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We calculate the pure dephasing time of three-electron exchange-only qubits due to interaction
with the nuclear hyperfine field. Within the S = Sz = 1/2 spin subspace, we derive formulas
for the dephasing time as a function of the position within the stability diagram consisting of the
(1, 1, 1) charge region and the neighboring charge sectors coupled by tunneling. The nuclear field
and the tunneling are taken into account in a second order approximation. The analytical solutions
accurately reproduce the numerical evaluation of the full problem, and in comparison with existing
experimental data, we find that the dephasing times are longer but on the same timescale as for
single spins.

PACS numbers: 03.65.Yz,03.67.Lx,31.30.Gs,73.21.La

I. INTRODUCTION

Exchange-only qubits have attracted much attention
due to their valuable feature of providing full control
over the qubit by electrical gating of the dots themselves
and the tunnel barriers in between. This can be seen
as an evolution of qubit implementations in solid state
systems that started with single-spin qubits,1 followed
by singlet-triplet qubits2 in double dots to arrive even-
tually to linearly arranged triple quantum dots that are
controlled via tunnel couplings to the middle dot.3–8 All
these systems are prone to decoherence on various time
scales due to both magnetic and electrical noise. Elec-
trical noise is always present due to fluctuations of the
potential on the gates or background noise in the host
material. This can be addressed by operating the qubit
at the so-called “sweet-spots”.5–7 Magnetic noise is also
important in case nonzero nuclear spins are present in
the vicinity of the qubit. This problem is particularly se-
vere for example in GaAs in comparison to Si where the
natural concentration of 29Si with nonzero spin is rela-
tively low (around 5%). But even in Si heterostructures,
isotope purification is often the answer if further expan-
sion of the dephasing time is needed. This underlines the
necessity of studying decoherence and dephasing due to
nuclear magnetic fields in exchange-only qubits,4,9–11 as
well as developing dynamical methods to correct deco-
hering qubits.12–14 This research has already progressed
much for single-spin qubits,15–23 and for singlet-triplet
qubits as well.24–31 Much of these results can also be
found in a number of review articles.8,32,33

In this paper, we try to further enrich our understand-
ing of the role of hyperfine interaction in dephasing in
exchange-only qubits. Within the S = Sz = 1/2 spin
subspace, which is decoherence-free against noise in a
uniform magnetic field,34 we explore the (1, 1, 1) charge
sector and its surrounding, see in Fig. 1 and 2. We derive
analytic formulas for the dephasing time Tϕ with different
logical qubit basis in the aforementioned charge sectors,
where Tϕ is obtained as a function of the position in the
stability diagram. We take the random nuclear field into
account by averaging the density matrix over an ensem-

ble of magnetic fields, thus obtaining a dephasing time
(generally also denoted by T ∗2 ) which does not include
the T1 relaxation, and in this sense, characterizing the
pure dephasing of the qubit. We then evaluate and dis-
cuss our findings, their accuracy and symmetries, and
compare them to results from the existing literature.

II. THEORETICAL MODEL

In our model, we consider a basis that consists of all
three-electron states with a total spin S = 1/2 and a
z-projection Sz = 1/2:

|0〉 =
1√
2

(|↑↑↓〉 − |↓↑↑〉) , (1a)

|1〉 =
1√
6

(2 |↑↓↑〉 − |↑↑↓〉 − |↓↑↑〉) , (1b)

|3〉 =
1√
2

(|↑↓〉1 − |↓↑〉1) |·〉2 |↑〉3 , (1c)

|4〉 =
1√
2
|↑〉1 |·〉2 (|↑↓〉3 − |↓↑〉3) , (1d)

|5〉 =
1√
2
|↑〉1 (|↑↓〉2 − |↓↑〉2) |·〉3 , (1e)

|6〉 =
1√
2
|·〉1 (|↑↓〉2 − |↓↑〉2) |↑〉3 , (1f)

|7〉 =
1√
2

(|↑↓〉1 − |↓↑〉1) |↑〉2 |·〉3 , (1g)

|8〉 =
1√
2
|·〉1 |↑〉2 (|↑↓〉3 − |↓↑〉3) , (1h)

where the subscript numbers the dot occupied by elec-
tron(s) with the given spin orientation, while |·〉 denotes
an empty dot. We include an additional leakage state |2〉
with a total spin of S = 3/2 and Sz = 1/2 because it is
coupled to states |0〉 and |1〉 by the hyperfine interaction

HHF =
∑3
i=1

∑
k AikSi · Ik:

|2〉 =
1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉) , (1i)
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where Aik is the hyperfine constant linking the the nu-
cleus k with spin Ik to the electron in dot i with spin
Si. States with different z-components can be split off
with an external magnetic field. The states |0〉, |1〉 and
|2〉 belong to the charge state (1, 1, 1), while in the other
states, the electrons fill up the TQD according to the
charge stability diagram, see Fig. 1.

The second quantized Hamiltonian of our model takes
the form

H =
∑
i

εini + U0

∑
i

ni↑ni↓ + Uc

∑
〈i,j〉

ninj (2)

+
∑
〈i,j〉,σ

ti,j

(
c†i,σcj,σ + c†j,σci,σ

)
+
gµB

2

∑
i

δBi (ni↑ − ni↓),

where εi is the electrostatic potential, ni = ni↑ + ni↓
is the total number of electrons in dot i and the num-
ber of electrons with a specific spin orientation respec-
tively. U0 is the on-site Coulomb interaction potential in
case of double occupancy and Uc is due to interaction of
electrons in neighboring sites 〈i, j〉. The sums run over
i, j = 1, 2, 3. The tunnel coupling between these sites

is denoted by ti,j and c
(†)
i,σ annihilates (creates) an elec-

tron in dot i with spin σ. For simplicity, we neglect the
external magnetic field, it serves only to split off states
with different Sz spin projections. In the Zeeman term,
we only take into account the z-component of the Over-
hauser field δBi =

∑
k AikIk/(gµB), where g is the Landé

g-factor and µB is the Bohr magneton.
In the basis defined in (1), the matrix representation

of the Hamiltonian takes the following form:

H =

(
H01 V

V † Hc

)
, where (3)

H01 =


0 − 1√

3
b+

√
2
3b+

− 1√
3
b+

2
3b−

√
2
3 b−√

2
3b+

√
2
3 b−

1
3b−

 , (4)

V =


1√
2
tl

1√
2
tr

1√
2
tr

1√
2
tl 0 0√

3
2 tl −

√
3
2 tr −

√
3
2 tr

√
3
2 tl 0 0

0 0 0 0 0 0

 , (5)

and Hc can be found in the Appendix A. The block
H01 describes the central (1, 1, 1) region, where the en-
ergy scale is shifted so that these states are degenerate
at 0 without tunneling and hyperfine interaction. The
latter is characterized by b± = bl ± br, where bl =
gµB(δB1 − δB2)/2 and br = gµB(δB2 − δB3)/2 denote
the left and right hyperfine field gradients. V accounts
for direct tunneling between the (1, 1, 1) states and the
states |3〉, |4〉, |5〉 and |6〉 with the tunnel coefficients
tl = t1,2 and tr = t2,3. The states |7〉 and |8〉 are not
coupled directly to the (1, 1, 1) states, they are coupled
in Hc only to second order in tl,r. On the other hand, the
state |2〉 is not coupled to any other state by tunneling,
but only by the nuclear field b±. The block Hc describes

FIG. 1. Charge stability diagram: lowest-energy charge states
as functions of the detunings ε and εm with Uc = 0.2U . In
the absence of tunneling and hyperfine field, the states |0〉,
|1〉 and |2〉 are degenerate.

FIG. 2. Partitioning of the ε–εm space by the two lowest
states with Uc = 0.2U . Here |0′〉 denotes the lower of the two
states we obtain after the hybridization of |0〉 and |1〉. The
regions of interest of this paper are shaded.

the states around the (1, 1, 1) region that have a charge
state other than (1, 1, 1). Hc depends on ε = ε1 − ε3
measuring the detuning between the outer dots and on
εm = ε2− (ε1 +ε3)/2+Uc, which is the relative detuning
of the middle dot. It also depends on the Coulomb inter-
action parametrized by Uc and U = U0−Uc. Uc is added
to εm and subtracted from U0 so that H has a more sym-
metric form. The lowest energy states of H in the ε–εm
space can be seen in Fig. 1. The lowest two states how-
ever (other than the leakage state) are the candidates for
the logical qubit states, see Fig. 2.

To study dephasing in the (1, 1, 1) regime and in its
neighborhood where the hybridized |0′〉 state is one of
the lowest two states, we need to carry out separate cal-
culations according to the partitioning in Fig. 2. In ev-
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ery region, an effective, reduced Hamiltonian needs to be
found so that the problem is tractable analytically. We
start with the central, |0〉−|1〉 region. We assume that in-
side this region, not too close to its borders, all the states
other than the first three are far away in energy, and if
the tunnel couplings are small enough, we can obtain an
accurate approximation by applying the Schrieffer-Wolff
transformation35 to H keeping only |0〉, |1〉 and |2〉 and
transforming out the rest of the basis states. This in-
volves the determination of a unitary operator e−S so

that the basis transformation H̃ = e−SHeS leaves us
with a block-diagonal H̃ where the block with the states
we are interested in is effectively decoupled from the rest
of the states. We calculate this unitary operator with
S ∝ tl,r in the absence of the hyperfine field, and then we
apply it to the full Hamiltonian H with finite hyperfine
field. This is providing us with an effective Hamiltonian
in a transformed basis |ñ〉 = e−S |n〉 with n = 0 . . . 8. Up
to second order in tunnel couplings, the resulting Hamil-
tonian for the |0〉 − |1〉 region in the basis |0̃〉, |1̃〉, |2̃〉 is

H̃01 =


− 1

4J+ − 1√
3
b+ −

√
3
4 J−

√
2
3b+

− 1√
3
b+ −

√
3
4 J−

2
3b− −

3
4J+

√
2
3 b−√

2
3b+

√
2
3 b−

1
3b−

,
(6)

with exchange couplings defined as J± = Jl ± Jr, where

Jl =
4Ut2l

U2 − (ε/2− εm)2
, and (7)

Jr =
4Ut2r

U2 − (ε/2 + εm)2
. (8)

We next calculate the unitary operators that diagonal-

ize H̃01 without the hyperfine field, then we apply this

transformation to H̃01 together with the hyperfine field

to obtain H̃ ′01. Here we assume that the dephasing is
due to longitudinal noise, i.e. the wobbling of the en-
ergy levels of the Hamiltonian, while the transverse noise

in H̃ ′01, which vanishes without the nuclear field, plays
no role. For this reason, we ignore all the off-diagonal

terms in H̃ ′01 and we solve a 2 × 2 problem without a
leakage state. As we shall see, numerical tests indeed
justify this approximation. The time evolution operator

V01(t) = exp
(
− iH̃ ′01t/~

)
' I − iH̃ ′01t/~ − 1

2H̃
′2
01t

2/~2 is
constructed up to second order in time, where I is the
identity operator and ~ is the reduced Planck constant.
To extract the qubit dephasing time, V01(t) is applied
to the initial state of 1√

2
(|0′〉 + |1′〉), where |0′〉 and |1′〉

are the two lowest states of H̃ ′01. The evolution of this
pure state can be described by the corresponding density
matrix ρ01(t), and its off-diagonal element 〈0′|ρ01(t)|1′〉
characterizes the coherence of the state. The nuclear field
however randomizes the matrix elements of ρ01(t), which
we can take into account by averaging over δB1, δB2 and
δB3. Assuming that the δBi nuclear fields have an un-
correlated, normal distribution around 0 with a variance

FIG. 3. Temporal decay of the coherence 〈0|ρ(t)|1〉. The solid
line is obtained by evaluating Eq. (9) with Tϕ 01 from Eq. (10)
and c = 0, while the dots are calculated using the numer-
ical evaluation of the full problem without approximations
by taking the average of density matrices of states evolved
by H from the initial state of (|0〉 + |1〉)/

√
2 with 1000 ran-

dom realizations of the hyperfine field. Here ε/U = 0.4,
εm/U = 0.5, Uc/U = 0.2, tl/U = 0.015, tr/U = 0.01 and
g = 2.0, σz = 15µT, which corresponds to natural Si.23

Tϕ 01 = 656 ns.

of σ2
z = 〈δB2

i 〉 in the z-direction, we can calculate the
ensemble averaged mixed state ρ01(t) up to second order
in the hyperfine field. (The third powers also average to
0.) In our system with a Gaussian distributed nuclear
noise, we can use the ansatz for the coherence term

〈0′|ρ01(t)|1′〉 =
1

2

(
1− ct2

)
e
itω− t2

T2
ϕ 01 , (9)

where the second order short-time approximation is used,
for the second order being the lowest that allows for the
extraction of the dephasing time, Tϕ 01. The energy dif-
ference between |0′〉 and |1′〉 is denoted by ω and c is a
constant. Tϕ 01 can be extracted from |ρ0′1′ |2/(ρ0′0′ρ1′1′),
where ρ0′1′ is defined by (9), and where ρ0′0′ and ρ1′1′ are
the diagonal matrix elements calculated with the corre-
sponding states |0′〉 and |1′〉. The quadratic term in the
power series of |ρ0′1′ |2/(ρ0′0′ρ1′1′) equals to −2t2/T 2

ϕ 01,
from which we can obtain the dephasing time,

Tϕ 01 =

√
3~

|g|µBσz
, (10)

in agreement with Hung et al.11 Note that the quadratic
term that delivers Tϕ 01 is independent from c, which
makes c irrelevant for our analysis at the moment. It
is interesting that in the (1, 1, 1) region, the dephasing
time depends neither on the detuning parameters ε and
εm, nor on the tunnel couplings tl,r. Nevertheless, this
result agrees very well with the numerical solution of the
full problem, see Fig. 3.

We now turn to the region in the charging diagram
where the lowest two states are the |0′〉 and |7〉, see Fig. 2.



4

In this case, we use the Schrieffer-Wolff transformation
to separate the states |0〉, |1〉, |2〉 and |7〉 from the rest

to obtain a reduced, 4× 4 Hamiltonian H̃07. Since state
|7〉 is not directly coupled to any of the first three states,

the first 3 × 3 block of H̃07 is equal to H̃01. Similarly

as before, we diagonalize H̃07 such that the off-diagonal

elements of H̃ ′07 vanish for zero hyperfine fields. The
extraction of the dephasing time leads us to

Tϕ 07 =
2
√

3~

|g|µBσz

√
2 + Jl+Jr√

J2
l −JlJr+J2

r

. (11)

As we see, unlike in the (1, 1, 1) region, the dephasing
time depends on the exchange couplings here. We can
identify two limiting cases: if Jl = Jr (for example tl = tr
and εm = 0), Tϕ 07 = Tϕ 01, while if Jl � Jr or Jl � Jr,
Tϕ 07 ≈ 2~/(|g|µBσz). It can be shown that these are the
two limiting cases for the minimum and the maximum of
Tϕ 07.

To obtain results for the opposite region with state |8〉
being the lowest in energy, we need to interchange tl and
tr and change the sign of ε. This is effectively swapping
Jl and Jr, which leaves Tϕ 07 unchanged, meaning that
we can use the same formula in the opposite region,

Tϕ 08(ε, εm, tl, tr) = Tϕ 07(ε, εm, tl, tr). (12)

In the case of the |0′〉 − |3〉 region, we keep state |3〉
together with the first three states, and we repeat the
usual procedure to arrive to a somewhat more complex
expression for the dephasing time, which can be found in
Appendix B. The asymptotic expressions for two limiting
cases however are the same simple expressions we have
found before

Tϕ 03(ε, εm, tl � tr) ≈
2~

|g|µBσz
, and (13)

Tϕ 03(ε, εm, tl � tr) ≈
√

3~
|g|µBσz

. (14)

Using again symmetry considerations, we can easily
tell the dephasing time in the regions we have not covered
yet:

Tϕ 04(ε, εm, tl, tr) = Tϕ 03(−ε, εm, tr, tl), (15)

Tϕ 05(ε, εm, tl, tr) = Tϕ 03(ε,−εm, tr, tl), and (16)

Tϕ 06(ε, εm, tl, tr) = Tϕ 03(−ε,−εm, tl, tr). (17)

It can be shown that in all seven regions, Tϕ only de-
pends on the ratio of the tunnel couplings tl/tr and not
on their magnitude. This is consistent with the fact that
the off-diagonal elements of the corresponding effective

Hamiltonians H̃ ′0n do not contribute to Tϕ 0n in this ap-
proximation. The Schrieffer-Wolff transformation how-
ever relies on the assumption that the tunnel couplings
are small relative to the smallest energy difference be-
tween the two sets of the basis states that are decoupled

FIG. 4. Dephasing time in nanoseconds for realistic input
parameters: Uc/U = 0.2, tl/U = 0.015, tr/U = 0.01 and
g = 2.0, σz = 15µT, which corresponds to natural Si.23 In
the upper figure, the analytic formulas for Tϕ 0n are evaluated,
while in the lower figure, the numerical solution of the full
problem is plotted, which is also accurate close to the borders,
see the main text.

by this transformation. Here and also in general dur-
ing the calculation, we neglected terms that were small
in third or higher orders in the tunnel couplings. As a
consequence, we should expect inaccuracies at the bor-
ders between the regions of interest, if we test our results
within a distance from a border on the order of magni-
tude of the tunnel couplings.

III. DISCUSSION

We evaluated the formulas (10)-(17) for a set of real-
istic parameters in the entire shaded region in Fig. 2.
The result can be seen in Fig. 4. At the borders of
the various regions, discontinuities may appear which are
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a consequence of using different basis states in the re-
gions. These states typically hybridize close to the bor-
ders, which cannot be taken into account in our model
due to the Schrieffer-Wolff transformation. The discon-
tinuity is apparent at the border with regions on the left
and right, which can be expected from the fact that states
|7〉 and |8〉 are only indirectly coupled to |0〉 and |1〉, and
due to the second order approximation, this coupling is

lost entirely in the effective, reduced Hamiltonians H̃ ′07
and H̃ ′08. Nevertheless, a comparison to a numerical anal-
ysis reveals that due to this loose coupling there is indeed
a very sharp, step-like change at these borders, and the
overall agreement between the analytical and numerical
results is very good (see upper and lower part of Fig. 4).
The dephasing time plotted in the lower part of Fig. 4 was
calculated by the numerical evaluation of the full Hamil-
tonian H, followed by its diagonalization and the time
evolution of an initial state consisting of an equal super-
position of the lowest two eigenstates. This pure state
is then mixed by the hyperfine field and the dephasing
time is extracted from the density matrix the same way
as we did before. With this calculation, we do not need
to discriminate between important and negligible states
and the result will remain valid also close to the borders.
The darkest shade of blue, which can be seen in the nu-
merical results at the borders in question, is not present
in the colorbar for the sake of easier comparison with the
analytical results. There is a narrow peak here reaching
up to 2.5 µs at εm = 0, where we have a sharp avoided
crossing between the states that are only indirectly cou-
pled to each other.

The transition through the borders between the charge
sectors in the ε−εm space can be fast or slow in the same
sense as in the case of Landau-Zener transitions. The
characteristic speed that makes the difference depends
on the energy splitting in the avoided crossing that is
the coupling between the two states that are crossing
otherwise. If one crosses a border quickly enough, the
transitions will be non-adiabatic and we arrive to a su-
perposition of states not including the ground state in the
given region. If at the beginning, we initialize the qubit
in the lowest two states of the central region, then we

will remain in this basis of H̃ ′01, and the dephasing time
is constant and given by expression (10) for the whole
region of interest.

If one moves slowly, however, and crosses the borders
adiabatically keeping the qubit in the two lowest states,
will create a hybrid qubit with a charge character, where
two of the three electrons form a singlet state in one
dot with zero spin, thus providing a natural protection
against hyperfine noise. This explains why the dephasing
time increases in the corresponding regions neighboring
(1, 1, 1).

There is an overall two-fold rotational symmetry in the
plots meaning that Tϕ(ε, εm, tl, tr) = Tϕ(−ε,−εm, tl, tr).
The maxima can be found in the upper right and the
lower left region if tl > tr (see Fig. 4), and in the upper
left and the lower right region if tl < tr. It can be shown

FIG. 5. Dephasing time in nanoseconds for symmetric input
parameters: Uc/U = 0.2, tl/tr = 1 and g = 2.0, σ = 15µT.

that Tϕ(ε, εm, tl, tr) = Tϕ(−ε, εm, tr, tl) is valid in general.
The symmetry is even higher if tl = tr. In this

case, we have two mirror planes and Tϕ(ε, εm, tl, tl) =
Tϕ(−ε, εm, tl, tl) = Tϕ(ε,−εm, tl, tl), as shown in Fig. 5.
It follows from (10), (11) and (12) that if tl = tr, then

Tϕ(ε, εm = 0, tl, tl) =
√

3~/(|g|µBσz) in all three regions
along the ε-axis (εm = 0), which is the shortest dephas-
ing time. For typical values of σz, this minimal Tϕ can
be found in Table I. It turns out that these dephasing

TABLE I. Tϕ 01 =
√

3~/(|g|µBσz) evaluated at typical hyper-
fine field strengths.23

host material GaAs Natural Si 800 ppm 29Si

σz 2.1 mT 15 µT 1.9 µT

g −0.44 2.0 2.0

Tϕ 01 ∝ σ−1
z g−1 22 ns 0.66 µs 5.2 µs

times are on the same timescale as for single spins,11,15,32

but to be more precise, they tend to be approximately a
factor of 2 larger. Indeed, in GaAs, the single-spin de-
phasing time is usually found to be around 10 ns.25,27,32

For natural Si, Maune et al. measured a dephasing time
of 0.36µs,29 and for purified Si with 800 ppm residual
29Si content, Eng et al. obtained 2.3 µs.31

IV. CONCLUSIONS

Mapping the dephasing time of exchange-only qubits
over a wider region in the parameter space defined by the
gate potentials opens up the possibility for better designs
of pulse sequences where the important distinction has to
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be made between gate operations and keeping the qubit
intact as long as possible between subsequent gate op-
erations. Understandably, the storage of the qubit state
should be in relative protection from potentially compet-
ing noise sources, optionally even outside of the central
(1, 1, 1) region. For this reason, it is imperative to know
how much the qubit is affected by noise at different co-
ordinates in this parameter space, and how the map of
hyperfine-induced dephasing relates to the map of the
“sweet-spots” of charge noise-induced dephasing.5 Moti-
vated by this end, we calculated the pure dephasing time
of three-electron exchange-only qubits due to interaction
with the nuclear hyperfine field. As our main result, we
derived formulas for the dephasing time as a function of
the position within the stability diagram consisting of the
(1, 1, 1) charge region and the neighboring charge sectors
coupled by tunneling within the S = Sz = 1/2 spin sub-
space. The random nuclear field is taken into account by
averaging the density matrix to an ensemble of magnetic
fields up to second order. The tunnel couplings and the
time of the initial states’ evolution are also approximated
up to second order. The analytical solutions accurately
reproduce the numerical evaluation of the full problem.
A comparison with existing experimental data finds that

dephasing of single-spins is generally faster by a factor
of 2 than dephasing of three-electron spin qubits. We
demonstrated however that dephasing in our system can
be further reduced by a factor of 2/

√
3 by moving the

qubit to neighboring hybrid qubit regions where the sin-
glet state of two electrons provide additional protection
from nuclear noise. Our analysis also applies to the res-
onant exchange (RX), always-on exchange-only (AEON)
and hybrid qubits.
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Appendix A: The Hamiltonian block Hc

The block of H that describes the states around the
(1, 1, 1) region with a charge character

Hc =



U − br + 1
2ε− εm 0 0 0 tr 0

0 U + bl − 1
2ε− εm 0 0 0 tl

0 0 U + bl + 1
2ε+ εm 0 −tl 0

0 0 0 U − br − 1
2ε+ εm 0 −tr

tr 0 −tl 0 U + Uc + ε 0

0 tl 0 −tr 0 U + Uc − ε


. (A1)

Note that the states |7〉 and |8〉 are coupled to the (1, 1, 1)
states only in this block and only to second order in the
tunnel couplings tl,r. So that the Schrieffer-Wolff trans-
formation works, the diagonal elements of Hc must be
much larger in absolute value than tl,r.

Appendix B: Analytical expression for Tϕ 03

In the case of the |0′〉 − |3〉 region, we obtain the de-
phasing time

Tϕ 03 =
2~

|g|µBσz
√
c27 − c7c8 + c28

, where (B1)

clr =
√
J2
l − JlJr + J2

r ,

c3 = 2− (ε− 2εm)/U, c4 = t2l /U,

c5 = 12 (Jl − Jr)2 c43c2lr +
(
c3Jr (16c4 + c3 (c3Jl + 2clr))

−
(
8c4 + c23Jl/2

)
(8c4 + c3(c3Jl/2− clr))− 4c23J

2
r

)2
c6 = c3clr (8c4 + c3(c3Jl/2− 2Jr)) /c5,

c7 = 1− 2c6
(
8c4 + c23Jl/2

)2
+ 4c6

(
c5c6 + 2c23c

2
lr

)
Jr/clr,

and c8 = 2c6

(
64c24 + 8c3c4 (c3Jl − clr − 2Jr)

+c23
(
Jl
(
c23Jl/2− (4 + c3) clr

)
/2− c3JlJr + 4J2

r

) )
.
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