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A general theory of the tilting of dispersion bands in phononic crystals whose properties are being
slowly and periodically modulated in space and time is established. The ratio of tilt to modulation
speed is calculated, for the first time, in terms of Berry’s phase and curvature and is proven to be a
robust integer-valued Chern number. Derivations are based on a version of the adiabatic theorem for
elastic waves demonstrated thanks to WKB asymptotics. Findings are exemplified in the case of
a 3-periodic discrete spring-mass lattice. Tilted dispersion diagrams plotted using fully numerical
simulations and semi-analytical calculations based on a numerically gauge invariant expression of
Berry’s phase show perfect agreement. One-way blocking of waves due to the tilt, and ultimately
to the breaking of reciprocity, is illustrated numerically and shown to be highly significant across
a limited number of unit cells suggesting the feasibility of experimental demonstrations. Finally,
a version of the bulk-edge correspondence principle relating tilt of bulk bands to the number of
one-way gapless edge states is demonstrated.

I. INTRODUCTION

The adiabatic theorem is a classical result of quantum
mechanics.1,2 It applies to the Schrödinger equation and
states that in an infinitely slow evolution of the Hamil-
tonian, a state, initially aligned with a given eigenstate,
remains, at later times, in the same eigenstate and evolves
solely by acquiring a phase factor. A careful analysis of
the theorem carried by Berry3 led him to break the phase
factor gained during the adiabatic evolution into two parts
the second of which, later termed “Berry’s phase”, turned
out to be a concept with deep implications in solid state
physics.4

It is perhaps only natural that the introduction of an
adiabatic theorem for elastic waves was delayed so far.
In comparison to electronic systems where changing the
underlying potential is common practice using electric or
magnetic fields (see, e.g., time-dependent perturbation
theory and the working principle of lasers2), a change in
the constitutive properties of an elastic medium such as
its bulk modulus or mass density does not seem to be eas-
ily obtained and controlled. Recently, in conjunction with
an increasing interest in breaking reciprocity and time-
reversal symmetry, several techniques for dynamically
changing the constitutive properties of an elastic medium
have been identified. For instance, a giant and reversible
light-induced softening was reported to occurr in photo-
sensitive network glasses5 suggesting a way of dynamically
controlling their bulk modulus.6 Further, changing voltage
boundary conditions and ambient magnetic fields were
exploited to control the effective elastic properties in piezo-
electric materials7–9 and magnetorheological elastomers,10

respectively. Other techniques are purely mechanical and
trigger changes following a small-on-large scheme: large
deformations applied to a non-linear medium effectively
modify the underlying linearized properties for small over-
lay signals. Thus, changing the contact angles between
cylinders confined in an array effectively alters the Young’s

modulus of the array11,12 whereas shock waves guided
in soft materials produce a moving front of high mass
density.13,14

When these changes are periodic in space and in time,
the resulting medium is referred to as a modulated
phononic crystal and displays interesting wave phenom-
ena that have no counterpart in standard media.15–17 Of
particular relevance to the present paper, is the demon-
strated ability of a modulated phononic crystal to block
and reflect waves if incident in a given direction while
transmitting the same wave forms if incident in the op-
posite direction.6,18 As a matter of fact, the gaps of a
modulated phononic crystal seem to be “tilted” with re-
spect to their reference configuration in a non-modulated
medium. This tilt breaks parity symmetry of the disper-
sion diagram and transforms a two-way gap into a couple
of one-way gaps (Figure 1). Despite the existence of
several case studies, a fundamental unifying theory char-
acterizing tilts in a general context and with systematic
tools is lacking. Such a theory, presented here, helps re-
veal salient features of tilts, robustness in particular, in a
way that can guide future experimental and technological
efforts.

The main purpose of the present paper is to character-
ize and quantify the modulation-induced tilt of dispersion
bands. Specifically, we prove that the ratio of tilt to mod-
ulation speed is a robust topological quantized quantity:
it does not depend on the detail of the space-time profiles
of the constitutive parameters and only relies on a couple
of well-defined qualitative properties. Indeed, from recent
contributions,19–21 it can be inferred that said ratio is
universally equal to 1 for a class of continuous phononic
crystals and metamaterials whose properties depend on
continuous space x and time t through the unique com-
bination x− V t where V is the modulation speed. Here,
by adapting the adiabatic theorem and the concept of
Berry’s phase to elasticity, a general theory of band tilting
in arbitrarily modulated continuous or discrete media is
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(a) (b)

Figure 1. A space-time modulation of constitutive parameters
(here, the bulk modulus κ) at speed V transforms a two-way
bandgap (a) into two one-way bandgaps (b) by tilting the nth
dispersion band by an angle αn.

presented, provided that the modulation is slow.

II. THE ADIABATIC THEOREM FOR ELASTIC
MEDIA

Consider the motion equation

∂t(M∂tu) = −Ku, (1)

where, in the context of modulated phononic crystals, u is
a displacement field and the mass and stiffness operators,
respectively M and K, are both T -periodic functions
of time. Stiffness K further depends on the Floquet-
Bloch wavenumber q. Although relatively abstract, the
above equation has the advantage of modeling elastic wave
propagation in discrete as well as in continuous media.
One way to see it is to notice that, regardless of the
geometry of the underlying medium, by applying a proper
discretization method, say the finite element method, we
always end up with an equation of this form.

Associated to equation (1), is a set of (q, t)-dependent
snapshot eigenstates (ω2

n,Ψn) satisfying

ω2
nMΨn = KΨn, 〈Ψn,M,Ψm〉 = δnm, (2)

with δnm being the Kronecker symbol and the brackets
denoting the underlying Hermitian inner product. Then,
for a given q, the adiabatic theorem states that the nth
Floquet-Bloch eigenmode of equation (1) is

u(t) =
1√
ωn(t)

exp

[
−i
∫ t

0

(ωn(s) + γ̇n(s)) ds

]
Ψn(t),

(3)
with Berry’s connection γ̇n given by

γ̇n = Im
〈

Ψn,M, Ψ̇n

〉
, (4)

provided that ω2
n remains a non-degenerate eigenvalue at

all instants in time and that the modulation frequency
ν = 2π/T is sufficiently small in the sense

ν � min
m 6=n
|ωn − ωm| . (5)

In particular, if the nth band is separated by gaps from
bands n± 1 at t = 0, then it will remain so at all subse-
quent times. If not, scattering from one band to another
will occur and will invalidate the theorem.19–21

The proof of the foregoing result is based on WKB
asymptotics and is detailed in appendix A. Inspecting
equation (3), it is seen that a wave initially coinciding
with the eigenmode Ψn(0) remains at later times in the
eigenmode Ψn(t). It gains nonetheless two phase factors,

one of which is the usual
∫ t

0
ωn(s) ds that reduces to ωnt

in the absence of modulation, the other being at the origin
of Berry’s phase. Further, the transient wave changes its
amplitude inversely proportionally to

√
ωn: the higher

the frequency gets, the smaller the oscillations become.
Although not fundamentally new per se, the adiabatic

theorem is included here as it cannot be found elsewhere
for elastic waves. Similar results already exist in other
physical contexts with an identical mathematical struc-
ture, e.g., the harmonic Schrödinger equation of a particle
moving through a potential slowly varying in space.1,2,22

III. TILT OF ELASTIC BANDS

The nth Floquet-Bloch eigenfrequency of the modu-
lated medium, called Ωn, can be extracted from (3) by
factoring out all T -periodic quantities, leaving

Ωn =
1

T

∫ T

0

ωn(t) dt+
γn
T
, (6)

where

γn =

∫ T

0

Im
〈

Ψn,M, Ψ̇n

〉
dt (7)

is the elastic counterpart to the quantum mechanical
Berry’s phase. Thus, the nth eigenfrequency is averaged
over a period and shifted by an amount equal to Berry’s
phase. Note that, representing an angle, Berry’s phase is
only well defined modulo 2π. Similarly, Ωn is only well
defined modulo the modulation frequency ν, an ambiguity
predicted by Floquet-Bloch theorem. On the other hand,
the phase factors eiγn and eiΩnT are well defined and
uniquely valued.

The tilting of dispersion bands caused by a slow mod-
ulation in a 1D periodic medium can now be quantified.
Indeed, the tilt of the nth band is given by the ratio

αn ≡
Ωn(π/L)− Ωn(−π/L)

2π/L
(8)

where ±π/L denote the right and left end of the Brillouin
zone respectively and L is the length of a unit cell. Given
that ωn is a periodic function of q, it has no effect on αn,
so that the tilt becomes

αn = V
γn(π/L)− γn(−π/L)

2π
(9)
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where V ≡ L/T is the modulation speed.
Unlike Berry’s phase, the tilt αn represents a swept

angle and admits thus a unique value. Said value of αn
can further be proven to be an integer multiple of the
modulation speed V . As a matter of fact, both ends of the
Brillouin zone correspond to the same physical configura-
tion; hence, Ωn(π/L) and Ωn(−π/L) can only differ by
an integer multiple of ν implying that αn/V is an integer.
This argument should not be abused however: since the
two ends of the Brillouin zone are physically identical,
one might be eager to conclude that the tilt vanishes
systematically. But this is not necessarily the case in the
same manner that eia = eib does not necessitate a = b.

The quantization of αn/V implies that this ratio is a
robust topological quantity: continuous, small or large,
perturbations in the underlying medium should induce
continuous perturbations in αn/V except that, being
integer-valued, αn/V cannot vary continuously other than
by remaining constant. This holds as long as our working
hypothesis of no degeneracies is respected. Conversely, a
perturbation that leads to a change in αn/V is one that
cannot be completed while avoiding the appearance of
degeneracies.

IV. NUMERICAL GAUGE INVARIANCE

Evaluating the shifted eigenfrequencies through (6)
whether analytically or numerically is not a straightfor-
ward matter. Indeed, expression (4), based on which Ωn
is calculated, is only valid if the plugged-in Ψn is smooth
with respect to t. Yet, determining a smooth single-valued
expression for Ψn over [0, T ] can be troublesome.3 It is
therefore of interest to find an alternative expression of
Ωn, and ultimately of Berry’s phase, that can be eval-
uated with an arbitrary choice of Ψn, be it smooth or
not with respect to t. Such expressions are qualified as
“numerically gauge-invariant” in the sense that, even when
discretized, they remain insensitive to the choice of Ψn.
As such, numerically gauge-invariant expressions are well
suited for numerical evaluation.

Thus, following a method attributed to Resta,23 one is
encouraged to re-write Berry’s phase as the limit

γn = lim
N→∞

arg
∏
r

〈
Ψn(tr),M(tr),Ψn(tr+1)

〉
, (10)

where {tr, r = 1 . . . N} constitutes a discretization of
[0, T ] with a step of the order of T/N ; see appendix B for
a short proof. Remarkably, the evaluation of the above
expression is insensitive to the smoothness of Ψn since
substituting Ψn with Ψne

iβ , for arbitrary real-valued
non-smooth β, produces no net effect.

For the same reasons, guided by the original work of
Berry,3 the expression of the tilt is transformed into

αn =
V

2π

∫∫
T

Bn dq dt (11)

where T is the torus [−π/L, π/L]× [0, T ] and

Bn = 2 Im
∑
m 6=n

〈Ψn, ∂qK,Ψm〉
〈

Ψm, K̇ − ω2
n+ω2

m

2 Ṁ,Ψn

〉
(ω2
n − ω2

m)2

(12)
is Berry’s curvature. A derivation is detailed in ap-
pendix C. The above equation is a slight generalization
to the one derived by Berry3 as it takes into account a
non-identity parameter-dependent (here, time-dependent)
mass operator. Further, as the integral of a Berry’s curva-
ture over a closed surface, the ratio αn/V provides novel
insight into how topological features described by a Chern
number can manifest.4,24,25 When the crystal has a finite
number of bands, the sum of Berry’s curvature over all
bands is zero,

∑
n Bn = 0, implying the remarkable result

that the sum of all tilts vanishes identically. In particular,
in a discrete lattice, the sum of all tilts is systematically
null. For crystals with an infinite number of bands, the
sum need not vanish.19

Last, the expression of the tilt in terms of Berry’s
curvature allows to refine the result on robustness. For
instance, assuming ωn indefinitely approaches ωn+1, tilts
αn and αn+1 are no longer well defined as Bn and Bn+1

become singular and diverge. Nonetheless, Bn + Bn+1

remains non-singular. This generalizes immediately and
implies that the sum of tilts

∑
m<k≤n αk/V of all bands

between gaps number m and n is invariant and immune
to perturbations as long as these gaps remain open even
when intermediary gaps close.

(a)

(b) (c)

Figure 2. A modulated 3-periodic spring-mass lattice (a) and
two examples of time profiles of its spring constants: sinusoidal
(b) and triangular (c). A unit cell is framed in dashed lines.

V. EXAMPLE: 3-PERIODIC LATTICE

Consider the spring-mass lattice of Figure 2 whose
unit cell contains three constant masses of values mi

connected through three springs of time-dependent T -
periodic constants ki ≡ ki(t), i = 1, 2, 3. Constancy of
the masses is not required but is assumed for simplicity
whereas the ki are taken to be sine waves of the form

ki(t) = k + δk cos(νt+ θi), δk > 0. (13)

The governing motion equation then takes the form (1)
where u is a 3× 1 column vector of the displacements of
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the masses within one unit cell and with

K =

k3 + k1 −k1 −k3Q
∗

−k1 k1 + k2 −k2

−k3Q −k2 k2 + k3

, M =

m1 0 0
0 m2 0
0 0 m3

 .
(14)

Therein, Q = eiq is a phase factor function of the non-
dimensional Floquet-Bloch wavenumber q ∈ [−π, π].

The snapshot eigenstates (ω2
n,Ψn) can be calculated by

solving the now 3× 3 eigenvalue problem (2) using stan-
dard numerical routines. Shifts and tilts were calculated
through fully numerical transient simulations based on a
space-time finite difference method19,20 as well as using
the semi-analytical numerically gauge-invariant formu-
lae (11) and (6) combined with (10). Results are plotted
on Figure 3a and show perfect agreement. The parame-
ters used are m1 = m2 = m3 = m = 1g, k = 5 · 105N/m,

δk = 0,5k, ω0 =
√
k/m = 22,3kHz, ν = 0,1ω0, θ1 = π,

θ2 = π/2 and θ3 = 0. Due to the modulation-induced tilt,
a directional bandgap is visible around the frequency ω0.
Transient simulations of the waves emitted by a loading
with a narrow band centered on that frequency reveal
a significant left/right bias. The waterfall plots of Fig-
ure 4 show that emitted waves travel to the left almost
exclusively.

0,5

1

1,5

2

1

1,5

0 1 2 3-1-2-3

(a)

(b)

Figure 3. On (a): Dispersion diagrams of a 3-periodic sinu-
soidally modulated phononic crystal calculated numerically
(blue level sets) and semi-analytically using Berry’s phase (red
dashed lines). Band tilting is visible in comparison to the av-
erage snapshot dispersion diagram (solid black lines). Floquet-
Bloch replicas are dismissed for clarity. On (b): the second
dispersion branch under a sinusoidal modulation (dashed line)
compared to that under a triangular modulation (solid line).
Although different, both bands feature the same tilt.

The array of tilts (α1/V, α2/V, α3/V ) realized in the
above example is (1,−2, 1). In fact, in a discrete medium,

0 5 10 15

0
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-4

-6

-8

loading

(ms)

(#UC)

Figure 4. Waterfall plots of u1(t) in arbitrary units for every
other unit cell, indexed with #UC, generated by a narrow-
band loading applied at the center of a sample composed of
81 unit cells.

for which the number of bands is finite and the sum of
all tilts vanishes, it is impossible to impart the same
non-zero tilt to all bands. In contrast, a uniform tilt in
the dispersion diagram of a continuous medium can be
obtained by modulating the constitutive parameters in
a translation-like manner.19 That is, the spatial profile
of a given constitutive parameter at any instant in time
is identical to that at any other instant in time up to a
spatial translation. A discrete medium cannot support
such modulations.

Assuming a modulation of the form (13), only three
arrays of tilts, namely ±(1,−2, 1) and (0, 0, 0), are ac-
cessible depending on the relative values of the phase
delays θi and masses mi, i = 1, 2, 3; see Figure 5 for the
corresponding phase diagrams. The array (0, 0, 0) is also
trivially accessible by suppressing the modulation. Other
tilts cannot be obtained without modulating the masses
as well. Diagrams 5a-b further illustrates the robustness
of the tilt: being constant across large regions, the tilt is
insensitive to uncertainty in the phase delays and in the
values of the masses except near critical lines where phase
transitions occur. This generalizes to other forms of uncer-
tainty. For instance, changing the sinusoidal modulation
into a triangular one (Figure 2b-c) leaving unchanged the
other parameters perturbs the dispersion diagram but
ultimately has zero influence on the tilts (Figure 3b).

VI. BULK-EDGE CORRESPONDENCE

Other than band tilting, non-zero Chern numbers sug-
gest the existence of one-way edge modes in the space-
frequency plane of (n, ω) according to the principle of
bulk-edge correspondence.12,25,26 Hereafter, the principle
is exemplified then proven.
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(a) (b)

Figure 5. Phase diagrams of model (13) illustrating the ar-
ray of tilts (α1/V, α2/V, α3/V ) as a function of phase delays
(θ1, θ2, θ3) on (a) and of masses (m1,m2,m3) on (b) inter-
preted as barycentric coordinates in the planes {θ1 + θ2 + θ3 =
2π,m1 = m2 = m3 = m} and {m1 + m2 + m3 = 3m, θ1 =
4π/3, θ2 = 2π/3, θ3 = 0} respectively. Three arrays are acces-
sible, ±(1,−2, 1) and (0, 0, 0). Tilts are not defined over the
dashed lines where degeneracies occur.

A. Example of bulk and edge snapshot spectra

Let us free a finite sample of the infinite 3-periodic mod-
ulated medium investigated above. Under free boundary
conditions, snapshot eigenmode analysis reveals the exis-
tence of edge states within the bulk bandgaps at some in-
stants in time; see Figure 6a. The evolution of a snapshot
edge eigenmode goes through four states that constitute
a periodic cycle illustrated on Figure 6b-e. Starting with
state b which is localized at left edge, the frequency shifts
down and state b transforms into state e. As the fre-
quency decreases further into the first passing band, state
e re-localizes in the bulk and then transforms into state
d localized at the right edge. As the frequency increases
now, state d transforms into state c which, by a similar
mechanism, transforms into state b, and so on.

In the (n, ω)-space, the described cycle corresponds to
a one-way edge state moving anti-clockwise; see Figure 6.
Therein, the left and right boundaries correspond to the
free boundaries of the sample whereas the top and bottom
boundaries correspond to the boundaries of the first bulk
bandgap. Note however that the cycle (b-e-d-c) does not
represent the transient propagation of a physical signal;
only (b-e) and (d-c) do. As a matter of fact, (b-e) and
(d-c) transitions are adiabatic meaning that parameter
t can be identified with real time and snapshot states
are identical to transient states by the adiabatic theorem
proven above. On the other hand, transitions (c-b) and
(e-d) are not adiabatic since, according to Figure 6a, the
gaps separating c and e from the passing bands become
vanishingly small at which time these states will be scat-
tered into bulk modes. In that case, parameter t no longer
represents real time and snapshot states and transient
states will differ significantly.

In any case, the number of edge states moving anti-
clockwise in the first gap, called s+

1 , is equal to α1/V = 1.
As for the second gap, there is a unique edge state moving
clockwise (not shown here): s−2 = 1. Note also that
α1/V +α2/V = −1. In general, letting s±n be the number

of robust edge states going anti-clockwise (respectively,
clockwise) in gap number n, it will be proven that

s+
n − s−n =

1

V

∑
k≤n

αk. (15)

B. Number of robust edge states

Consider a bandgap hosting ∆s ≡ s+
n − s−n robust edge

states and imagine a continuous perturbation closing all
gaps except the one under consideration. Robustness
means that such a perturbation does not change ∆s. The
resulting system has a unique gap separating two bulk
bands. Although not necessary, it will be identified with
a 2-periodic spring-mass lattice which should allow to
gain deeper physical insight (Figure 7a). Number ∆s can
be counted by focusing on, say, the right edge of a finite
sample. But edge modes decay exponentially so that,
assuming the number of unit cells is large enough, the
sample can be considered infinite to the left (Figure 7b).
As for the boundary condition, it does not influence ∆s by
robustness. Thus, without loss of generality, the boundary
is fixed.

Calling m1,2 and k1,2 the masses and spring constants
within one unit cell, it is easy to check that a unique edge
mode exists when m1 = m2 and k1 < k2. Further, it has
an eigenvalue ω2 = (k1 +k2)/m2 and makes masses m2 os-
cillate while all masses m1 remain at rest (Figure 7b). As
m2 is infinitesimally perturbed upwards, frequency decays
implying that the edge mode is going clockwise whereas if
m2 is perturbed downwards, frequency increases implying
that the edge mode is going anti-clockwise. In conclu-
sion, counting the number of times m2 decreases below m1

while k1 is smaller than k2, denoted N(m2 ↓ m1, k1 < k2),
and the number of times m2 increases above m1 while k1

is smaller than k2, denoted N(m2 ↑ m1, k1 < k2), one has

∆s = N(m2 ↓ m1, k1 < k2)−N(m2 ↑ m1, k1 < k2).
(16)

See Figure 7a for an illustration. Next, the tilt of the
acoustic branch is calculated and proven to admit the
same expression as ∆s.

C. Tilt in a 2-band system

The foregoing 2-band model can be described by the
stiffness and mass matrices

K =

[
k1 + k2 −k1 − k2Q

∗

−k1 − k2Q k1 + k2

]
, M =

[
m1 0
0 m2

]
.

(17)
Recall that m1,2 and k1,2 are T -periodic functions of time
such that the gap never closes. That is, k1 = k2 and
m1 = m2 never occur simultaneously. By a change of
basis, Ψ 7→

√
MΨ, it is possible to rewrite the stiffness
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Figure 6. (a): Snapshot normalized eigenfrequencies of a finite slab of a 3-periodic modulated medium composed of 60 masses
under free boundary conditions. Two bandgaps are visible and are traversed by the eigenfrequencies of edge states. The edge
states within the first gap at t = 0,7T and t = 0,8T are labeled b-e and their spatial profiles are plotted in (b-e), respectively,
where n is the mass index and u is displacement in arbitrary units. The oriented loop indicates the order in which the states
appear with time. (f): the cycle (b-e-d-c) illustrated as a one-way edge state in (n, ω)-space.

...

(a)

(b)

(c)

Figure 7. Bulk-edge correspondence: (a) an example of a periodic modulation in a 2-band system. In the region k1 < k2, m2

crosses m1 one time while increasing and zero time while decreasing so that N(m2 ↑ m1, k1 < k2) = 1, N(m2 ↓ m1, k1 < k2) = 0
and ∆s = −1. (b) A semi-infinite sample with fixed boundary: an edge mode appears at t = t2 for which m1 = m2 and k1 < k2.
Arrows and assigned values correspond to normalized displacement magnitudes and show that every other mass is at rest. The
decay rate is log(k1/k2) and the frequency is

√
(k1 + k2)/m2. As m2 is increasing at t2, the frequency of the edge mode is

decreasing. (c) The corresponding surface S : (q, t) 7→ (X,Y, Z): S wraps once around the origin covering a solid angle of −4π
due to its orientation meaning that α/V = −1.

and mass matrices as

K =

[
W + Z X − iY
X + iY W − Z

]
, M =

[
1 0
0 1

]
, (18)

with

W =
k1 + k2

2

(
1

m1
+

1

m2

)
, X =

−k1 − k2 cos q
√
m1m2

,

Y =
k2 sin q
√
m1m2

, Z =
k1 + k2

2

(
1

m1
− 1

m2

)
.
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Note that parameter W has no influence on the shape
of the eigenmodes and can be dropped with no loss of
generality. With these notations, thanks to the result of
Berry,3 the tilt of the acoustic branch α is equal to V/4π
times the solid angle of the surface S : (q, t) 7→ (X,Y, Z)
as seen from (0, 0, 0) in the (X,Y, Z)-space; see Figure 7c.
In other words, α/V = N the number of times that S
wraps around the origin. Surface S being closed, α/V is
quantized as expected and is invariant upon re-scaling
(X,Y, Z) into

X = −k1

k2
− cos q, Y = sin q, Z =

m2

m1
− 1. (19)

A cross section t = t0 of S is therefore a circle in a plane
Z = Z0 of center (−k1/k2, 0), radius 1 and traversed
clockwise. Thus, it wraps around the origin once each time
Z crosses 0 (or m1 crosses m2) while k1 < k2. Counting
these occurrences lead to the expression

α/V = N(m2 ↓ m1, k1 < k2)−N(m2 ↑ m1, k1 < k2).
(20)

That is, α/V = ∆s.
In order to conclude, the perturbation reducing the

original system to a 2-band system is undone. Meanwhile,
the sum of all tilts below gap number n remains invariant
so that α/V =

∑
k≤n αk/V . This ends the proof of the

bulk-edge correspondence principle (15).

VII. CONCLUSION

The presented theory succeeds in providing three con-
sistent analytical expressions for the tilt in the dispersion
diagram of a modulated phononic crystal given the set of
its snapshot dispersion diagrams; the first as a Berry’s
phase, the second as a Chern number and the third as
the number of one-way edge states. Band tilting accom-
panied by non-reciprocal phenomena appears then as a
novel consequence to bulk band topology. Proven robust-
ness as well as the parameters used in the simulations
and the limited number of unit cells necessary for the
observation of the tilt-induced left/right radiation bias all
lead us to believe that an experimental demonstration of
the phenomenon should be within reach. Note last that
topological aspects, although qualitatively insightful, do
not provide quantitative estimates of the magnitude of
the radiation bias and further theoretical efforts dealing
with this issue are still needed.
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Appendix A: WKB asymptotics

The motion equation in a linearly elastic solid takes
the form

∂t(ρ∂tu) = ∇ · (C : ∇su). (A1)

Assuming spatial periodicity, applying the Floquet-Bloch
transformation yields

∂t(ρ∂tu) = (∇+ iq) · {C : [(∇+ iq)⊗u]} (A2)

which can be put in the more condensed form (1). Given
that equation (1) holds as well for a discrete structure,
it will be taken as the starting point of the subsequent
derivations which are therefore valid for both continuous
and discrete phononic crystals.

First, recall that equation (1) admits a set of snapshot
eigenstates satisfying equation (2) so that the identity

〈∂tΨn,M,Ψm〉+ 〈Ψn, ∂tM,Ψm〉+ 〈Ψn,M, ∂tΨm〉 = 0
(A3)

holds by differentiation with respect to time.
Then, the motion equation is scaled into

∂t(M(εt)∂tu
ε(t)) = −K(εt)uε(t) (A4)

where focus is on the limit ε → 0 corresponding to an
infinitely slow evolution. Alternatively, upon the change
of variables t→ t/ε, the above equation transforms into

ε2∂t(M(t)∂tu
ε(t)) = −K(t)uε(t). (A5)

The WKB ansatz

uε = Aεe−iφ/ε, Aε = A+ εδA+ . . . (A6)

is known to be suitable for this type of equations and
is used hereafter.22 In the new variables Aε and φ, the
motion equation becomes

KAε =− ε2
[
Ṁ
(
Ȧε − iφ̇Aε/ε

)
+M

(
Äε − 2iφ̇Ȧε/ε− (φ̇)2Aε/ε2 − iφ̈Aε/ε

)]
(A7)

where ∂t is denoted as a superimposed dot to simplify
reading. Substituting (A6) into (A5) and keeping the
leading order terms entail

KA = (φ̇)2MA. (A8)

Thus, ((φ̇)2, A) is a snapshot eigenstate (ω2
n,Ψn) for

some n:

A ≡ An(t) ≡ an(t)Ψn(t), φ̇ ≡ φ̇n(t) = ±ωn(t). (A9)

Choosing φ(0) = 0 with no loss of generality, we obtain
by integration

φ ≡ φn(t) = ±
∫ t

0

ωn(t) dt. (A10)
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Keeping first order terms then gives

−
∑

φ̇m=φ̇n

KδAm =
∑

φ̇m=φ̇n

Ṁ
(
−iφ̇mAm

)
+M

(
−2iφ̇mȦm − (φ̇m)2δAm − iφ̈mAm

)
(A11)

where the summation is carried over all indices m yielding
the same eigenvalue φ̇n. When an eigenvalue is non-
degenerate, the sum contains a single term. Projecting
onto the eigenvectors Ψm, we obtain

ȧn = − φ̈n

2φ̇n
an+

∑
φ̇m=φ̇n

〈
Ψ̇n,M,Ψm

〉
−
〈

Ψn,M, Ψ̇m

〉
2

am

(A12)
where we have used (A3) to get rid of terms containing

Ṁ . We need to point out here that in addition to the hy-
pothesis of slow evolution, a second implicit hypothesis is
involved in the foregoing derivation; that is that the mul-
tiplicity of each eigenvalue is constant during the whole
evolution. We thus exclude crossings between eigenvalues:
a situation where ωn(t0) 6= ωm(t0) and ωn(t1) = ωm(t1)
is precluded.

Consider now a non-degenerate eigenvalue ωn; that
is an eigenvalue that remains simple during the whole
evolution. Relation (A12) specifies into

ȧn = − φ̈n

2φ̇n
an+

〈
Ψ̇n,M,Ψn

〉
−
〈

Ψn,M, Ψ̇n

〉
2

an (A13)

and can be integrated yielding

an(t) = an(0)

√√√√√
∣∣∣φ̇n(0)

∣∣∣∣∣∣φ̇n(t)
∣∣∣ exp

(
−i
∫ t

0

γ̇n(s) ds

)
(A14)

with γ̇n given by (4)
Combining the foregoing results and dropping ε, the

solution u can be expressed, to leading order, according
to (3) concluding thus the proof of the adiabatic theorem.

Appendix B: Resta’s formula for Berry’s phase

Following Resta,23 consider a discrete set of instants in
time tr covering [0, T ], say tr = rT/N , r = 1 . . . N . The
increment in Berry’s phase between tr and tr+1 is given
by (4) and reads

δr+1
r γn = Im

〈
Ψn(tr),M(tr),Ψn(tr+1)−Ψn(tr)

〉
. (B1)

Given that 〈Ψn(tr),M(tr),Ψn(tr)〉 = 1 is real, this be-
comes

δr+1
r γn = Im

〈
Ψn(tr),M(tr),Ψn(tr+1)

〉
(B2)

which is further equal to

δr+1
r γn =

Im
〈
Ψn(tr),M(tr),Ψn(tr+1)

〉
|〈Ψn(tr),M(tr),Ψn(tr+1)〉|

(B3)

to first order in T/N . The above ratio can be alternatively
written as

δr+1
r γn = arg

〈
Ψn(tr),M(tr),Ψn(tr+1)

〉
. (B4)

Summing, it comes that

γn =
∑
r

δr+1
r γn =

∑
r

arg
〈
Ψn(tr),M(tr),Ψn(tr+1)

〉
,

(B5)
which, in a product form and making explicit the under-
lying limit, is equivalent to equation (10).

Appendix C: Berry’s curvature

Following the original work of Berry,3 let us denote

Atn = γ̇n = Im
〈

Ψn,M, Ψ̇n

〉
. (C1)

Similarly, for reasons that will soon become clear, we
define

Aqn = Im 〈Ψn,M, ∂qΨn〉 . (C2)

Together, (Aqn,Atn) form a vector called Berry’s connec-
tion. The tilt then takes the form of a path integral

αn = V
γn(π/L)− γn(−π/L)

2π
=

V

2π

∮
C

Aqn dq +Atn dt

(C3)
where C is the oriented loop {π/L} × [0, T ] ∪ {−π/L} ×
[T, 0] in the (q, t)-space (Figure 8). Since C is also the
boundary of the torus T = [−π/L, π/L]× [0, T ], Stokes
theorem yields

αn =
V

2π

∫∫
T

(∂qAtn − ∂tAqn) dq dt ≡ V

2π

∫∫
T

Bn dq dt

(C4)
where Bn is Berry’s curvature. Next, we derive an explicit
formula for Bn.

First, using the chain rule and that ∂qM = 0, write Bn
as

Bn = 2 Im

〈∂qΨn,M, Ψ̇n

〉
−

〈
Ψn, Ṁ , ∂qΨn

〉
2

 .

(C5)

Then, expanding along the orthogonal eigenstates Ψm,
we obtain

Bn =
∑
m

2 Im
{
〈∂qΨn,M,Ψm〉

〈
Ψm,M, Ψ̇n

〉
−
〈

Ψn, Ṁ ,Ψm

〉
〈Ψm,M, ∂qΨn〉 /2

}
.

(C6)
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Figure 8. Stokes theorem: an integral over boundary C can be
transformed into an integral over domain T . Since t = 0, T
and q = ±π/L are physically identical, domain T can be
identified with a torus. Path C is then the boundary of torus
T cut open along q = ±π/L.

The terms with m = n can be omitted since they have no
imaginary part.

Now we calculate the term
〈

Ψm,M, Ψ̇n

〉
. Starting

with equation (2), applying ∂t yields

− 2ωnω̇nMΨn − ω2
nṀΨn − ω2

nMΨ̇n = −K̇Ψn −KΨ̇n.
(C7)

Projecting onto Ψm, we obtain

〈
Ψm,M, Ψ̇n

〉
=

〈
Ψm, K̇,Ψn

〉
ω2
n − ω2

m

− ω2
n

ω2
n − ω2

m

〈
Ψm, Ṁ ,Ψn

〉
.

(C8)

In the same manner, applying ∂q and projecting, we see
that

〈Ψm,M, ∂qΨn〉 =
〈Ψm, ∂qK,Ψn〉
ω2
n − ω2

m

. (C9)

Substituting these relations into the expression of Bn, we
conclude that Berry’s curvature admits expression (12).
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on topological insulators: Band structure and edge states in
one and two dimensions (Springer International Publishing,
2016).

27 Y. Hatsugai and T. Fukui, Phys. Rev. B 94, 041102 (2016).

mailto:huangg@missouri.edu

	Quantization of band tilting in modulated phononic crystals
	Abstract
	Introduction
	The adiabatic theorem for elastic media
	Tilt of elastic bands
	Numerical gauge invariance
	Example: 3-periodic lattice
	Bulk-edge correspondence
	Example of bulk and edge snapshot spectra
	Number of robust edge states
	Tilt in a 2-band system

	Conclusion
	Acknowledgments
	WKB asymptotics
	Resta's formula for Berry's phase
	Berry's curvature
	References


