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Recently, the Comment by Zhang et.al. questions our results of anomaly equations. In this Reply,
we provide detailed derivation of anomaly equations from microscopic models and explain the reason
why we respectfully disagree with the derivation and argument in the Comment.

In the Comment by Zhang et al, the authors proposed
an alternative form for the anomaly equations (Eqs. (5)
and (6) in the Comment), which is based on the effec-
tive theory of Weyl fermions. Unfortunately, we found
their derivation unconvincing. The correct form of the
anomaly equation should coincide with the prediction of
electromagnetic response from the microscopic theory (at
ultraviolet cut-off) of Weyl semi-metals. Different from
high energy physics in which the microscopic theory at
the ultraviolet cut-off scale is unknown, the microscopic
theory for Weyl semi-metals as condensed matter systems
is well-defined and well-known. Therefore, the most un-
ambiguous way to determine the response properties is
to study the microscopic theory. The Hamiltonian of the
four-band model shown by Eq. (4), as well as Appendix
A in our paper1 can be used to describe such a type of
microscopic theory. Below, we provide our reply by em-
ploying this “microscopic” model to derive the effective
magneto-electric response for Weyl fermions below and
demonstrate the physics of anomaly equations directly
from microscopic Hamiltonian.

FIG. 1. The energy dispersion of Weyl semi-metals is shown
along the kz direction. Weyl fermions are located at ±K0 and
the momentum regions I and II are labelled.

We consider a simplified Hamiltonian (the Hamiltonian

(A1) in the appendix)

H = MΓ5 + L1kzΓ4 + L2(kyΓ1 − kxΓ2) + UΓ12, (1)

where M = M0+M1k
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Γ4 = τy, Γ5 = τz and Γab = [Γa,Γb]/2i (a, b = 1, · · · , 5).
Here the magnetization is only assumed along the z di-
rection, given by the U term, where U = U0 + δz for a
constant magnetization U0 and a magnetic fluctuation δz
along the z direction (|δz| ≪ |U0|). The eigen-energy of
the Hamiltonian (1) is given by
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with s, t = ±. The band gap of the above Hamil-
tonian closes at kx = ky = 0 when the condition
M2 + L2

1k
2
z = U2 is satisfied. This requires |U0| > |M0|.

In this regime, the energy dispersion for two low en-
ergy bands is shown in Fig. 1. Two Weyl points are
located at K0 = 1

L1

√

U2 −M2
0 . Thus, we can divide

the whole momentum space into two regions (I and II
shown in Fig. 1). In the region-I, the energy disper-
sion behaves linearly and can be well described by the
effective model of Weyl fermions. Here we have assume
that the energy dispersion in the x-y plane is well de-
scribed by linear dispersion up to the large momentum
cut-off Λ∞ (M2 is small). The details of projecting the
Hamiltonian into the low energy space to obtain Weyl
fermions as an effective model has been well discussed
in the appendix A of the paper1. In the region-II, the
quadratic term (k2z) is larger than the linear term and
thus we cannot use the effective Hamiltonian of Weyl
fermions to describe this system. This corresponds to
the high energy part. We choose the momentum that
separates the region-I and II as Λ0. Thus, the region-I
includes the momentum range kz ∈ [−K0−Λ0,−K0+Λ0]
and kz ∈ [K0 − Λ0,K0 + Λ0], while the region-II in-
cludes the momentum range kz ∈ [−Λ∞,−K0 − Λ0] and
kz ∈ [−K0 + Λ0,K0 − Λ0] and kz ∈ [K0 + Λ0,Λ∞]. We
assume K0 ≫ Λ0, which means two Weyl points are well
separated so that the low energy description of Weyl
fermions is valid. Now let’s consider the chemical po-
tential is quite close to the Weyl points, and thus only
crosses the bands in the region-I and lies in the band
gap of the region-II. The total charge and current of the
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system can be written as:

jµtot = jµI + jµII , (3)

where µ = 0 labels the charge density and µ = 1, 2, 3
labels the spatial components of the current, while jµI
and jµII give the contribution from the region-I and II,
respectively. The current jµ in our paper is exactly jµI
here. Although the chemical potential in the region-II
lies in the band gap, the adiabatic charge and current
response, which comes from the contribution from the
occupied bands below the energy gap, still exist and di-
rect calculation shows that

jµII =
e2

h
(2K0 − 2Λ0)ǫ

µνλ∂νAλ, (4)

where µ, ν, λ = 0, 1, 2. This contribution from the high
energy part of the Weyl semi-metals is nothing but the
anomalous Hall effect and the chiral magnetic effect, de-
scribed in literature2,3. We further expand K0 for a small
δz and find
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0 , where C3 is a constant while a3
fluctuates in space-time. Thus, we have
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where we add an additional superscript 3 into the Levi-
Civita symbol. Furthermore due to the total charge con-
servation:

∂µj
µ
tot = 0 (7)

we have
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This is nothing but our anomaly equation for the effec-
tive model of Weyl fermions by noting that jµI is exactly
jµ in Ref. 1. The axial gauge field (a3 field) is propor-
tional to the ẑ-directional magnetic fluctuation. More
generally, when x̂ and ŷ direction magnetic fluctuations
exist, similar derivation can give rise to the full anomaly
equation

∂µj
µ
I = −∂µj

µ
II =

1

8π2
ǫµρνλfµρFνλ. (9)

Our itemized responses to the Comment by Zhang et

al are listed below.
1) The main misunderstanding in the Comment is the

charge conservation in Weyl semi-metals. Obviously, the
charge conservation should be satisfied in the level of “mi-

croscopic” model, as illustrated in the above derivation

and Eq. (7). However, if we consider the low energy ef-
fective theory of Weyl fermions (the Weyl Hamiltonian
Eq. (1) in our paper1), it is not necessary for charge to be
conserved since the high energy states in Weyl semi-metal
materials, which is not included in the long-wavelength
effective Weyl Hamiltonian, can also contribute to charge
and current response. In other words, the full electronic
transport of Weyl semimetals should be contributed by
both low-energy part in region-I (described by the two
Weyl points as well as their Dirac-type Hamiltonian) and
the high-energy parts in region-II from occupied bands.
The anomalous Hall contribution from the high-energy
parts is general for Weyl semimetals, as discussed in Ref.
2. Normally, such high energy contribution is taken into
account through regularization procedure, which, in any
case, should be consistent with the results from the mi-
croscopic model in order to correctly describe Weyl semi-
metals, in particular the Hall current contributions of
the Weyl semi-metals. The Comment does not give any
derivation of the anomalous Hall current, but refers to
the Ref. 3 (Ref. [5] in the Comment) for the anomalous
Hall contribution. The Eqs. (34) and (35) in Ref. 3 is
consistent with our derivation when axial gauge potential
(bµ field in Ref. 3) is a constant, but this paper does not
concern the case when axial gauge potential has smooth
spatial and temporal dependence. Our derivation sug-
gests that the Eqs. (34) and (35) in Ref. 3 remain valid
even when axial gauge field strength exists. Physically,
the spatial part of axial gauge field is proportional to the
distance between two Weyl points, and its variation in
space-time can give rise to the change of Hall response in
the region-II. Since the total current should be conserved,
the magnetoelectric response of Weyl fermions (region-I)
should vary accordingly. Such type of response is missing
in the anomaly equation (5) in the Comment.

2) The authors of the Comment derive their anomaly
equations from the Fujikawa’s method. However, we find
that their derivation is confusing and the description is
unclear. Let us address several issues below: (a). The
authors of the Comment only derived the axial current,
but did not show any derivation of the charge current
part. (b). The anomaly equation of Eq. (10) in the
Comment includes η and is not topological. The authors
only argue that this term should not exist, but did not
show any rigorous derivation about that.

3) The discussion about axial electric field in the last
two paragraphs of the Comment is confusing. The au-
thors seem to admit that the axial field can contribute
to anomalous Hall current, according to the statement
“Instead, the cross coupling between vector gauge fields
Aµ and axial gauge fields aµ should contribute to nor-
mal charge currents” and “but the axial gauge fields can
change the strength of these effects”. However, it is clear
that the anomaly equation (5) in the Comment cannot
describe these effects. On the other hand, such type of
electromagnetic response can be included in our anomaly
equation. As we stated at the beginning, a correct form of
anomaly equation from effective theory should reproduce
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the prediction from the microscopic theory. Thus, we
believe the electromagnetic reponse of Weyl semi-metals

should be correctly described by the anomaly equation
in our original paper.
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