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Abstract 
 
We study the scattering of phonons from point defects and their effect on lattice thermal 
conductivity 𝜅 using a parameter-free ab initio Green's function methodology. Specifically, we 
focus on the scattering of phonons by Boron (B), Nitrogen (N) and Phosphorus substitutions as 
well as single- and double-Carbon vacancies in graphene. We show that changes of the atomic 
structure and harmonic interatomic force constants (IFCs) locally near defects govern the 
strength and frequency trends of the scattering of out-of-plane acoustic (ZA) phonons, the 
dominant heat-carriers in graphene. ZA scattering rates due to N substitutions are nearly an 
order of magnitude smaller than that for B defects despite having similar mass perturbations. 
Furthermore, ZA phonon scattering rates from N defects decrease with increasing frequency in 
the lower frequency spectrum in stark contrast to expected trends from simple models. ZA 
phonon-vacancy scattering rates are found to have a significantly softer frequency dependence 
(~𝜔0) in graphene than typically employed in phenomenological models. The rigorous Green’s 
function calculations demonstrate that typical mass defect models do not adequately describe 
ZA phonon-defect scattering rates.  Our ab initio calculations capture well the trend of 𝜅 vs. 
vacancy density from experiments, though not the magnitudes.  This work elucidates important 
insights into phonon defect scattering and thermal transport in graphene, and demonstrates 
the applicability of first principles methods toward describing these properties in imperfect 
materials. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I. INTRODUCTION 
 
Parameter-free Peierls-Boltzmann transport calculations of thermal conductivity 𝜅 have been 
critical to complementing and building our fundamental understanding of phonon flow through 
defect-free crystalline materials  [1–5]. This understanding combined with predictive 
computation can guide the design of new materials that more efficiently carry or block thermal 
energy. For instance, new “rules of thumb” relating features of phonon dispersions with 
intrinsic phonon-phonon scattering has guided the prediction of ultra-high thermal conductivity 
in cubic BAs  [6].  Unfortunately, this prediction has not been validated by experiment  [7,8], as 
synthesized BAs samples contain extended and point defects, which can dramatically alter the 
phonon scattering landscape  [9]. Thus, computational prediction of 𝜅 for real materials with 
design of targeted transport properties also requires parameter-free calculation of the 
scattering of phonons from material imperfections.   
 
Accurately calculating phonon-defect scattering without fitting parameters, i.e. beyond simple 
models, is a challenging task. Atomic structure and thus the forces pairing atoms near a defect 
differ from that of the perfect crystal.  Furthermore, these features also depend on external 
variables such as temperature and pressure, and point defects can form clusters and are 
otherwise randomly distributed within a material. Moreover, controlled synthesis and 
characterization of defects and their distributions are extremely challenging, and experimental 
studies linking the effects of defects to thermal transport behavior are generally limited. All 
these features hinder the benchmarking of advanced theoretical methods with quality 
measurements and promote the use of simplified models built with fitting parameters to 
compensate for unknown or neglected features of the fundamental processes governing 
phonon-defect scattering.  
 
Typical calculations considering phonon-defect scattering employ models developed from first 
order perturbation theory (Fermi's golden rule or Born approximation) considering only 
changes in the atomic masses, or effective changes in mass variance to crudely account for 

force and bond disorder  [10–12]. These include simple and popular equations (1/𝜏𝑑 ∝ 𝜔𝛿, 
with 𝛿 some positive integer) that assume a Debye approximation for phonon dispersions and 
that rely on an adjustable proportionality constant to fit measured data. More recent work has 
coupled mass-defect scattering with realistic dispersions and eigenvectors from density 
functional theory calculations, particularly to describe phonon-isotope scattering rates for 
predictive transport calculations  [13,14], though still within first order perturbation theory.  
 
Errors induced by these various approximations to describe phonon-defect scattering have 
recently been addressed by parameter-free ab initio Green’s function calculations  [15–17], 
which are not restricted to small perturbations or low frequency windows. These calculations 
have demonstrated that simple approximations do not capture well the strength of phonon 
scattering from clusters of isotopes in graphene  [15] or from Si and Ge nanoparticles in 
Si0.5Ge0.5 alloys  [16]. Furthermore, Green’s function calculations have demonstrated the 
importance of also considering structural and harmonic interatomic force constants (IFCs are 
used to denote harmonic interatomic force constants. The few cases when we refer to 



anharmonic interatomic force constants (below Eq. 7) are labeled with the ‘anharmonic’ 
adjective) variance caused by the presence of defects  [9,18,19], which defines a multi-
dimensional energy landscape where phonons interfere and scatter. It has been shown that the 
usual way of modeling phonon-vacancy scattering, which considers the vacancy as a stronger 
mass defect  [11], fails to predict the scattering strength due to vacancies in diamond  [18] and 
BAs  [9], even at low frequencies where first order perturbation theory is expected to be 
reasonable. These results highlight the importance of including defect induced IFC variance in 
phonon-defect scattering calculations, important for predicting and understanding 𝜅 in real 
materials. 
 
Despite these recent parameter-free theoretical works, our fundamental understanding of and 
predictive capabilities for determining thermal transport in defected materials is far from 
complete. We do not have property/transport relationships to describe the effects of large 
defect-induced perturbations on thermal transport. We lack physical insights on how key defect 
features affect lattice vibrations and transport; neither do we have simple, yet accurate 
equations to explain transport phenomena.  Similar to thermal transport in perfect crystalline 
materials, further parameter-free phonon-defect scattering calculations in real materials may 
elucidate interesting new physics and continue to build our intuition of defect/vibrational 
coupling phenomena, while providing key material properties toward targeted thermal 
management applications. In this paper, we present such calculations in a 2D material 
(graphene) that includes defect induced structural relaxation and mass and force disorder.  
 
We choose graphene as the subject of this theoretical study of phonon-defect scattering and 𝜅 
because of its technological and scientific significance  [20,21], the important correlations made 
between Raman signals and defect types and concentrations  [22,23], and because its 2D 
nature reduces the computational cost of numerical calculations. We explore variation in 𝜅 of 
graphene by Boron, Nitrogen and Phosphorus substitutions, which are candidates to dope 
graphene and alter its electronic structure  [24,25]. Also, we study the lattice thermal transport 
response to single-Carbon and double-Carbon vacancies (two adjacent vacancies), which can be 
generated in a controlled manner by irradiation  [23,26]. A significant body of work has been 
built characterizing defects  [27] and separately 𝜅 in graphene  [28–32], from table-top 
spectroscopic tools. Of particular importance in the present work is the use of Raman peak 
intensities to characterize the type and number of defects (e.g. sp3-defects, vacancies and 
boundaries)  [22,23], and to measure thermal conductivity of defected graphene  [26].  This 
experiment constituted our main motivation to examine phonon-defect scattering in graphene. 
 
This manuscript is organized as follows:  After a brief theoretical background (Sec. II), we give 
the scattering rates obtained from ab initio Green's function calculations and compare with first 
order perturbation approximations (Sec. III and IV). We explore the relationship of IFCs and 
scattering rates arising from substitutional defects (Sec. III) and vacancies (Sec. IV) and show the 
change generated on the graphene thermal conductivity due to those defects (Sec. V). In Sec. VI 
we give concluding remarks.  
 
 



 
 

II. THEORETICAL BACKGROUND 
 
Consider a propagating phonon whose branch j and momentum q are labeled by 𝜆 that scatters 
via interaction with a defect into another phonon labeled 𝜆′. The average transition rate for this 
process can be described by a Green’s function methodology  [16] 

(1)     𝑅𝜆⟶𝜆′ =
𝜋Ω𝜆

𝜔𝜆Ω
|⟨𝜆|𝑇𝑑|𝜆′⟩|2𝛿(𝜔𝜆

2 − 𝜔𝜆′
2 ) 

with 𝜔𝜆 the phonon eigenfrequency, Ω𝜆 the volume where the eigenstate 𝜆 is normalized, Ω 
the volume of the sample and 𝑇𝑑 the so-called T-matrix characterizing the interaction and 
defined below.  Summing Eq. 1 over all final states, using the optical theorem and assuming the 
scattering of each defect is independent of the others, the phonon-defect scattering rate is 
given by  [15] 

(2)       1/𝜏𝜆
𝑑 = 𝑛𝑑𝑣𝜆𝜎𝜆

𝑑 = 𝑛𝑑

Ω𝜆

𝜔𝜆
𝐼𝑚{⟨𝜆|𝑇𝑑|𝜆⟩} 

with 𝑛𝑑 the defect density, 𝑣𝜆 the phonon group velocity and 𝜎𝜆
𝑑 the defect scattering cross 

section.  We note that the mode subscript 𝜆 for the defect scattering rates will be dropped in 
subsequent discussions.  The T-matrix for phonon-defect scattering   

(3)      𝑇𝑑 = [𝐼 − 𝑉𝑑𝐺0]−1𝑉𝑑 
is built from the identity matrix 𝐼, the perturbation 𝑉𝑑 and the retarded Green's function 𝐺0 of 
the unperturbed system. The perturbation 𝑉𝑑 = 𝐻𝑑 − 𝐻0 captures the differences introduced 

by a defect in the perfect system. 𝐻𝑑 and 𝐻0 are the dynamical matrices (𝐻 = 𝑀−1/2𝐾𝑀−1/2) 
for the system with and without defects, respectively. 𝑀 is a diagonal matrix containing the 
mass of each atom and 𝐾 is the matrix with the interatomic force constants relating the various 
atoms. The Green's function is given by 𝐺0 = [𝜔2𝐼 − 𝐻0 − Σ]−1, with Σ the self-energy. Further 
details regarding calculation of 𝐺0, including the self-energy term, can be found in  [15,33,34]. 
The T-matrix is also defined as 𝑇𝑑 = 𝑉𝑑 + 𝑉𝑑𝐺0𝑉𝑑 + 𝑉𝑑𝐺0𝑉𝑑𝐺0𝑉𝑑 + ⋯, which gives rise to 
Fermi's golden rule when 𝑇𝑑 is replaced by its first order perturbation 𝑇𝑑 ≈ 𝑉𝑑 in Eq. 1. This is 
also referred to as the Born approximation. 
 
The thermal conductivity in the 𝑧 direction is given by 

(4)        𝜅 =
1

Ω
∑ ℏ𝜔𝜆

𝜕𝑁𝜆

𝜕𝑇
𝜆

𝑣𝜆𝑧
2 𝜏𝜆𝑧 , 

with ℏ𝜔𝜆
𝜕𝑁𝜆

𝜕𝑇
 the heat capacity per mode, 𝑁𝜆 the Bose-Einstein distribution, 𝑇 the temperature, 

𝑣𝜆𝑧 the phonon group velocity in the 𝑧 direction and 𝜏𝜆𝑧 the transport lifetime along the applied 
temperature gradient in the 𝑧 direction. The transport lifetime (lifetime in the presence of a 
temperature gradient  [1,35–37]) comes from the self-consistent solution of the linearized form 
of the BTE, commonly known as the full solution of the BTE.  The initial condition for this 
iterative procedure is built from individual mode-dependent scattering rates combining 

boundary 1/𝜏𝜆
𝑏 =  |𝑣𝜆|/𝐿  [36], defect 1/𝜏𝜆

𝑑 and 3-phonon 1/𝜏𝜆
𝑝ℎ  [36,38] scattering using 

Matthiessen's rule 



(5)       
1

𝜏𝜆
=

1

𝜏𝜆
𝑏 +

1

𝜏𝜆
𝑑 +

1

𝜏𝜆
𝑝ℎ

 

Replacing this initial condition expression (Eq. 5) for the transport lifetime in Eq. 4 is equivalent 
to employing the relaxation time approximation, which was shown to give a poor 
representation of 𝜅 in graphene  [39–42]. Therefore, the transport lifetimes are determined 
from full solution of the Peierls-Boltzmann transport equation as described in detail 
previously  [39,40].  
 
For each defect structure, we obtain relevant harmonic IFCs for input into phonon-defect 
scattering calculations (Eq. 2) by the finite displacement method in relaxed 9 × 9 supercells. 
The IFCs from atoms up to the 13th nearest neighbor shell around the defect were then 
inserted into the central region of a 240-atom rectangular graphene supercell. We enforce the 
acoustic sum rule on the rectangular supercell by equating the onsite IFC matrix of each atom 
to the negative of the sum of the IFC matrices of its neighbors, which we refer to as the simple 
acoustic sum rule. Finally, we use the supercell to define the perturbation 𝑉𝑑 and  calculate the 
phonon-defect scattering rates and thermal conductivities as described above. Details of the 
calculation are spelled out more explicitly in Appendix A. 
 
 
 

III. PHONON-DEFECT SCATTERING BY SUBSTITUTIONS 
 
 
 
 
 

 
 

Figure 1. T-matrix phonon-defect scattering rates (1/𝜏𝜆
𝑑) of graphene with B, N and P 

substitutions. Note that these scattering rates are scaled to be independent of the arbitrary 
defect density 𝑛𝑑. As shown, the ZA scattering rates due to N defects are much weaker than 
those from B and P defects, and decrease with increasing frequency up to 10 THz, unlike in-
plane scattering rates and ZA rates for B and P defects.  



 
 
 
Using the T-matrix method, we calculate the scattering of phonons in graphene due to Boron, 
Nitrogen and Phosphorus substitutions (Fig. 1). Three key features to note about these phonon-

defect scattering rates are: (i) 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
−1  are much weaker than 𝜏𝐵𝑜𝑟𝑜𝑛

−1 , (ii) 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
−1  for lower 

frequency ZA modes surprisingly decrease with increasing frequency, and (iii) ZA phonon-defect 
scattering rates are significantly stronger than those for in-plane modes.  Features (i) and (ii) 
challenge established expectations for the magnitude and frequency dependence of phonon-
defect scattering, which are built from first order perturbation theory considering on-site mass 
or effective mass defect scattering (neglecting IFC variance). According to this approximation, 
phonon-mass-defect scattering rates for graphene are given by  [13,39] 

(6)  
1

𝜏𝜆
𝑑 =

𝜋

2𝑁0
𝜔𝜆

2𝑔 ∑|𝒆𝑘
𝜆∗ ∙ 𝒆𝑘

𝜆′
|

2
𝛿(𝜔𝜆 − 𝜔𝜆′)

𝑘,𝜆′

  

with 𝑔 = ∑ 𝑓𝑖𝑖 (1 − 𝑚𝑖/�̅�)2, 𝑓𝑖  and 𝑚𝑖 the fraction and mass of the 𝑖th type of atom, �̅� the 

average mass, and 𝒆𝑘
𝜆 the eigenvector of the 𝑘th atom in the unit cell. The fraction of defects is 

given by 𝑓𝑑 = 𝑛𝑑𝑆0, with 𝑆0the area per Carbon atom, and the fraction of Carbon is given by 
𝑓𝐶 = 1 − 𝑓𝑑. When the defect atom changes only 𝑔 changes, as intrinsic phonon properties 
(e.g., frequencies, velocities) change very little for reasonable defect concentrations.   Eq. 6 

then predicts 𝜏𝐵𝑜𝑟𝑜𝑛
−1 < 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛

−1 < 𝜏𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑜𝑢𝑠
−1 . For instance, when 𝑓𝑑 =1.1%, 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛

−1 =

2.75𝜏𝐵𝑜𝑟𝑜𝑛
−1  and 𝜏𝑃

−1 = 241.5𝜏𝐵
−1.  On the contrary, the T-matrix calculations in Fig. 1 give 

𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
−1 < 𝜏𝐵𝑜𝑟𝑜𝑛

−1 < 𝜏𝑃ℎ𝑜𝑠𝑝ℎ𝑜𝑟𝑜𝑢𝑠
−1 , and the scattering rates of ZA phonons for P defects are 

only 2.5 times larger than those for B defects, orders of magnitude weaker than from simple 

predictions. Our calculations also show a surprising decrease of 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
−1  with increasing 

frequency for the ZA phonons at low frequencies. This result contradicts the increasing 
frequency dependence expected from Eq. 6 that predicts 1/𝜏𝑑 ∝ 𝜔2  for ZA phonons in this 
frequency regime  [39].  The scattering rates distinguished by polarization are shown in 
Appendix A Fig. 9. 
 
It has been shown previously that perturbative approaches to describe phonon-defect 
scattering fail when the IFC variance is large  [18]. Nevertheless, we have limited physical 
insights connecting those changes with the resulting scattering rates. To build a better 
understanding of phonon-defect scattering from B, N and P substitutional defects we compare 
T-matrix scattering rates with calculations including changes in defect mass and in IFCs 
separately (Fig. 2). For B and N defects whose mass perturbation is small, the variation on the 
IFCs alone dictates the acoustic scattering rates (Figs. 2a and 2b) and not including it 
underestimates the scattering by up to two orders of magnitude. For P defects whose mass 
perturbation is larger, the scattering rates of out-of-plane phonons are dictated by IFC 
variation, while those for in-plane phonons by mass variation (Fig. 2c). In general, the scattering 
rates of the dominant heat carriers in graphene, ZA phonons, are dictated only by the changes 
in IFCs (Fig. 2), and simple mass variance models for phonon-defect scattering likely give a poor 
description of thermal transport in graphene with moderate defect concentrations.  
 



 

 
 
Figure 2. T-matrix scattering rates for a) Boron, b) Nitrogen and c) Phosphorous defects 
comparing when only the defect mass is changed or when only the IFCs are changed with the 
full calculation.   The scattering rates of ZA phonons, which carry most of the heat in graphene, 
are dictated by IFC variance in all three systems. 
 
 
Next we focus on B and N defect scattering rates, which despite having similar mass 
perturbations in graphene, demonstrate qualitative differences.  In particular, T-matrix 

calculations give ZA 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
−1  that decrease with frequency (1-10 THz range) becoming 

comparable with in-plane rates (Fig. 2b) (both transverse (TA) and longitudinal (LA)), while ZA 
𝜏𝐵𝑜𝑟𝑜𝑛

−1  increase with frequency and are at least an order of magnitude larger than the in-plane 
acoustic rates (Fig. 2a). This is not determined by mass variance, nor do the different density of 
states for ZA and in-plane modes govern this behavior as these are the same for both N and B 
defects. Thus, the relative differences of ZA and in-plane scattering rates (smaller for N defects, 
larger for B defects) for the two systems are derived from relative differences of the in-plane 
and out-of-plane IFCs.  We define Δ𝐾𝑜𝑝  (Δ𝐾𝑖𝑝) as the percent difference of the out-of-plane (in-

plane) IFCs in the defect system with those of the unperturbed system (up to 13 neighbor shells 
of the defect).  We find that N defects have relatively the same change in in-plane and out-of-
plane IFCs (N: Δ𝐾𝑖𝑝 = 2.99%; Δ𝐾𝑜𝑝 = 2.98% ), while B defects give larger percent change for 

the out-of-plane IFCs that govern ZA phonons (B: Δ𝐾𝑖𝑝 = 3.31%; Δ𝐾𝑜𝑝 = 5.22% ).  For P 

defects, we also see Δ𝐾𝑖𝑝 < Δ𝐾𝑜𝑝 and 𝜏𝑍𝐴
−1 > 𝜏𝑇𝐴

−1 ≈ 𝜏𝐿𝐴
−1, similar to B defects though larger 

(P: Δ𝐾𝑖𝑝 = 5.29%; Δ𝐾𝑜𝑝 = 16.08%). However, mass variance also plays a significant role for in-

plane scattering from P defects (Fig. 2c).  The mass variance alone gives a percentage difference 
of the in-plane and out-of-plane components of the dynamical matrix of 7.04% and 6.09%, 
respectively. This explains the similarity between the yellow and black in-plane scattering rates 
in Fig. 2c. 
 
Although the simple arguments just presented correlate with general features of the scattering 
rates, a single number cannot capture the complexity of the energy landscape created by the 
perturbation.  Altering just a small number of IFCs among the thousands considered can lead to 
large variation in the scattering rates. For example, we find that replacing nine particular out-



of-plane IFCs near the N defect by the corresponding IFCs near the B defect (and re-enforcing 

the simple acoustic sum rule) makes 𝜏𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛
𝑍𝐴 ≈ 𝜏𝐵𝑜𝑟𝑜𝑛

𝑍𝐴  (Fig.3a). These “magic” IFCs were 

targeted because they present the largest opposing changes for the B and N defects (larger for 
B defects, smaller for N defects) with respect to the IFCs of perfect graphene.  These out-of-
plane IFCs are derived from interactions of first nearest neighbors of the defect with their 
second nearest neighbors (red lines in Fig. 3b). Moreover, our calculations show the lattice 
shrinks around a N defect and expands around B and P defects during relaxation (Fig. 3c). The 
opposing relaxation trends may be related to different IFC variations and radically different 
frequency trends seen for the scattering rates of ZA phonons in these systems. This suggests 
that the crystal structure local to the defect can play an important role in determining the 
behavior of phonon-defect scattering.  As the scattering rates are built from variations of ~500 
IFCs, elucidating a simple physical picture of the origins of the behaviors of the phonon-defect 
scattering rates beyond that presented here may not be possible. Perhaps further work with 
other defects and systems may better test these hypotheses. 
 
 
 

 
 
Figure 3. a) T-matrix scattering rates for a N substitution when the out-of-plane IFCs marked on 
b) are replaced by those for a B substitution (Modified N). Changing these IFCs recovers the ZA 
scattering rates of a B defect. c) Change in the distance between the defect and its nearest 
neighbor atoms after full relaxation (𝑟𝑟) and before relaxation (𝑟0). This demonstrates that the 
lattice contracts around the N defect while it expands around the B and P defects.  
 
 
 

IV. PHONON-DEFECT SCATTERING BY VACANCIES 
 
 



 
 

Figure 4. T-matrix phonon-defect scattering rates (1/𝜏𝜆
𝑑) of graphene with single- and double-

Carbon vacancies. Note that these scattering rates are scaled to be independent of the arbitrary 
defect density 𝑛𝑑. As shown, the strength and frequency dependence of phonon-vacancy 
scattering rates drastically differ from the predictions of Klemens’ effective mass defect model 
with (∆𝑚/𝑚)2 = 590  [26]. 
 
Figure 4 gives the vacancy-scattering rates for single-Carbon and double-Carbon vacancies (two 
adjacent vacancies) in graphene calculated using the T-matrix method and compared with a 
modified Klemens’ effective mass disorder model. Klemens’ model considers a vacancy as a 
mass defect with a stronger mass variance (∆𝑚/𝑚)2 = 9 , to simulate the effects of broken 
bonds  [11]. However, Fig. 4 shows the scattering resulting from a mass variance of 590, which 
was necessary to fit measurements of 𝜅 vs. vacancy density in graphene  [26]. Even using this 
exaggerated (∆𝑚/𝑚)2, the analytical model strongly underestimates (overestimates) the 
scattering rates for acoustic (optic) phonons as compared with those from the T-matrix 
methodology.   As the simple model neither captures the magnitude of the phonon-vacancy 
scattering nor the frequency dependence, key physics of this thermal resistance is missing from 
the effective mass approximation.  
 
Note that the scattering rates due to single-Carbon vacancies in graphene are relatively 
frequency independent for much of the Brillouin zone (Fig. 4), suggesting that 
phenomenological models with weaker frequency dependence (e.g., 1/𝜏𝑑 ∝ 𝜔0 ) would 
provide a better representation of this scattering mechanism over current analytical models 
that employ higher powers in the frequency dependence.  Modeling vacancy-defect scattering 

with first order perturbation theory (Eq. 6) gives 1/𝜏𝑑 ∝ 𝜔2𝐷(𝜔), and thus cannot capture the 
flat frequency trend obtained when IFC variance is included (Fig. 4). On the other hand, 
considering mass disorder only in the T-matrix calculations we find that the scattering rates 
smoothly flatten with frequency (become nearly independent of frequency) as the defect mass 
becomes large (Fig. 5). As the defect mass increases, the elements of the dynamical matrix 

related with the defect decrease (~𝐾𝑖,𝑗/√𝑚𝑖𝑚𝑗).  This is equivalent to decreasing the IFCs 

related to the defect and in the limit of very large mass behaves as if the defect had no bonds 
with the atoms in the lattice.  We note that this limit is not entirely equivalent to having a 



Carbon vacancy for which the lattice locally relaxes and enforcement of the acoustic sum rule 
on the IFCs can play a significant role in determining the scattering rates (see Appendix B).   
 

 
 
Figure 5. T-matrix scattering rates considering only changes of the defect mass. The masses are 
chosen as those of the elements that label each curve.  The curve labeled ∞ represents 𝑚 =
10000 amu. As the mass increases the slope of the ZA scattering rates smoothly transitions to 
that of a vacancy.  
 
 
 
 
 
 
 
 

V. PHONON-DEFECT SCATTERING AND THERMAL CONDUCTIVITY 
 
The ultimate goal here for developing ab initio predictive calculations of phonon-defect 
scattering is to develop basic understanding of the role of defects on thermal conductivity of 
real materials, beyond perfect infinite crystals. The thermal conductivity of pristine graphene is 
very large 𝜅 ~2000-5000 W m-1 K-1 around room temperature  [28,29,43–45], and ~75% of this is 
predicted to be carried by ZA phonons (for graphene of typical size ~10μm)  [39]. Our Green’s 
function calculations demonstrate that on-site mass (Eq. 6 Tamura  [13]) and effective mass 
(Klemens  [10,11]) defect models fail to capture the strength and frequency dependence of ZA 
phonon-defect scattering rates, therefore likely provide poor estimates of 𝜅 values in graphene 
with defects.  
 
Ab initio calculations of graphene thermal conductivity as a function of defect concentration 
(Fig. 6a) show notable changes of 𝜅 for defect concentrations ~10−3% (𝑛𝑑 ≈ 4 × 1010 cm-2). At 
that defect concentration 𝜅 decreases by 8.3%, 3.7%, 18%, 27% and 22% from that of pristine 
graphene for B, N and P substitutions and single-Carbon and double-Carbon vacancies, 
respectively. Changes in conductivity are negligible for defect concentrations ~10−4%  (𝑛𝑑 ≈
4 × 109 cm-2) and below. 
 



  
 

 
 
Figure 6. a) Calculated thermal conductivities vs. density for each defect type. Interestingly, the 
thermal conductivities of graphene with N substitutions and single-Carbon vacancies are larger 
than those with B substitutions and double-Carbon vacancies, respectively. b) Calculated 
thermal conductivities of graphene with N substitutions and single-Carbon vacancies by 
polarization: out-of-plane (ZA) (solid) and in-plane (dashed). 
 
 
The behavior of the calculated 𝜅 of graphene with various defects derive from features of the 
ZA phonon-defect scattering rates. Figure 6a shows that the conductivity of graphene with N 
substitutions is twice that with B substitutions when the defect concentration is 0.1%. The 
larger conductivity follows from the order of magnitude weaker ZA scattering rates from N 
defects compared to those from B defects (Fig. 1). Figure 6a also shows that graphene with 
single-Carbon vacancies conducts heat better than its double-Carbon vacancies counterpart. 
We note that the double-Carbon vacancy has lower symmetry and significantly more variability 
with wave vector for the scattering rates than for the single vacancy (compare spread of rates 
in Fig. 9e to those in Fig. 9d). There is an interesting crossover of the out-of-plane and in-plane 
contributions to 𝜅 due to phonon-defect scattering (Fig. 6b) as the defect concentration 
increases. This follows from the relative strengths of the different scattering resistances for in-
plane and out-of-plane (ZA) modes. While the intrinsic 3-phonon scattering resistance for ZA 
modes is smaller than for in-plane modes  [39], the opposite is true for phonon-defect 
scattering rates (Fig. 1). Thus, as the defect concentration increases and the total scattering 
becomes dominated by phonon-defect processes, the ZA phonons scatter more strongly than 
the in-plane phonons and therefore contribute less to the total thermal conductivity.  
 
 



 
 
Figure 7. Calculated 𝜅 of graphene with vacancies vs. defect concentration compared with 
measured data (colored circles)  [26]. Colors refer to specific samples where defects were 
introduced by irradiation from a low energy electron beam  [26]. The dashed line is the 
calculated 𝜅 of graphene with single-Carbon vacancies shifted rigidly downwards by 750 W m-1 
K-1 to highlight the similarities of the measured and calculated 𝜅 trends. The discrepancies 
between theory and experiment may arise from non-equilibrium effects leading to 
uncertainties in the extraction of 𝜅 from Raman spectroscopy signals, which are predicted to 
underestimate 𝜅 by a factor of 1.35 to 2.6 at room temperature  [46].   
 
The trend of 𝜅 vs. 𝑛𝑑 obtained from our parameter-free calculations is very similar to that from 
experiment, though shifted above by ~750 W m-1 K-1 (Fig. 7). This rigid shift may be an artifact 
of the assumption of near thermal equilibrium of different phonon polarizations used in the 
procedure that relates Raman spectroscopy signals to thermal conductivity  [46]. For graphene, 
calculations demonstrate that ZA phonons are strongly out-of-equilibrium during laser 
excitation and therefore room temperature 𝜅 measurements may be underestimated by a 
factor of 1.35 to 2.6  [46]. This is acknowledged by the authors of Ref.  [26], who also claim that 
their study is focused on relative changes in thermal conductivity with defect density. 
Furthermore, the measured 𝜅 ≈ 1800 W m-1 K-1 for the ‘defect-free’ graphene from CVD 
methods is comparable to measurements on similar samples, but substantially lower than 
measurements from exfoliation methods  [28,47] and from values given here.  This suggests 
that various extrinsic scattering mechanisms may be playing a significant role in determining 𝜅, 
even before irradiation. Graphene from CVD methods might contain grain boundaries [48], 
polymer residue from nanofabrication [49], wrinkles  [50], cracks  [51] and possibly other 
defects. Those defects degrade 𝜅 and might also be related to the difference between our 
calculation and experimental data in Fig. 7. Given these arguments, the 𝜅 vs. 𝑛𝑑 trends from 
calculation and measurement are reasonable.    
 
 
 

VI. SUMMARY AND CONCLUSIONS 
 



We presented calculations of phonon-defect scattering rates due to B, N and P substitutions as 
well as single-Carbon and double-Carbon vacancies in graphene. Our parameter-free 
calculations are based on ab initio Green's function methods not restricted to small 
perturbations or low frequencies. These phonon-defect rates are coupled with the Peierls-
Boltzmann transport equation to determine the effects of defects on phonon thermal 
conductivity in graphene. Our phonon-defect scattering results differ significantly from 
expectations derived from first order perturbation approaches, particularly when only 
considering mass variation.  Structure and force variation near defects are found to be more 
important, particularly due to changes in interatomic force constants.  We found that flexural 
acoustic (ZA) phonon scattering rates from N defects are nearly an order of magnitude smaller 
than those from B defects despite the mass difference between N and C being larger than that 
between B and C. Also, ZA scattering rates from N defects decreases with increasing frequency 
in the low frequency spectrum contrary to typical expectations for which rates increase as some 
power of the frequency.  For Carbon vacancies in graphene, the ZA scattering rates are fairly 
independent of frequency for much of the spectrum.  This suggests that phenomenological 
models may better represent this phenomena with scattering rates proportional to 𝜔0. 
Furthermore, our parameter-free calculations compare favorably with the trend of thermal 
conductivity with defect density from measurements, though miss the overall magnitudes 
observed.  We discussed these unusual phonon-defect scattering features in terms of structure, 
force and mass variations and connected these with thermal transport.  Furthermore, we 
demonstrated that on-site mass and effective mass defect models fail to capture the strength 
and frequency dependence of ZA phonon-defect scattering rates, therefore likely provide poor 
estimates of 𝜅 values in graphene with defects.  This work provides benchmark calculations for 
models of point defect scattering in graphene, and demonstrates the utility of ab initio methods 
for modeling thermal transport in materials with defects. 
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APPENDIX A: SIMULATION DETAILS 

 
Density functional theory (DFT) details:  Energies and interatomic forces were determined using 
the module pw.x of Quantum Espresso (QE)  [52], a plane wave based density functional theory 
software package. For each self-consistent field computation, we used norm conserving 
pseudopotentials within the local density approximation and Perdew-Zunger 



parametrization  [53]; a cut-off energy of 100 Ry; an electronic convergence threshold of 10-10 
Ry; Marzari-Vanderbilt smearing  [52] with gaussian spread of 0.02 Ry and a vacuum distance 
between graphene planes of 29 Å . Energy minimization in defect-free graphene gives a lattice 

constant 𝑎 = 2.441 Å. Harmonic interatomic force constants (IFCs) were determined from 

finite displacements (±0.04 Å) of atoms in 9 × 9 supercells of the primitive two-Carbon unit 
cell sampling only the Γ point of the Brillouin zone. The IFCs were considered up to the 13th 
nearest neighbor shell. On those IFCs, we enforce the space group symmetries and translational 
invariance using singular value decomposition and quadratic programming  [54]. Our IFCs agree 
well with previous calculations  [39] and give reasonable agreement with measured phonon 
dispersion data, especially for heat-carrying acoustic modes (Fig. 8). 
 

 
Figure 8. Calculated phonon dispersion of graphene (solid curves). Dots  [55] and triangles  [56] 
are from inelastic x-ray scattering measurements on in-plane graphite. Due to the weak 
coupling between layers, the in-plane dispersion of graphite and graphene are similar. 
   
Graphene with defects:  Each defect is put at the center of the 9 × 9 supercell, which is then 
further relaxed using the pw.x module of QE while keeping the volume of the supercell fixed 
until the interatomic forces are less than 10-5 Ry/Bohr. To accelerate the relaxation, the atomic 
masses were decreased following the procedure outlined in the documentation of the Car-
Parrinello package within Quantum Espresso. At the end of that process, the atomic masses 
were increased to ~50 amu to obtain fine tuning of the relaxed atomic positions and enhanced 
minimization of the interatomic forces. For all defects, the initial  graphene sheet was assumed 
flat and after relaxing all atomic positions in every direction it remained flat.  Relaxed distances 
between defects and their six nearest neighbor shells are summarized in Table I. These results 
are consistent with previous DFT calculations in like systems  [57–60]. Note that the lattice 
expands around the B and P defect while it contracts around the N defect. The symmetry of 
each supercell with a defect was found using the spglib library created by A. Togo. Each single-
atom defect has P-6m2 (187) symmetry, while the double-Carbon vacancy (two adjacent 
vacancies) has Cmmm (65) symmetry. 
 

 d-C1 (Å) d-C2 (Å) d-C3 (Å) d-C4 (Å) d-C5 (Å) d-C6 (Å) 

None 1.409 2.441 2.818 3.728 4.227 4.881 

B 1.471 2.466 2.824 3.751 4.241 4.898 

N 1.395 2.426 2.819 3.718 4.223 4.874 

P 1.610 2.531 2.849 3.794 4.264 4.927 



V 1.422 2.405 2.830 3.712 4.215 4.869 

 
Table I. Distances between the center of each single-atom defect and atoms in six nearest 
neighbor shells.  The distances are the same for all atoms in a particular neighbor shell.  The 
first row corresponds to a perfect graphene lattice. 
 
 
After relaxation, the IFCs were determined using the same procedures outlined above 
(symmetries enforced, displacements, etc.). Then, we replace the defect mass and the IFCs 
between atomic pairs within the 13 nearest neighbor shells of the defect on the central region 
of a larger rectangular supercell (240 atoms) of perfect graphene. The rectangular shape 
facilitates the set-up of the Green's function calculations.  We neglect IFCs relating atoms 
beyond the 13 neighbor shells. The size of the supercell guarantees that the Carbon atoms on 
the edges of the supercell have interactions equal to those of Carbon atoms in bulk graphene. 
Finally, we enforce the simple acoustic sum rule, which reduces the symmetry of the onsite IFC 
matrices of atoms close to the defect (Appendix B).  
 
 
Green’s function scattering rates:  IFCs of the modified rectangular supercell define the 
dynamical matrix of the system with defects 𝐻𝑑, while those from the unmodified rectangular 
supercell define the dynamical matrix of the unperturbed system 𝐻0 with their difference giving  
the perturbation 𝑉𝑑 = 𝐻𝑑 − 𝐻0 in Eq. 3. To calculate the Green's function of the unmodified 
supercell 𝐺0, also in Eq. 3, we follow the approach described by Mingo et al.  [15]. That is, 𝐺0 is 
determined on a combined reciprocal and real space coordinate system and then transformed 
to real space. All integrations employed 200 grid points in reciprocal space. Finally, the T-matrix 
and scattering rates were obtained using the equations in Sec. II. Calculated phonon-defect 
scattering rates for different defects are shown in Fig. 9, where we also highlight the 
contribution from the different polarizations. Recall that most of the heat in graphene is carried 
by the ZA phonons and thus ZA phonon-defect scattering governs the changes in thermal 
conductivity due to point defects.   
 
 



 
 
Figure 9. T-matrix scattering rates for B, N and P substitutions as well as single-Carbon and 
double-Carbon vacancies in graphene, colored according to polarization. 
 
 
Thermal conductivity calculations:  𝜅 for graphene with defects is calculated as described in 
Section II including thermal resistance from point defects, isotope variation, boundaries and 
intrinsic three-phonon scatterings.  Phonon-defect scattering rates are defined in great detail 
above, while phonon-isotope scattering rates are given by Eq. 6 using natural Carbon isotope 
concentrations (1.1% 13C, 98.9% 12C).  An empirical phonon-boundary scattering rate for each 

mode is given by  1/𝜏𝜆
𝑏 =  |𝑣𝜆|/𝐿   [36] where 𝐿 = 7.5𝜇𝑚, chosen to match graphene systems 

in Ref.  [26].  These are all combined with the rates for scatterings of three phonons (lowest 
order in perturbation theory) which build the right-hand side of the steady-state linearized 
Peierls-Boltzmann transport equation  [36,38,39]    
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with 𝑊𝜆𝜆′𝜆′′
+  and 𝑊𝜆𝜆′𝜆′′

−  from three-phonon scattering processes defined in Ref. 1. Phonon-

defect scattering is included in Eq. 7 similar to that of phonon-boundary scattering [39], and 



they do not depend on the distribution of modes 𝜆′ and 𝜆′′. This equation is solved 
iteratively  [35] for the deviations from equilibrium Ω𝜆 for each phonon mode, which determine 
the transport lifetimes in Eq. 4, 𝜏𝜆𝛼 = Ω𝜆𝑇/ℏ𝜔𝜆𝑣𝜆𝛼.  Construction and solution of Eq. 7 for 
graphene has been discussed in detail in previous work  [39,40].  The procedures and details for 
determining harmonic and third-order anharmonic IFCs (only inputs to the calculations) are 
similar to those described above for the Green’s function calculations with some minor 
exceptions:  (i) anharmonic IFCs were considered to the fifth nearest neighbor shell only  [39], 
(ii) point group symmetries and translational invariance were enforced with a 𝜒2 minimization 
procedure  [5,39], and (iii) additional equilibrium invariance constraints described by Born and 
Huang  [61,62] were applied to the harmonic IFCs. 
 
 
 

APPENDIX B: BENCHMARKING 
 
To benchmark our numerical algorithms for phonon-defect scattering rates, we compare the 
phonon-isotope scattering rates of graphene calculated from the Green's function approach 
with those from Tamura's first order perturbation approximation (Eq. 6). For small mass 
change, the two methods generally agree when only changes in the atomic masses are 
considered– no force variance:  Fig. 10a for isotope variation and Fig. 10b and Fig. 10c for Boron 
and Nitrogen substitutions. However, for larger mass impurities the deviations are significant 
(Fig. 10d and Fig. 5). For the P substitution, the scattering of high frequency phonons is 
overestimated by more than an order of magnitude by Tamura’s expression, as the qualitative 
frequency trends given by each method are quite different. The Green's function calculation 
gives a crossover between the ZA and TA rates and also gives 𝜏𝑍𝑂

−1<𝜏𝐿𝐴
−1. These features are not 

captured by Tamura's approximation because changing the mass mostly changes 𝑔 in Eq. 6 
while intrinsic phonon properties (e.g., frequencies, velocities) change very little for reasonable 
defect concentrations. Thus, as the mass increases, the scattering rates from Tamura's 
approximation simply shift upwards.  
 
 

 



 
 
Figure 10. Scattering rates from the T-matrix method compared with Tamura's first order 
perturbation approximation (Eq. 6) when only the atomic mass is varied for a) 13C isotopes, b) 
B, c) N and d) P substitutions. 
 
We also tested the convergence of our scattering rates with respect to the size of the 
neighborhood around the defect for which IFC variance was considered (Fig. 11). Our results 
indicate that including variation up to the 5th neighbor shell around the defect gives a good 
approximation for all the defects except for the N substitution, for which inclusion of up to the 
9th neighbor shell was required for reasonable convergence. The largest differences between 
the rates happen in the low frequency spectrum, likely a consequence of enforcing the simple 
acoustic sum rule (ASR). As the number of shells decreases, the acoustic sum rule worsens and 
we need to impose a larger change to the onsite IFCs of the atoms around the defect. This 
change affects mostly the low frequency spectrum.  
 
 
 

 
 



Figure 11. Scattering rates from the T-matrix method as the number of nearest neighbor shells 
for which the defect induced IFC changes is varied.   
 
Enforcing the ASR is necessary to properly capture the low frequency behavior of the scattering 
rates. After construction, the set of IFCs of the rectangular supercell (used for the Green’s 
function calculations) does not satisfy the ASR. This happens because for each atom except the 
defect, the IFCs of at least one shell are an uneven combination of IFCs from perfect graphene 
with IFCs from the relaxed supercell. Nevertheless, the IFCs of atoms close to the defect almost 
satisfy the ASR because they mostly come from IFCs of the fully relaxed 9 × 9 supercell, while 
the IFCs of atoms away from the defect (shell 13 of the defect) almost satisfy the ASR because 
they mostly come from IFCs of perfect graphene. Therefore, we enforce only a simple ASR. 
Failing to enforce it causes divergent behavior of the scattering rates at low frequencies (Fig. 
12a). For unrelaxed graphene with a vacancy, where only the IFCs related to the vacancies are 
eliminated, not enforcing the ASR has much more significant consequences (Fig. 12b). Note that 
the scattering rates of the unrelaxed vacancy without enforcing ASR (Fig. 12b) are equivalent to 
those of a substitution with infinite mass (Fig. 5).    
 
 
 

 
 
Figure 12. T-matrix scattering rates when the acoustic sum rule (ASR) is enforced and not 
enforced for a P substitution (a) and for a single-Carbon vacancy (b) where only the IFCs related 
to the defect are eliminated but the system is not relaxed.   
 
 
 
Relaxation of the defects and computation of the IFCs from density functional theory supercell 
calculations can be computationally expensive, ~15k cpu hours for each 162 atom supercell 
calculation.  System relaxation for the N, B and P defect structures plays a significant role in 
determining phonon-defect scattering rates (Fig. 2); however, phonon-vacancy scattering rates 
from the T-matrix formalism are fairly well captured without the full relaxation of the system 
(Fig. 13). Thus, for vacancies in graphene significant computational costs can be saved, while 
providing a better representation of the magnitude and frequency dependence of phonon-
vacancy scattering over simple analytical models (Fig. 4). Note that the unrelaxed structure 
gives a fair description of the ZA phonon-vacancy scattering rates and thermal conductivity at 



low defect concentrations, where the ZA phonons carry most of the heat. For instance, at 
0.01% vacancy concentration (𝑛𝑑 ≈ 4 × 1011 cm-2) the approximated 𝜅 is about 10% larger 
than for the fully relaxed structure at room temperature. 
 

 
 
Figure 13. T-matrix scattering rates for a) single-Carbon and b) double-Carbon vacancies in 
graphene comparing unrelaxed and fully relaxed rates. For the unrelaxed system, only the IFCs 
related to the vacancies are eliminated and the simple acoustic sum rule enforced. The 
approximation fairly well captures the scattering rates from the full calculation, while saving 
~15k cpu hours (162 atom supercell). c) Thermal conductivity of graphene with single-Carbon 
vacancies comparing results for fully relaxed and unrelaxed systems. 
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