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We study the magnetic dynamics of magnetoelectric antiferromagnetic thin films, where an uncon-
ventional boundary ferromagnetism coexists with the bulk Néel phase below the Néel temperature.
The spin exchange between the two order parameters yields an effective low-energy theory that is
formally equivalent to that of a ferrimagnet. Dynamics of domain walls and skyrmions are analyzed
within the collective variable approach, from which we conclude that they behave as massive par-
ticles moving in a viscous medium subjected to a gyrotropic force. We find that the film thickness
can be used as a control parameter for the motion of these solitons. In this regard, it is shown
that an external magnetic field can drive the dynamics of domain walls, whose terminal velocity
is tunable with the sample thickness. Furthermore, the classification of the skyrmion dynamics is
sensitive to the spatial modulation of the sample thickness, which can be easily engineered with the
present (thin-film) deposition techniques. Current-driven spin transfer can trigger drifting orbits of
skyrmions, which can be utilized as racetracks for these magnetic textures.

I. INTRODUCTION

The magnetoelectric effect refers to the induction of
bulk magnetization (electric polarization) by an elec-
tric (magnetic) field.1–3 It requires the breaking of time-
reversal symmetry, which implies the existence of a mag-
netic order in systems of localized spins,4 and of in-
version symmetry (at the level of the magnetic point
group).2,5 Magnetically-ordered magnetoelectrics exhibit
surface ferromagnetism, whose existence can be argued
on symmetry grounds:6 Broken reflection symmetry with
respect to the surface allows for a Rashba electric field
normal to it, which in turn induces the ferromagnetic spin
density via the magnetoelectric coupling. In that regard,
magnetoelectric antiferromagnets (ME-AFMs) stand out
among these materials because of the following feature:
There is a subclass of ME-AFMs, including α-Cr2O3 and
Fe2TeO6, for which the magnetoelectric response is domi-
nated by the exchange-driven mechanism and, strikingly,
the emergent boundary magnetization is collinear with
the (bulk) Néel order.7–9 The macroscopic signatures
of this unconventional surface ferromagnetism are well
known experimentally,10 and the ensuing ferrimagnetic
state, which is described by the staggered order parame-
ter, offers promising perspectives to manipulate the dy-
namics of topological solitons.11 The latter magnetic tex-
tures have been intensively studied in recent years due to
their topological robustness (meaning that the spin tex-
ture cannot be deformed continuously into the trivial uni-
form state) and to their potential use as building blocks
for information storage and logic devices.12,15 Of partic-
ular interest are domain walls13 (DWs) and skyrmions14

due to their particlelike behavior and low current thresh-
old for skyrmion depinning.15

In this Article we construct a low-energy theory for
ME-AFMs with account of the aforementioned surface
effects. We focus on energy terms that favor topological
solitons, with an eye on DWs and skyrmions. We fur-
thermore study the magnetic dynamics of these two soli-
ton classes, driven by an external magnetic field (DWs)
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FIG. 1: Corundum-type crystal structure of eskolaite (mineral
form of α-Cr2O3). The inset depicts the corresponding unit
cell. The parameters of the rhombohedral crystal lattice are
a = 4.95 Å and c = 13.58 Å(referred to the hexagonal frame).
Red [blue] spheres represent Cr3+ [O2−] ions. Red (sublattice
A) and blue (sublattice B) arrows illustrate an spin arrange-
ment of the Cr3+ ions corresponding to the antiferromagnetic
phase: s1 = −s2 = s3 = −s4.

and by an electric charge current (skyrmions), in ME-
AFM thin films. In this regard, we consider the case of
a quasi-two-dimensional (2D) ME-AFM film being sub-
jected to spin exchange and spin-orbit coupling with a
heavy metal adjacent to one of its surfaces. The moti-
vation for this is threefold: (i) Collinearity between the
(normalized) boundary magnetization, mb, and the Néel
order, l, can be cast as mb = (E · n)l according to the
(linear) magnetoelectric constitutive relation, where E
denotes the Rashba electric field and n is a vector nor-
mal to the corresponding film surface. Breaking of those
inversion symmetries that preserve sublattice symmetry
(which flips the Néel order) is needed for this identity
to hold, which happens either by crystal growth/cut or
by the presence of a substrate. Moreover, the heavy-
metal substrate (ii) induces a Dzyaloshinskii-Moriya in-
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teraction at the interface that promotes the stabilization
of skyrmion textures, and (iii) provides the medium for
the charge current to flow in the insulating scenario. The
DW dynamics correspond, within the collective variable
approach, to that of massive particles moving in a viscous
medium and subjected to a gyrotropic force depending
on their precessional degree of freedom. We find that the
field-driven terminal velocity of DWs shows a nonlinear
behavior as a function of the sample thickness. On the
other hand, the Thiele equation for skyrmions, which we
derive using collective variables, is analogous to the equa-
tion of motion for a massive charged particle in a viscous
medium subjected to a gyrotropic force depending on its
charge. We find that these dynamics can be sustained by
feasible electric currents via the spin-transfer torque ef-
fect, and that the class of skyrmion trajectories realized,
including drifting orbits,16,17 depends on the details of
the film thickness profile. Our framework, albeit generic
for ME-AFMs, will be built upon the example of chromia,
α-Cr2O3, for illustrative purposes.

II. EFFECTIVE THEORY

Chromia represents the archetypical (insulating) ME-
AFM: it is a pure (bulk) antiferromagnet, meaning that it
exhibits neither weak ferromagnetism18,19 nor magnetic
(texture) superstructures20 in the ground state below the
Néel temperature TN ' 307 K. It has the (bulk) sym-
metry of the rhombohedral space group R3̄c and crys-
tallizes in a corundum-type structure, see Fig. 1, with
the unit cell containing four (crystallographically equiv-
alent) Cr3+ ions located along a body diagonal of the
rhombohedron. Low-energy magnetic dynamics of bulk
chromia correspond to that of an ordinary (bipartite)
antiferromagnet: the two magnetic sublattices consist
of Cr3+ ions at sites {1,3} and {2,4} within each unit
cell, respectively (see inset of Fig. 1), and the system
is magnetically described by the staggered order param-
eter s1 − s2 + s3 − s4 and the (residual) spin density
s1 + s2 + s3 + s4 per unit cell.21

We consider the geometry of a chromia film deposited
on top of a heavy metal, with the flat interface lying along
the (111) plane, see Fig. 2. Our choice of coordinate sys-
tem takes the z axis along the trigonal axis, i.e., the nor-
mal to the interface. An equilibrium boundary magneti-
zation emerges for this geometry since chromia exhibits
a magnetoelectric response.6 The heavy-metal substrate
endows a Dzyaloshinskii-Moriya interaction in the anti-
ferromagnetic film due to the breaking of the reflection
symmetry with respect to the basal plane,22 which favors
spin (texture) superstructures and, in particular, stabi-
lizes skyrmion textures. Furthermore, it makes the two
film surfaces become magnetically inequivalent and, as
a result, a net boundary magnetization is present in the
heterostructure. It is worth remarking that this effect on
the ME-AFM is interfacial in nature, so that it will be
enhanced (relative to the bulk) in thin films.

FIG. 2: Schematic of the heterostructure: A film made of
chromia (α-Cr2O3) is deposited on top of a flat heavy-metal
substrate. The film is grown along the [111] direction of its
rhombohedral crystal lattice and its thickness varies over the
interface, which is described by the profile h(x, y). This figure
illustrates the example of a periodically modulated thickness
along the x axis.

We regard the heterostructure as a 2D system along
the xy plane, which we take to be isotropic at the coarse-
grained level. This approach is well suited for film
thicknesses less than the DW width. An effective long-
wavelength theory for bulk chromia can be developed in
terms of two continuum coarse-grained fields,21 namely
the Néel order l and the (volume) spin density sm. These
fields satisfy the nonlinear local constraints l2 = 1 and
l · m = 0, s represents the saturated (volume) spin
density,23 and the presence of a well-developed Néel order
implies |m| � 1 on the scale of the exchange coupling.
In the absence of electromagnetic fields, the Lagrangian
density for bulk chromia in the continuum limit becomes

Lbulk[t; l,m] = sm · (l× ∂tl)−
m2

2χ⊥
−Fstag[l], (1)

to the lowest order (quadratic) in both ∂tl and m.24

The first term is the kinetic Lagrangian, which orig-
inates in the accumulation of geometric Berry phases
from individual spins and establishes the canonical con-
jugacy between the Néel order and the spin density, since
the canonical momentum reads Πl = sm × l.25 Fur-
thermore, χ⊥ denotes the transverse spin susceptibility
and Fstag[l] stands for the effective energy for the Néel
order, whose minimal model contains (bulk) isotropic
exchange, (bulk) uniaxial anisotropy and (interfacial)
Dzyaloshinskii-Moriya contributions:26

Fstag[l] =
A

2

∑
µ=1,2

(∂xµl)
2+

1

2
Kl2z+D(l·∇lz−lz∇·l) (2)

where A, K are the (exchange) stiffness and anisotropy
constants, respectively, and D denotes the strength of
the Dzyaloshinskii coupling. K < 0 describes hard
(anisotropy) xy plane, and both A and χ−1 are propor-
tional to JS2, where J is the microscopic exchange en-
ergy. The model is minimal in the sense that it contains
all symmetry-allowed exchange and relativistic energy
terms up to second order in the Néel order and its spatial
derivatives. Note that bulk Dzyaloshinskii-Moriya terms
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are forbidden by the centrosymmetry of R3̄c, the space
group of chromia.20 Integration out of the spin field m
yields the following effective Lagrangian density for the
Néel order:

Lbulk,eff[t; l] =
1

2
s2χ(∂tl)

2 −Fstag[l], (3)

where the first term accounts for the inertia of the dy-
namics of the Néel order.

The boundary spin density smb describes the spin po-
larized state at the chromia/heavy metal interface, where
s is the uncompensated (surface) spin density.28 It con-
tributes to the effective theory with a 2D Lagrangian
density of the form:

Lsurf[t, l,mb] = LWZ[mb, ∂tmb]−Fsurf[l,mb], (4)

where the first term corresponds to the Wess-Zumino
action of the 2+1D field theory of ferromagnetism,32

LWZ[mb, ∂tmb] = −sa[mb] · ∂tmb. Here, a[x] is the vec-
tor potential for the magnetic monopole,33 ∇x × a =
x, and Fsurf[l,mb] stands for the 2D free-energy den-
sity associated with the boundary magnetization. It
is worth recalling here that chromia exhibits a spin-
exchange-driven magnetoelectric response at not too low
temperatures.29,30 Phenomenologically, this means that
an applied electric field induces a shift in the intra-lattice
exchange constants of the form JAA → JAA + δJ and
JBB → JBB − δJ , which, in turn, engenders an enhance-
ment/reduction of the sublattice spin polarizations as
compared to the compensated (zero-field) case. As a re-
sult, the magnetoelectric effect produces a net boundary
magnetization smb that is collinear with the staggered
order parameter regardless of their orientation. A mini-
mal model for the energy density for the magnetization
at the interface reads

Fsurf[l,mb] =
m2

b

2χb
‖
− ηmb · l, (5)

where χb
‖ is the longitudinal spin susceptibility at the in-

terface, and η is the coupling constant for the exchange-
driven magnetoelectric effect. We have disregarded
higher order terms in the boundary magnetization and
up-to-second order terms in∇mb (exchange and relativis-
tic), since the exchange-like coupling ∝ mb · l dominates
the energetics at the interface. This term establishes the
collinearity between both order parameters, as can be
easily seen from minimization of the functional with re-
spect to mb. Integration out of the boundary magneti-
zation yields, to the leading order in the staggered order
parameter, the following effective 2D Lagrangian density
for the heterostructure:31

Leff[t; l] = −sa[l] · ∂tl +
ρ

2
(∂tl)

2 −F [l], (6)

where ρ = s2χh and F = hFstag + Fsurf are the effective
inertia and (total) free-energy densities, respectively, and

h(x, y) denotes the 2D thickness profile of the chromia
film.

The effects of an external magnetic field can be incor-
porated into our effective theory as follows: First, we
consider here the exchange approximation, in which the
Lagrangian density is assumed invariant under the global
spin rotations. By doing so we neglect relativistic inter-
actions, which break this symmetry, by treating them as
a perturbation, in the same spirit of Ref. 34. Second, the
net spin density (i.e. the conserved Noether charge asso-
ciated with the symmetry of the Lagrangian under global
spin rotations) reads s = sl + ρl × ∂tl. In the presence
of an external magnetic field H, the total magnetization
can be cast as M = g sl + gρl × ∂tl + χ̂?H, where g
denotes the gyromagnetic ratio and χ̂? is the magnetic
susceptibility tensor. Since M = ∂Leff/∂H, the sus-
ceptibility must take the form χ?ij = ρg2(1 − lilj) and,
therefore, the effective Lagrangian density is extended to

Leff[t; l] = −sa[l] · ∂tl +
ρ

2
(∂tl− gl×H)2 −F [l], (7)

where F [l] includes now the Zeeman term −gsl ·H.35

To conclude this section, dissipation can be incorporated
phenomenologically into our heterostructure via the dis-
sipative Gilbert-Rayleigh function, R[l] = hsα(∂tl)

2/2,
which is half of the dissipation power density. Here, α
denotes the bulk Gilbert-damping constant, which can
be attributed to, for example, magnon-phonon interac-
tions, and we have omitted the interface contribution to
dissipation.36 Henceforth we will treat chromia as a fer-
rimagnet and study the ensuing dynamics of DWs and
skyrmions, bearing in mind the film thickness as a control
parameter. Note that this approach differs from previous
studies based on the thermal and/or chemical control of
the saturated spin density.37

III. DOMAIN WALL DYNAMICS

We consider in what follows magnetic solitons whose
dynamics are encoded in the time evolution of a discrete
set of soft modes (collective variable description). Of
particular interest are DWs,13 which can be described
by their center of mass X and azimuthal angle Φ in
the low-frequency (as compared to the exchange en-
ergy) regime. Let x denote the direction of the DW
propagation and h be uniform. With account of the
ansatz cos Θ(x) = tanh[(x − X)/δ] for the out-of-plane
component of the Néel order in the spherical-coordinate
representation, l = (sin Θ cos Φ, sin Θ sin Φ, cos Θ), the
Euler-Lagrange equations for the Lagrangian density (7)
become31

2δsΦ̇ + 2ρẌ + 2sαhẊ =δFX , (8)

−2sẊ + 2δρΦ̈ + 2δsαhΦ̇ =FΦ, (9)

where FX = −δXF and FΦ = −δΦF are the thermody-
namic forces conjugate to X and Φ, respectively, with F
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being the total free energy. Here, the DW width is given
by δ =

√
A/|K|.
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FIG. 3: Dependence of the field-driven terminal velocity of
the domain wall on the thickness of the ME-AFM film. Both
quantities have been normalized to the maximum velocity
Vmax = gδHz/2 and the length scale h? = s/sα, respectively.
The dashed line illustrates the maximum of the terminal ve-
locity reached at the value h = h? of the film thickness.

In the presence of a strong magnetic field, H = Hz êz,
the energetics of the ME-AFM are dominated by the Zee-
man coupling, so that the thermodynamic forces can be
approximated by FX ' −2gsHz and FΦ ' 0. Eq. (9)

therefore dictates that Φ̇|st = s(Ẋ|st)/δsαh is the angular
velocity of the DW in the steady state. By substituting
it into Eq. (8) we obtain the following expression for the
field-driven terminal velocity of the DW,

V =
2h/h?

1 + (h/h?)2
Vmax, (10)

where h? = s/sα and Vmax = gδHz/2 is the maximum ve-
locity. Its reduction as compared to Vmax is due to the fer-
romagnetic nature of the surface and h/h? parametrizes
the effective damping αeff. Since the usual DW terminal
velocity goes as ∝ αeff/(1 + α2

eff),13 we obtain a maxi-
mum at the value h = h? of the film thickness, see Fig.
3. In summary, the DW velocity can be tuned by both
the external magnetic field and the film thickness, the
latter being responsible for the non-linear behavior.

IV. SKYRMION DYNAMICS

Skyrmions are the epitome of spatially localized soli-
tons in two dimensions,14 exhibit topological charge and
arise in magnetic systems with spin-orbit coupling.38

For the free-energy model (2), skyrmions are stabilized
with the energy Fsky ∝ 4πA|Q| and the characteristic
length scale R? = 2πD/|K| for the skyrmion radius.27

These spin textures can be described, using collective
coordinates, by their center of mass X = (X,Y ) in
the low-frequency (as compared to the exchange en-
ergy) regime. Since details of their geometry (shape)

are encoded in hard modes of the texture, we can take
skyrmions to be rigid in the spirit of our low-frequency
long-wavelength treatment. With account of the ansatz
l[t, r] = l0[r −X(t)] for the order parameter, the Euler-
Lagrange equations for the Lagrangian density (6) now
become

ρMh(X)Ẍ+4πsQẊ× êz+Γh(X)Ẋ = Fint +FJ , (11)

where the terms on the left-hand side represent (from
left to right) the inertial, Magnus and friction forces
acting on the skyrmion, respectively. Here, ρM =
s2χ

∫
R2 dxdy(∂xl0)2 is the inertia density (per thick-

ness), Γ = αρM/χs denotes the viscous coefficient, and
Q =

∫
R2 dxdy l0 · (∂xl0 × ∂yl0)/4π is the Pontryagin

index (so-called topological charge) of the skyrmion tex-
ture, which is a topological invariant and provides a mea-
sure of the wrapping of the order parameter l0(r) around
the unit sphere.

Our Thiele equation39 for the soft modes, Eq. (11),
is derived within the linear response approach for the
case of thickness profiles h(x, y) smooth over length
scales larger than the typical size of the skyrmion.
This requirement translates into the adiabatic con-
dition |∂x,y lnh|R? � 1. Finally, Fint = −δXF is
the conservative force and FJ represents the force
exerted on the skyrmion by a charge current J flow-
ing in the heavy-metal substrate. The latter stems
from the spin-transfer torque exerted on the spin
texture by the applied charge current via the (ex-
change) proximity effect,40 and takes the form FJ,i :=∫
R2 dx dy {ζ1 l0 · [(J · ∇)l0 × ∂il0]− ζ2∂il0 · (J · ∇)l0},
i = x, y, z, where ζ1 and ζ2 are the phenomenological
constants for the reactive and dissipative components of
the spin-transfer torque, respectively.37 For a spatially
constant (therefore divergenceless) charge current,
J = Jxêx + Jy êy, we can recast these identities as the
linear system(

FJ,x
FJ,y

)
=

(− ρM
χs2 ζ2 −4πQζ1

4πQζ1 − ρM
χs2 ζ2

)(
Jx
Jy

)
. (12)

Since its determinant is nonzero, the current-to-force con-
version is a bijective map, which means that we can
generate any (spatially constant) current-induced force
profile. On the other hand, spin-orbit torques do not
exert an effective force on the skyrmion texture for the
rigid ansatz.41 Henceforth we will assume the lowest en-
ergy configuration for these solitons (corresponding to
the charge Q = ±1) and focus on their current-driven
dynamics by disregarding the internal force.

We consider the simple scenario of one-dimensional
thickness profiles (along a direction defined as the x axis),
h ≡ h(x). As a specific illustrative example, we study the
linear profile h(x) = T − h0x/L, where L is the lateral
size of the chromia film (spanning the domain 0 ≤ x ≤ L)
and the heights h0, T satisfy the conditions h0 < T and
h0R?/L � T . In the steady state, solutions of Eq. (11)
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FIG. 4: Drifting-like orbits of skyrmions with topologi-
cal charge Q = 1 subjected to the current-induced force
F̃J = 0.8(4πêx + Kêy) for the hyperbolic thickness profile
h(x̃)/T = 1 + 0.7 tanh[10(x̃c − x̃)], with x̃c = 0.45. These
trajectories are calculated by numerical integration of the di-
mensionless equations of motion (14) with the following values
of the parameters: K = 0.9π and 4πs/αsT = 4π. In the cal-
culations we have taken the initial velocity ˙̃x(0) = ˙̃y(0) = 0,
and initial position along the x axis (ỹ(0) = 0): x̃(0) = 0.1
(blue), x̃(0) = 0.5 (yellow) and x̃(0) = 0.7 (green). The ma-
genta dashed line at x̃ = x̃c depicts the (attractive) racetrack
for the skyrmion dynamics.

are given by

Ẋ =
1

16π2s2 + Γ2h2(X)

(
Γh(X)FJ,x − 4πsQFJ,y
4πsQFJ,x + Γh(X)FJ,y

)
.

(13)
Let us now apply a current-induced force FJ ∝ 4πsQ êx+
Γh(Xc)êy, parametrized by a certain intermediate po-
sition 0 < Xc < L, with positive proportionality con-
stant. The components of the terminal velocity (13) read
Vx ∝ 4πsQΓ[h(X)−h(Xc)] and Vy > 0. Therefore, since
Vx(X ≶ Xc)≷ 0, the line x = Xc becomes an attractor
for the dynamics of skyrmions with a topological charge
Q. The linear case illustrates the following general state-
ment: given any one-dimensional thickness profile mono-
tonically decreasing along the (so-defined) x axis, we can
generate a self-focusing skyrmion racetrack transversal to
any x-coordinate by tuning the current-induced force.

We illustrate this statement by performing the nu-
merical calculation of skyrmion trajectories in the xy
plane. Fig. 4 depicts the generation, for a hyperbolically
decreasing thickness profile, of a self-focusing skyrmion
racetrack sustained by the appropriate current-induced
force. The numerical trajectories are obtained by inte-
grating the dimensionless form of Eq. (11):

K h(X̃)

T

[
d2X̃

dt̃2
+
dX̃

dt̃

]
+

4πsQ
αsT

dX̃

dt̃
× êz = F̃J , (14)

where the space and time are rescaled with respect to
the lateral size L and the relaxation time τ = χs/α, re-
spectively, and K =

∫
R2 dx dy (∂xl0)2 denotes a (dimen-

sionless) geometric factor determined by the skyrmion
texture.

V. DISCUSSION

We have shown that ME-AFMs offer an attractive plat-
form to control fast antiferromagnetic dynamics of DWs,
driven by an external magnetic field, as in the ferrimag-
netic counterparts.42 Similar dynamics could be also trig-
gered by an applied charge current, which exerts a force
on the DW via the spin-transfer effect. The latter con-
tributes to the equations of motion (8)-(9) with two com-
ponents FJ,X and FJ,Φ to the total force, respectively.43

Therefore, the expression (10) for the terminal velocity
of the DW is still valid upon redefinition of the maximum
velocity, Vmax(h) = [δFJ,X − (h?/h)FJ,Φ]/4s, which now
becomes thickness dependent. For weak/moderate mag-
netic fields, Dzyaloshinskii-Moriya interactions could be-
come relevant and contribute to the DW dynamics with
FΦ = πD sin Φ, which translates into an extra contribu-
tion to the maximum velocity given by the substitution
FJ,Φ → FJ,Φ + πD sin Φ. With account of the values
A ∼ 10−11 J/m, K ∼ 2 · 104 J/m3 and α ∼ 10−3 for the
case of chromia,31,44 we estimate the DW width to be
δ ∼ 20 nm and the maximum velocity Vmax to lie in the
range of 20 m/s for an applied magnetic field µ0Hz = 0.01
T. Furthermore, the optimal film thickness is found to be
h? ∼ 300 nm, which means that the terminal velocity can
be increased monotonically with thickness up to the sub-
micrometric scale, where the Walker breakdown occurs.
It is important to mention that the emergent ferromag-
netism studied in Ref. 31 is a bulk property of chromia,
which is controlled by an external electric field. As a re-
sult, the corresponding field-driven terminal velocity of
the DW is insensitive to the sample thickness, unlike the
present case.

Regarding skyrmions, the theory presented in this
manuscript is, in a way, complementary to that of Ref.
37 for ferrimagnets, since both share the same Thiele
equation for the dynamics of skyrmions but have differ-
ent control variables: In our case, the thickness profile
plays this role through the inertia and the viscous coef-
ficient, whereas in the ferrimagnetic case it is given by
the saturated spin density of the system. That being
said, our framework for the manipulation of skyrmion
textures can be more advantageous for several reasons:
First, from an engineering perspective, an accurate shap-
ing of the sample surface is more feasible than the ther-
mal or chemical control of the saturated spin density
required in Ref. 37. Second, ferrimagnetic materials
behave effectively as ferromagnets in almost all circum-
stances, the only exception being when (a region of) the
system is driven into the (angular-momentum) compen-
sation point, where they exhibit an antiferromagnetic be-
havior. On the contrary, bulk ME-AFMs are intrinsi-
cally antiferromagnetic, with the ferrimagnetic character
emerging in the so-called holographic fashion (it is en-
coded in the boundaries of the system);46 the ensuing
dynamics are, therefore, suitable to be exploited in the
context of antiferromagnetic spintronics. Furthermore,
the exchange-driven collinearity between the boundary
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magnetization and the bulk Néel order allows the imag-
ing of (the dynamics of) antiferromagnetic textures by
means of magneto-optical techniques.

Our Thiele equation for skyrmions, Eq. (11), relies
on the assumption of smoothness of the thickness pro-
file. In the case of ultra-thin films with a small number
of layers, however, variations in the film thickness will
be discrete rather than continuous. Bearing in mind our
scenario of one-dimensional thickness profiles, the n-layer
variation can be modeled by ∆h(x, y) = nΘ[x − x0(y)],
where x0(y), a function of the transverse coordinate
y, describes the x-point at which the thickness varies
abruptly. It is a fair assumption to consider x0(y) (the so-
called n-layer variation front) to be randomly distributed,
so that the one-dimensional n-layer variation becomes
∆h(x) = n〈Θ[x−x0(y)]〉front, where 〈· · · 〉front denotes av-
erage over realizations of the front. This procedure will
typically smooth the spatial dependence of the n-layer
variation, making the thickness profile h(x) satisfy the
adiabatic condition, since |∂xh| will be moderate close to
the points of ’discontinuity’. In any case, we only need
the conditions h(x > x0) ≷ h(x0) and h(x < x0) ≶ h(x0)
to be satisfied around a point x0 for the skyrmion race-

track principle to work, regardless of the smoothness of
the thickness profile: From Eq. (13) we conclude that
self-focusing skyrmion trajectories are a steady property
of the system, i.e. independent of the inertia term. On
the contrary, the transient regime of the skyrmion dy-
namics will depend sensitively on the nature of the thick-
ness profile.
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