
increases, as a consequence of an increasingly elliptical precession: this is at the origin 
of the in-plane instability driving the system to transition. A side effect is a decreasing 
FMR strength (proportional to the square of the z-component), which we actually 
observed in our measurements.  

In concluding this last aspect of our modeling, we again emphasize that fine details of the quasi-
static magnetization evolution following an instability can be understood in terms of the profile of 
the accompanying soft mode, suggesting it may possible to understand and control certain 
magnetization changes from a dynamic perspective. 

 
6. Experimental studies on arrays of vertex structures  

 
In this section, we describe the preparation of arrays of well separated Kagome-like vertex 

structures designed to mimic those modeled theoretically, together with our static and dynamic 
magnetization studies on them, including comparisons with the predictions of the above model.  

 
6.1 Sample fabrication  
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All samples consisted of square arrays with a 1.88-μm lattice constant of three-lobed 
macrospins meeting at a vertex that were patterned in permalloy (Ni80Fe20). The symmetric 
samples had a nominal thickness of 20 nm, but rather than the targeted 200 nm and 500 nm 
minor and major axis dimensions of the larger elliptical lobes the resulting patterned 
dimensions were 460 ± 12 nm  and 177 ± 7 nm. The thickness of the asymmetric vertices 
was a nominal 15 nm and the targeted 100 nm narrow lobe of the asymmetric vertex 
structure was  82 ± 5 nm. The separation between segments at closest approach was 28 ± 3 
nm.  

Samples used for static magnetization measurements were prepared directly on oxidized 
Si substrates having a 300-nm-thick SiO2 layer, while samples made for dynamic studies 
were prepared on the central strip of a coplanar waveguide (CPW) that was, in turn, 
patterned on identical substrates. This latter configuration, which involves metallic contact 
with the guide, has been shown to achieve strong coupling and hence maximal sensitivity[48]. 
The CPW and the vertex arrays were fabricated using the following process. The conducting 
electrodes of the CPW were formed with 5-nm layers of Ti covered by 100-nm layers of Au 
patterned by optical lithography using a laser writer and electron beam evaporation, 
followed by a lift-off process. The CPW’s had a central line flanked by two ground lines; 
SEM images of a symmetric, and an x-axis aligned, asymmetric vertex are shown in Figs. 
6(a) and 6(b). The central line has a 20-micron width, and there was an 8-micron spacing 
between this line and the two ground lines. The vertex arrays were fabricated by electron 
beam lithography and electron beam evaporation, using a lift-off process. In order to have a 
reliable lift-off following metallization, a double layer of positive PMMA was applied using 
a spin-coater prior to electron beam lithography. The thicknesses of the Ti, Au, and Py films 
were monitored by a quartz crystal microbalance during the evaporation: deposition rates 
were ~0.2 Å/sec for Ti, ~1.4 Å/sec for Au, and ~0.4 Å/sec for Py, respectively, and the base 
pressure was ~3x10-7 Torr. The Py for all the samples discussed herein was deposited in a 
single run.  For the static magnetization studies arrays of vertex structures were patterned 
directly on SiO2/Si substrates with the same spacing of 1.88 microns over an area of 2 mm x 
2 mm. 

6.2  DC magnetization loops 
6.2.1  Technique and measurement details 

Magnetization measurements were performed using a Quantum Design MPMS 
superconducting quantum interference device (SQUID) that measures the 
magnetization in an applied field. The samples were diced into approximately 2.5 
mm × 2.5 mm squares and attached to the side of a straw using VGE-7031 
varnish. They were then loaded into the MPMS with the patterned area 
approximately centered. The data obtained includes all magnetic contributions; in 
particular, those arising from the sample, the substrate (silicon in this case), and 
the varnish (the contribution from the straw is self-canceling). We sweep over a 
field range that is large enough to saturate the ferromagnetic contribution, which 
allows us to record the linear diamagnetic response from the substrate and the 
varnish, which we subtract from the data to obtain the ferromagnetic contribution. 
We have normalized all data to the saturated ferromagnetic magnetization. The 
measurements reported here were performed at T = 5 K. 

6.2.2  Results and discussion 
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The MH(H) experimental curves are shown in Fig. 7 for both the symmetric 
(black curve) and asymmetric (red curve) samples: we find good agreement with 
the calculated reversal fields for the first transition. Compared to the theoretical 
curves of Fig. 1, differences between loop shape, steepness of the magnetization 
curve in decreasing field, absence of the extension of the magnetization “plateau", 
and the absolute value of the magnetization discontinuities, can be ascribed to 
patterning errors in writing individual elements (element size, but also angular 
displacement) and other inhomogeneities. 
 
  
 

6.3 FMR measurement (technique and results) 
 

6.3.1   Technique and measurement details  
The FMR experiments employed an external magnetic field constrained to lie along the 
wave guide axis; hence we report data for only a single static field direction for which 
the microwave field is largely normal to the static magnetic field. In the SEM image 
shown in Fig. 6(a) the symmetric vertices are oriented at 0° relative to the guide axis, 
while Fig. 6(b) shows an image of similarly aligned asymmetric vertices. 
 
In order to probe the dynamic response of the vertices, we performed broadband FMR 
measurements with a vector network analyzer (VNA)49. The VNA is connected via 
picoprobes to the CPW for recording the microwave absorption spectra, and the 
transmission parameter S21 is measured at a nominal microwave power of –1 dBm. All 
spectra were recorded using the following routine:  First, the dc magnetic field was set at 
3000 Oe and the frequency swept between 2 and 12 GHz to establish a baseline 
(containing non-resonant frequency-dependent responses) which was subtracted from 
the data gathered at all other fields. Field sweeps were then carried out between +1000 
Oe and  −1000Oe  for discrete frequencies ranging between 2 and 10 GHz. To establish 
the history dependence of the spectra this procedure was occasionally repeated with the 
field swept in the range  −1000Oe  to +1000 Oe. 
 

6.3.2  Results for the symmetric vertex 
 The FMR spectrum for the sample with the symmetric vertices is shown in Fig. 8 
(Panel I and II). In Panel (I) we show dispersion for a slightly thicker sample (nominal 
20 nm) than that modeled (15 nm), that shows rather clearly the three main curves of Fig. 
3 (with the same corresponding labels a,b,c), showing high FMR intensity, with curve 
(b), in the middle, having relatively lower intensity; curves a) and b) seem to merge (as 
in the calculated dispersions) and are detected only down to about −30 mT, while curve 
c) seems to survive down to −40 mT, in excellent agreement with the calculated values. 
Unfortunately, in both cases, no signal was detected below 4 GHz, so that mode d) 
(leading to the second reversal) was not detected.  
 In Panel (II) we plot the dispersion for the nominal 15 nm symmetric vertex, with 
identical features and still in good agreement with calculations, but without the presence 
of curve (b): this effect is due to a lower FMR signal, which decreases the resolution of 
tiny peaks, and is caused by the reduced amount of magnetic material with respect to the 
case of 20 nm. While a variation of 5 nm in the calculations would not change the 
overall picture of the dynamics, but only slightly shift the frequencies, the two results of 
Panel I and II clearly show how thickness can be critical in determining a better contrast 
in FMR spectra. 
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6.3.3  Results for the asymmetric vertex 

The FMR spectrum of the asymmetric vertex is shown in Fig. 8-Panel III. We have 
identified the two main curves as corresponding to modes a) and b), in good agreement 
with the predictions. However, no evidence was found for mode d), possibly because it 
is strongly confined within the narrow macrospin, and thus generates a comparatively 
weaker signal [34,39]. 
 

 
7. Conclusions 

In summary, we performed simulations and experiments on the statics and dynamics of 
symmetric and asymmetric structures consisting of three ellipses of uniform thickness which closely 
approach each other at a vertex and are oriented at 120o. Particular attention in the simulations was 
given to the behavior of spin wave modes with the largest intensity, and the behavior of soft modes 
near macrospin reversals under field sweeps. Our simulations of the reversal process revealed a 
correspondence between the spatial maps of the soft mode intensity and the early-stage evolution of 
the quasistatic magnetization texture. In other words, the soft mode profile provides a fingerprint of 
the magnetization reversal process: fine details of the static magnetization evolution can be 
understood in terms of the soft mode profile. 

Measurements of the static and dynamic magnetic response of the arrays, made of non-
interacting vertices, confirmed several of the theoretical predictions, the most interesting of which 
are:  

i. The first reversal consists of a discontinuity ΔM followed by a “plateau” over a field 
interval ΔΗ, both being substantially larger in the symmetric case (where two large 
macrospins reverse) than in the asymmetric case (where only a single macrospin reverses). 
The “plateau” is observed for both vertex types at a low value of magnetization: negative for 
the symmetric vertex, positive for the asymmetric one. In both cases, the plateau is followed 
by a large magnetization discontinuity, corresponding to the reversal of the macrospin 
parallel to the applied field (i.e., to the direction of the plotted magnetization component). 

ii. The reversal of the thinner macrospin occurs via a gradual rotation of the magnetic moments, 
which is a slow process (i.e., occurring within a wider field range): this is actually signaled 
by another (larger) plateau, at a strongly negative value of magnetization.   

iii. The large amplitude modes are the fundamental modes associated to the individual 
macrospins, with frequencies determined by their internal field, which will be larger for the 
narrower or horizontal macrospins, and lowest for the oblique macrospins. 

iv. The small window with no experimental FMR signal between −25 mT and −35 mT (Fig. 8) 
is consistent with the calculated results, in that only low intensity modes are predicted in this 
field interval (see Sec. 4.2.2). 

In this work, we have analyzed a single vertex of a typical Kagome lattice, and have focused on 
the mutual influence between macrospin reversal order and spin wave dynamics: this is a first step 
in understanding the dynamic behavior of macrospins undergoing reversal in extended networks 
(periodic lattices), or more complex structures (e.g., artificial quasi-crystals [50]). In particular, on 
the one hand, we identified how the magnetization reversal of individual macrospins can be 
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determined, and hence controlled, by the dynamic action of the critical (soft) spin waves. Then, on 
the other hand, we showed how the single reversal events change both the frequency regime and 
dependence on the applied field of large amplitude modes: in extended macrospin networks, formed 
by many of the above vertices, these modes would occur confined in specific regions (“lines”) of 
the network (Dirac strings), depending on the bias field. These regions would mimic the wires 
common to ordinary electronics, but with a radically improved efficiency due to the action of the 
dissipation-less spin waves, operating as information delivery carriers in magnon-spintronic 
devices[51,52]. 
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Figure captions 

Figure 1: Hysteresis of the magnetization component MH parallel to the applied field H for the 
symmetric (solid line) and asymmetric (dashed line) samples normalized to the saturation 
magnetization MS. The geometry of the three-lobed vertex structures are shown in insets a) and b).  

 

Figure 2: Equilibrium magnetization configurations at B=μ0H=50 mT, referred to as an  
“Ising saturated state”, for the symmetric (a) and asymmetric (b) vertices.  Internal effective field 
maps (component parallel to the applied field) at (c) B = −28.3 mT; (d) B = −41.5 mT; (e) B = −29 
mT; (f) B = −34 mT; (g) B = −75.8 mT. Note that deep blue (−1, in arbitrary units)) refers to 
minima (i.e., the maximum misalignment of M with H). H, in the figure, is directed to the left. 

 

Figure 3: Frequency of the largest power spin wave modes as a function of applied field (decreasing 
from 100 mT), and (insets on the right) corresponding profiles (real, out-of-plane component of the 
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dynamic magnetization). Bold red line, labeled a) is the first fundamental mode, going soft at Bc1 

= –28.3 mT; b) is a backward-volume-like mode, c) second fundamental mode (though highly 
hybridized), d) is the soft mode at Bc2 = –41.5 mT. Profiles a), b), c) were calculated at 100 mT, and 
profile d) (which was magnified 300%) at – 41.5 mT. 

 

Figure 4: Frequency vs. applied field curves for the main modes discussed in the text. Modes a-c are 
the fundamental modes of each macrospin, while d-f are the soft modes at the corresponding 
transition fields: Bc1=–29 mT, Bc2=–34 mT, Bc3=–75.8 mT. The insets a) to f) are real z-components 
of the dynamic magnetization of the spin wave modes discussed in the text. Modes a), b) and c) 
were calculated at H = 50 mT, while mode d) at –29 mT, mode e) at –34 mT, mode f) at –75.8 mT. 
In insets d-f, the amplitude has been magnified three times with respect to a) to c).  

 

Figure 5: Illustration of the triggering mechanism by which the soft mode initiates instabilities in 
the symmetric (a,b) and asymmetric (c,d,e) vertices. (a) H = –28.3 mT; (b) H = –41.5 mT; (c) H 
= -29 mT; (d) H = –34 mT; (e) H = –75.8 mT.  The first column shows the equilibrium 
magnetization (red/blue color scale is the y component) at applied field H; the second column 
shows the imaginary y-component of the soft mode at H (rainbow color scale is the phase 
amplitude); the third column shows a snapshot of the magnetization at an early stage of the 
simulated reversal process. In the OOMMF simulations of reversal, the field variation ߳ was set to 1 
mT for all cases, while the time variation ߲ݐ was set arbitrarily close to the starting point, until some 
evidence of the soft mode profile was apparent. The fourth column shows the equilibrium (t՜ ∞ሻ 
magnetization at the applied field H+ ߳. 

  

FIG. 6. SEM images of the two sample types with a spacing of 1.88 μm prepared: (a) is a 

symmetric sample for which all three lobes have the same aspect ratio; and (b) is an asymmetric 

sample where the width of one lobe is reduced relative to the other two lobes.  

 

Figure 7:  Experimental DC magnetization loops at 5 K, either for the symmetric (black, open 
triangles) and asymmetric (red, full squares) vertices. The arrow and dashed circle indicate a small 
magnetization plateau region, corresponding to the predicted region between Bc1 and Bc2 of Fig. 1 
(dashed line), between the first and second macrospin reversal. 

 

 Figure 8. Experimental FMR spectra for (I) symmetric (thickness 20 nm), (II) symmetric (thickness 
15 nm), and (III) asymmetric vertices. The arrow shows the direction in which the magnetic field 
was swept. Note the close correspondence with the calculated results of Figs. 3 and 4 (where the 
same labels indicate the corresponding measured curves).  
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