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Analytic expressions for chemical potentials without any approximations are derived for all types
of extrinsic (doped) gapped Dirac-cone materials including gapped graphene, silicene, germanene
and single-layer transition metal dichalcogenides. In setting up our derivations, a reliable piecewise-
linear model has been established for calculating the density-of-states in molybdenum disulfide,
showing good agreement with previously obtained numerical results. For spin- and valley-resolved
band structures, a decrease of chemical potential with increasing temperature is found as a result
of enhanced thermal populations of an upper subband. Due to the broken symmetry with respect
to electron and hole states in MoS2, the chemical potential is shown to cross a zero-energy point
at sufficiently high temperatures. It is important to mention that the chemical potential at a fixed
temperature can still be tuned by varying doping density and band structure of a system with an
external electric or strain field. Since a thermal-convolution path (or a chemical-potential-dependent
response function for the thermal convolution of fermions) starting from zero temperature must be
selected in advance before obtaining finite-temperature properties of any collective quantities, e.g.,
polarizability, plasmon modes and damping, a control of their thermal dependence within a certain
temperature range is expected for field-tunable extrinsic gapped Dirac-cone materials.

PACS numbers: 73.21.-b, 73.63.-b, 71.45.Gm, 73.20.Mf

I. INTRODUCTION

Despite the fact that the microscopic properties of various low-dimensional materials have been meticulously ex-
amined over a fairly long period of time, 1,2 the only successful fabrication of graphene in 2004 3,4 stimulated an
intriguingly new research effort devoted to the study of atomically thin two-dimensional (2D) materials. In partic-
ular, it was by virtue of its unique, yet unexpected, massless Dirac electronic properties that led to high mobility
(200,000 cm2/V·s) and ballistic transport properties. 5–7 At the corners of the first Brillouin zone, referred to as K
and K ′ points, there is no energy band gap and the dispersions represent a linear Dirac cone structure. Due to the
existence of such an energy spectrum, opening a sufficiently large and tunable energy gap in graphene has become
an important issue in order to enable electron confinement. Researchers tried to achieve this by adjoining a variety
of insulating substrates 8–11 or even expose graphene to circularly-polarized radiation. 12 In finite-width nanoribbons,
their energy band structure and gap are modified by the type of insulating ‘cousin’ that is introduced. 13–15

In order to create a truly tunable band gap, one must use a material with large spin-orbit coupling or a buckled
structure. In this regard, silicene, a 2D silicon structure, was deemed a good candidate. Single-monolayer Si possesses
a buckled structure simply because of the larger ionic size of silicon compared to carbon. This results in a large spin-
orbit band gap of 1.55meV and the possibility to modify its energy spectrum by applying an external perpendicular
electric field 16–18. These properties make it display an experimentally realizable Kane-Mele type of quantum spin
Hall effect, or a topological insulator state, because of the existence of time-reversal symmetry. 19,20 Unlike graphene,
the band structure of silicene and its nanoribbons 21–23 directly depend on spin and valley indices which lead to plenty
of nanoelectronic, valleytronic and spintronic applications.

Germanene, the most recently discovered and fabricated member of atomically thin buckled 2D honeycomb lat-
tices, 24–29 demonstrates substantially larger Fermi velocities and a band gap of 20 − 90meV . Grown by molecular
beam epitaxy 30 and investigated with x-ray absorption spectroscopy, Ge layers demonstrated satisfactory agreement
between the experimentally obtained and theoretically predicted results for its inter-atomic distance.
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Another important class of innovative 2D materials is represented by direct-bandgap transition metal dichalco-
genides, or TMDC’s. Their chemical makeup consists of a transition metal atom M, such as molybdenum or tungsten,
and two identical chalcogens C, i.e., sulfur, selenium or tellurium. Symbolically, TMDC’s are described as MC2. In our
consideration, we focus on MoS2 due to it being the most studied representative. This material exhibits a semicon-
ductor band structure with a very large direct gap of 1.78 eV , in contrast to its bulk states with an indirect gap of
1.3 eV , and substantial spin-orbit coupling. 31 Strictly speaking, MoS2 is not a Dirac material since the mass terms
play a crucial role in its energy dispersions. However, its low-energy Hamiltonian contains a t0a0 Σ · k term, which
corresponds to the linear Dirac-cone dispersion.

An effective two-band continuum model and a lattice Hamiltonian 32 using the tight-binding model can account
for the hybridization of the d orbitals of Mo and the p orbitals of S atoms. It provides an adequate description for
its low-energy band structure and predicts a large spin-orbit splitting. 33 Due to the breaking of inversion symmetry
and spin-orbit coupling, spin and valley physics is observed in all group-IV dichalcogenides, including MoS2. 34 The
low-energy states of such systems are no longer massive Dirac fermions since there is a difference between electron and
hole masses as well as trigonal warping effects. 35 Strain engineering, used to tune optical and electronic properties of
conventional semiconductors, has also been applied to MoS2, and its modified band structure has been theoretically
calculated. 36 These unique electronic properties of a single-layer MoS2 were later employed to create high-performance
transistors operating at room temperature. 37 Such electronic models and effective Hamiltonian have also been used to
investigate the collective properties of TMDC’s 38 and their influence on the bandgap transition. 39 In optoelectronics,
the band structure, spin and valley properties of MoS2 could be tuned successfully by an off-resonant dressing field. 40

Current many-body and quantum-field theory methods in condensed matter physics 41,42 have provided useful
techniques to understand the electronic and transport properties of low-dimensional solids, including diverse buckled
honeycomb materials. 43–45 In most of these theories, we find the dynamical polarization function, or polarizability,
to be the mainstay and fundamental quantity in describing the screening of an external potential by interacting
electrons. 38,46–49 In addition, the dynamic polarization function plays a key role in calculating plasmon excitations,
due to charge-density oscillations, which occur in metals and doped semiconductors with free electrons. Specifically,
the plasmon dispersion relations, along with their lifetimes, have been investigated theoretically for a wide range of
2D Dirac systems. 47,50–55 The interest in graphene plasmons is due in part to the fact that these excitations have
no classical counterpart. 56 Moreover, there has been a considerable experimental effort for investigating graphene
plasmons, gate-tuning, infrared nano-imaging and confinement. 57–61 Graphene plasmonic resonances and instability
at various wavelengths could be used for photodetectors in the terahertz-frequency range. 62 Furthermore, all these
techniques could be successfully leveraged to the recently fabricated materials, as discussed in the present work.

Plasmonic applications, on the other hand, are largely based on nanoscale hybrid systems, in which graphene plas-
mons are coupled to surface-plasmon excitations in metals. Technology has come a long way in combining graphene
with prefabricated plasmonic nanoarrays and metamaterials to construct plasmonics-based tunable hybrid optical de-
vices. 63 Therefore, accurate knowledge of plasmon-mode dispersions in graphene interfaced with metallic substrates
becomes crucial. Graphene-metal contacts are important components for all such optoelectronic devices. Conse-
quently, exploration of plasmon modes at these metallic interfaces becomes a mandatory step toward fabricating
prototype devices. High-resolution electron-energy-loss spectroscopy (EELS) has been employed to investigate plas-
mon excitations at the surface of Bi2Se3 to disclose the interplay between surface and Dirac plasmons in topological
insulators 64. Plasmons, their behavior, dispersions, quenching and environmental effects, have been studied thor-
oughly in epitaxial graphene, air-exposed graphene-Ru contacts, graphene on Pt3Ni (111), and graphene grown on
Cu (111) foils. 65–69

In all cases under investigation, we need to distinguish between extrinsic materials, i.e., a sample initially doped at
zero temperature T = 0, and intrinsic materials with zero Fermi energy and a completely empty conduction band. In
the latter case, both the plasmon excitations and electrical conductivity are suppressed at T = 0 due to the absence of
free electrons. At a finite T , on the other hand, the conduction band could still be partially populated by thermally-
excited electrons from a valence band. 70,71 For graphene with a zero bandgap, the thermally-excited carrier density
n0 is scaled as n0 w T 2 and the plasmon frequency Ωpl is on the order of Ωpl w qT .

The properties of intrinsic finite-T plasmon excitations have been examined systematically for various materials
including silicene. 72 In contrast, extrinsic or doped structures at finite T suffer from a difficulty to obtain an analytical
and accurate expression for the T -dependent chemical potential µ(T ), i.e., the selection of a thermal-convolution path
or equally a µ(T )-dependent response function for the thermal convolution of fermions. It is known that µ(T ) decreases
with increasing T , and its value could be found from carrier-density conservation 70,73. Our main objective here is to
obtain a set of non-integral, transcendental equations for a wide class of Dirac gapped materials with linear density-
of-states (DOS), i.e., gapped graphene, silicene, germanene and TMDC’s at arbitrary temperatures and densities. In
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this way, many important physical quantities at finite temperatures, such as the dynamical polarization function, can
be easily calculated by using a thermal-convolution scheme.

The range of temperature considered here is physically limited by the assumption of a linear or gapped Dirac
cone for filling doped electrons to high conduction-band energies. Deviations from the Dirac cone are found for
energies as high as 0.5 eV , 74,75 leading to various effects on plasmons, e.g., anisotropy, splitting and the existence
of an additional acoustic plasmon branch. 76,77 However, such high energies are far from the thermal-energy range
given by kBT v µ(T = 0) ≡ EF (EF is the Fermi energy). In our current calculations for silicene, the energy is
in units of E0 = 6.28meV while the wave-number is in units of k0 = 1.77 · 105 cm−1. However, for MoS2, due to

its significant energy bandgap, the energy units is chosen E
(1)
0 = 54.6meV , which corresponds to a larger electron

density 1012 cm−2.

Ref. [78] is devoted to investigation of the plasmon hybridization in silicene using time-dependent density-functional
theory in the random-phase approximation for both intrinsic and extrinsic types of materials, which is especially
relevant to our work. Two intrinsic plasmon interband modes have been reported at ~ω > 1.5 eV , i.e., a hybridized
π plasmon, which appears due to sp2 and sp3 hybridization specifically in silicene, and a stronger conventional π-σ
plasmon. For ~ω < 1 eV , two extrinsic intraband modes have been found, one of which shows strong anisotropy.

We note that chemically doped graphene might boost plasmon decay rates due to additional activated scattering
mechanisms. It has been determined from the first principles that monolayer and bilayer graphene that are doped
with alkali and alkaline earth metals exhibited new damping channels in the presence of both in-plane dopant and out-
of-plane graphene lattice vibrations, as well as electron transitions between localized dopant and graphene electronic
states. 79

At the energy w 0.2 eV and above, optical phonons cause a substantial effect on graphene plasmons over a wide
range of temperatures. Plasmons, relaxation-time and optical conductivity might be affected by the electron-phonon
coupling for given frequencies. 80 In the range from ~ωOP and up to the interband threshold, plasmon decay channels
associated with emission of an electron-hole pair by an optical phonon play an important role for the plasmon decay.
However, the low-temperature effect of acoustic phonons on the plasmons in graphene for ~ω v EF is considerably
smaller. As described in Ref. [50], the total graphene dielectric function in the presence of acoustic phonons is given
by εtot(q, ω) = ε0 − Vq

[
Π(0)(q, ω) + Pion(q, ω)

]
, where Π(0)(q, ω) is our considered electron polarization function, and

Pion(q, ω) = 2E(0)q2/(~ω)2. While both polarizabilities have similar v q2/ω2 behavior common for a two-dimensional
materials, the ion polarization coefficient E(0) = 10−5 eV is on the order of the ion confinement energy, and therefore
is negligible. Such effect should also be present in silicene at about the same level due to the specified ratio of the
atomic masses of Si and C.

Certainly, this situation changes at relatively high temperatures. However, all the observed and theoretically
studied phonon scattering mechanisms disappear (freeze) at low temperatures (comparable with the electron Fermi
energy). As a result, most existing finite-temperature transport models leave out any phonon effects. 73,81,82 The
main damping channels correspond to electron scattering due to charged impurities, intrinsic thermal phonons in
graphene and dielectric losses to the substrate. 83

Traditionally, the T dependence of many physical quantities has been studied passively, e.g., the T dependence of a
device performance is measured only after its fabrication. However, device’s thermal properties can also be designed in
advance (actively) for a particular T range. By tuning µ(T ) around a finite T with either doping density or bandgap,
the required thermal dependence can be achieved through choosing a specific thermal path, i.e., chemical potential
µ(T ), for the response function, 1/{2kBT (1+cosh[(µ(T )−x)/kBT ])}, in a thermal convolution 84. Physically, once the
µ(T ) dependence becomes known, one can obtain the finite-T dynamical polarization function from Eq. (18), which
is a key component for all relevant many-body calculations. These include optical absorption, electronic transport,
plasmon excitations as well as electron exchange and correlation energies. 85 Here, we focus on finite-T plasmon
excitations, demonstrating doping effects on modifications of plasmon-energy dispersions at intermediate T . If T
becomes high, i.e., kBT � EF , thermal excitation of electrons will dominate over doping effects.

The rest of the paper is organized as follows. We derive the implicit analytic equations for the chemical potential
at a finite T for all types of Dirac structures with linear DOS in Sec. II. In Sec. III, we calculate the finite-T dynamic
polarization function which includes the single-particle-mode frequencies. These single-particle modes combine with
a charge cloud to form weakly-interacting quasiparticles that oscillate collectively at a series of characteristic plasma
frequencies. Here, our emphasis has been put on simple cases with gapped graphene and silicene at intermediate T for
which doping still plays a crucial role. We further study non-local, hybrid plasmon modes in an open system which
contains a semi-infinite conductor coupled via Coulomb interactions to an embedded doped 2D layer. Our concluding
remarks and a concise discussion are presented in Sec. IV. We also provide detailed derivations of the DOS for silicene
and MoS2 in Appendix A, as well as their corresponding explicit expressions for µ(T ) in Appendix B.
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II. THERMAL-CONVOLUTION PATHS

The quantum natures of electrons and holes in 2D materials are maximized at T = 0. At finite T , however, a
thermal convolution of these quantum states must be done so as to find the T dependence of electronic properties.
The final stage of this thermal convolution depends on the chemical potential µ(T ) of the systems under consideration,
i.e., the selection of the so-called convolution path. Such convolution paths can be switched by controlling bandgaps
of systems through an applied electric field or tuned by electron doping densities through a depletion gate.

In this section, we present our analytical calculations for µ(T ) as a function of T . By starting from a value equivalent
to the Fermi energy EF at T = 0, µ(T ) usually decreases with increasing T . Its specific value depends on multiple
material parameters such as energy bandgaps, Fermi velocities, density of states (DOS) of electrons above and holes
below the zero energy. Thus, for a conventional 2D electron gas (2DEG) with no holes, µ(T ) becomes negative above
a certain temperature. However, such a phenomenon does not appear in a Dirac system with a symmetry between
electron and hole states. Here, we are going to provide closed-form transcendental equations for µ(T ) in a number of
Dirac systems, including graphene, buckled honeycomb lattices, and transition metal dichalcogenides.

A. Buckled Honeycomb Lattices

One of the most outstanding features of silicene and other buckled honeycomb lattices is the existence of two pairs
of doubly-degenerate energy subbands and two inequivalent bandgaps. These include a fixed intrinsic spin-orbit gap
2∆SO and a tunable sublattice-asymmetry gap ∆z induced by a perpendicular electric field Ez. For low Ez, we find
∆z = Ez d⊥ (assuming Ez ≥ 0), where d⊥ is the out-of-plane displacement of a buckled lattice.

The low-energy model Hamiltonian for a buckled honeycomb lattice has been found as 16,17

Ĥξ,σ = ~vF (ξkxτ̂x + ky τ̂y)⊗ Î2×2 − ξ∆SOΣ̂z ⊗ τ̂z + ∆z τ̂z ⊗ Î2×2 , (1)

where k = (kx, ky) is a 2D wave vector of electrons, the Fermi velocity vF = 0.5 × 108 cm · s−1 is half of that for

graphene, ξ = ±1 is the K/K ′ valley index, τ̂x,y,z and Σ̂x,y,z are Pauli matrices in two different spaces, i.e., pseudospin
and real spin of electrons.

After introducing a spin index σ = ±1, we can rewrite Eq. (1) in a block-diagonal matrix form

Ĥξ,σ =

 −ξσ∆SO + ∆z ~vF (kx − iky)

~vF (kx + iky) ξσ∆SO −∆z

 . (2)

As a result, the associated energy dispersions become

εγξ,σ(k) = γ

√
(ξσ∆z −∆SO)

2
+ (~vF k)

2
, (3)

where γ = ±1 labels either the electron or hole state similar to graphene with a finite or zero bandgap. The dispersions
in Eq. (3) represent two pairs of spin-dependent energy subbands for each valley, leading to two different bandgaps of
|∆SO−ξσ∆z|, i.e., ∆< = |∆SO−∆z| and ∆> = ∆SO+∆z. Clearly, both energy gaps depend on Ez and two subbands
correspond to ξσ = ±1. Small or zero Ez is associated with a topological insulator (TI) state with ∆z < ∆SO. Once
∆SO = ∆z is reached, we are left with a metallic gapless state having ∆< = 0, which appears as a valley-spin polarized
metal (VSPM). For even larger Ez, we have ∆z > ∆SO, leading to a standard band insulator (BI) state.

Here, the DOS is defined by

ρd(E) =

∫
d2k

(2π)2

∑
γ=±1

∑
ξ,σ=±1

δ
(
E− εγξ,σ(k)

)
, (4)

and for silicene (see Appendix A) it is calculated explicitly as
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FIG. 1: (Color online) Energy dispersions in (a) and density-of-states (DOS) in (b) for silicene. Panel (a) represents low-energy
dispersions around K valley (ξ = 1), where σ = ±1 relates to two inequivalent bandgaps ∆< and ∆>. Also in (a), the linear
dispersion (dashed lines), corresponding to zero bandgaps, is included for comparisons.

ρd(E) =
1

π

∑
γ=±1

E
~2v2

F

∑
i=<,>

Θ

(
E
γ
−∆i

)
, (5)

where Θ(x) is a unit-step function. We find from Eq. (5) that for systems sharing the same Dirac-cone characteristics
with an arbitrary energy gap, the DOS is always linear, analogous to graphene. Experimentally observed linear V -
shaped DOS was used to verify the Dirac-cone dispersion for germanene. 86 However, ρd(E) becomes finite only above
∆<, demonstrating the importance of a bandgap.

For finite T , µ(T ) of an electronic system with a fixed doping density n can be computed based on the conservation
of net electrons (ne) and holes (nh). This yields

n = ne(T )− nh(T ) =

∞∫
0

dE ρd(E)fγ=1(E, T )−
0∫

−∞

dE ρd(E) [1− fγ=1(E,T)] , (6)

where fγ=1(E, T ) = {1 + exp[(E− µ(T ))/kBT ]}−1 is the Fermi function for thermal-equilibrium electrons.

For silicene, the doping density n at T = 0 K can be related to EF in a straightforward way. If only the lower
subband is populated, we obtain EF from

n =
1

2π

E2
F −∆2

<

~2v2
F

. (7)

Alternatively, if both subbands are populated by doping at T = 0 , then we get the relation

n =
1

π

1

~2v2
F

[
E2
F −

1

2

(
∆2
< + ∆2

>

)]
, (8)

which can be applied to evaluate EF with a fixed n. When EF = ∆>, it gives rise to a critical density nc =
2∆SO∆z/π~2v2

F for the starting occupation of the upper subband.

For fixed n and T , µ(T ) of silicene could be obtained by numerically solving the following equation 87,88

(
~vF
kBT

)2

n =
∑
γ=±1

γ

π

∑
i=<,>

(
−Li 2

{
−exp

[
γµ(T )−∆i

kBT

]}
+

∆i

kBT
ln

{
1 + exp

[
γµ(T )−∆i

kBT

]})
, (9)

where Li 2(x) is the so-called polylogarithm function 89,90. Here, we derive Eq. (9) for µ(T ) at arbitrary T , and EF
can be found from its solution at T = 0 . Although this equation is transcendental and cannot be solved algebraically,
a quasi-analytic or one-step numerical solution could be obtained easily for any T without performing an integration
as described in Eq. (6). For MoS2, another equation for µ(T ) has been derived in Appendix B.

µ(T ) for silicene depends on two energy bandgaps ∆i with i =<, >. Our approach, as discussed in Appendix B,
remains valid for a variety of materials with a linearly energy-dependent DOS, including MoS2. As a special case,
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FIG. 2: (Color online) µ(T ) for graphene, silicene and a 2DEG. Panel (a) presents µ(T ) with fixed EF /E0 = 1 for the 2DEG
(black solid curve), gapless graphene (red solid curve), graphene without holes (blue dash-dotted curve), graphene with reduced

hole DOS ρ
(h)
d (E < 0) = ρ

(e)
d (E > 0)/2 (green dashed curve), and graphene with reduced electron DOS ρ

(e)
d (E > 0) = ρ

(h)
d (E <

0)/2 (orange dashed curve). Plots (b) and (c) display µ(T ) for gapped graphene with fixed EF /E0 = 1 and EF /E0 = −1 for
electron and hole doping, respectively, in which each curve is associated with a specific energy gap ∆0, as described schematically
in the two insets. In (d), µ(T ) of silicene is plotted with both subbands filled for fixed EF /E0 = 1, where ∆</E0 = 0.6 while
∆>/E0 increases from 0.6 to 0.9 in steps of 0.1. Plot (e) presents a comparison of µ(T ) with fixed n = 1 × 1011 cm−2 for
electron doping in four different cases as illustrated by four insets, including graphene with ∆0 = 0 (black solid curve); gapped
graphene with ∆0/E0 = 0.7 (red dashed curve); silicene with ∆< = 0, ∆>/E0 = 1.4 (blue dash-dotted curve); and silicene
with ∆</E0 = 0.7, ∆>/E0 = 2.1 (green dashed curve). Panel (f) shows silicene µ(T ) for kBT � EF and ∆SO/E0 = 0.7 while
∆z/E0 increases from 0.70 to 0.90 in steps of 0.05, where n = 1× 1011 cm−2 is fixed for electron doping.

Eq. (9) also describes µ(T ) for gapped graphene with two degenerate subbands, i.e., ∆< = ∆> = ∆0. For gapless

pristine graphene with ∆0 = 0 and πn = [EF /(~vF )]
2
, Eq. (9) is simply reduced to

1

2 (kBT )
2 E

2
F = −

∑
γ=±1

γ Li 2

{
−exp

[
γ µ(T )

kBT

]}
. (10)

If the temperature is low such that kBT � EF , Eq. (10) further reduces to those reported in Refs. [70,73,91].

All materials considered in this paper could physically be classified by their symmetries and degeneracies of energy
subbands. As an example, graphene represents the simplest case with a fourfold spin and valley degeneracy for the
electron and hole energy bands ±

√
(~vF k)2 + ∆2

0. For silicene and germanene, although their energy dispersions
show full symmetry with respect to electrons and holes, they depend on spin and valley indices and are only doubly
degenerate. Finally, MoS2 displays broken symmetry between pairs of electron and hole subbands, along with subband
splitting within the hole pair for different spins. Although the thermally excited electrons and holes, which are
measured by µ(T ), do not change the carrier conservation in Eq. (6), the broken symmetry between electron and hole
subbands make them contribute differently to the modification of electronic properties.

Results for silicene energy dispersions and DOS ρd(E) are presented in Fig. 1. Here, we only consider the K valley
with ξ = 1 and two bandgaps ∆> and ∆< for σ = ±1. The spin splitting of subband pairs for electrons and holes is
found significant and symmetrical but is reduced and eventually merges with the spin-degenerate linear dispersions
of gapless structure at large k values. As one can see, whenever a subband is occupied, as indicated in the insets of
Fig. 1(b), a step develops in ρd(E). It is evident that ρd(E) for both silicene and gapped graphene becomes proportional
to E, i.e., the DOS for Dirac materials with or without an energy gap is the same if the zero energy point is set at the
gap center. In addition, since no electronic states exist inside the gap region, one requires ρd(E) = 0 for |E| < ∆</2.
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We display in Fig. 2 the calculated µ(T ) for graphene and buckled honeycomb lattices, where we find their T
dependence is very sensitive to the band structure when either the Fermi energy EF in (a)-(d) or the doping density
n in (e)-(f) is fixed at different values. A comparison is shown in Fig. 2(a) with fixed EF = E0 for various electron
doped systems, including a 2DEG with a parabolic energy band, no hole states and a constant DOS, graphene with
ρd(E) v E, as well as three model structures, i.e., graphene without hole states, graphene with doubly prevailing
electron DOS ρd(E > 0) = 2ρd(E < 0) or doubly prevailing hole DOS ρd(E < 0) = 2ρd(E > 0). At low T , all µ(T )
curves for gapless graphene, except for the 2DEG one, are nearly identical since holes do not play a role in this case,
i.e., 1 − fγ=1(E, T ) → 0. As T increases and becomes comparable to EF , the thermally-excited holes are no longer
negligible, which suppresses the reduction of µ(T ) and prevents it from going negative for graphene. Such a hole effect
is highlighted in a hole-dominating system (labelled as > h(+)) with ρd(E > 0) = 2ρd(E < 0), where µ(T ) increases
with T even above its starting value EF . Therefore, we conclude that it is the total electron-hole symmetry, instead
of the energy gap, that keeps µ(T ) non-negative at high T . In the remaining panels of Fig. 2, we study µ(T ) as a
function of T for graphene and silicene with different band structures or gaps. In plots (b)-(d), we keep EF = E0 fixed
so that the actual doped electron density n becomes smaller with a larger energy gap as can be seen from Eq.(8).
Alternatively, we can fix the doping density n as in plots (e)-(f) so that the Fermi energy EF will increase with the
energy gap.

In Fig. 2, plots (b) and (c) are used to demonstrate complete reflection symmetry of µ(T ) between electron and hole
doping for all energy bandgaps, which is a manifestation of γ = ±1 symmetry in these electronic states for arbitrary
T . Silicene with both subbands filled in panel (d) exhibits qualitatively similar finite-T features as those of gapped
graphene in (b) for electron doping. It is clear that only gap values but not types of states (TI or BI) are relevant
in determining µ(T ). If EF for silicene is set lower than but very close to the bottom of its ∆> subband, this upper
subband is expected to be thermally populated as T increases from zero, leading to an accelerated reduction of µ(T )
at low T as shown by the blue dash-dotted curve in (e). For the same reason, silicene with ∆< = 0 shows a similar
feature to gapped graphene at high T , where EF is measured from the graphene zero-energy point. Furthermore, by
modifying the band structure so as to populate/depopulate the upper ∆> subband in (f), we find µ(T ) develops a
significant reduction with T whenever the upper subband is occupied. Therefore, either by changing band structure
with a perpendicular electric field for a fixed doping density or by varying the electron doping density with a depletion
gate for a fixed band structure, we are able to select different paths for thermal convolutions and tune T -dependent
electronic properties along the selected convolution path, e.g., plasmon dispersion and quasiparticle lifetime 91.

B. Transition Metal Dichalcogenides

In the previous discussion for silicene, γ = ±1 symmetry related to electron and hole states is retained. Such
a symmetry, however, breaks down for MoS2. The broken electron-hole symmetry is expected to have a profound
influence on selecting paths for a thermal convolution of quantum states of electrons and holes, as well as in the T
dependence of electronic properties for a given convolution path. For monolayer MoS2, its low-energy electronic states
could be effectively described by a two-band model Hamiltonian 32,34,38

Ĥξ,σd =

(
1

2
ξσ λ0 +

~2k2

4me
α

)
Î2×2 +

(
∆

2
− 1

2
ξσ λ0 +

~2k2

4me
β

)
Σ̂z + t0a0 Σ̂ξ · k , (11)

whose important feature includes a major gap parameter ∆ = 1.9 eV , which results in an actual band gap w 1.7 eV ,
as well as a spin-orbit coupling parameter λ0 = 0.042 ∆, which represents a smaller but essential correction to the
hole subband splitting and the bandgap. The energy subbands now become spin (σ) and valley (ξ) dependent due
to lifting of the degeneracy. The electron hopping parameter t0 = 0.884 ∆ and the lattice constant a0 = 1.843 Å
shape the Dirac cone term in Eq. (11) as t0a0 = 4.95 × 10−29 J · m, counting up to ≈ 0.47 of ~vF in graphene.
Next, we turn to v k2 mass terms with α = 2.21 = 5.140β in which me is the free-electron mass. The Fermi wave
number kF =

√
πn is determined 110 by an experimentally accessible range for electron and hole doping densities

n = 1010 ∼ 1012 cm−2, giving rise to kF w 106 ∼ 107 cm−1. In addition, the excluded anisotropic trigonal warping
term t1a

2
0 (Σ̂ξ · k) σ̂x(Σ̂ξ · k) in Eq. (11) is found insignificant since it is around 0.1 eV = 0.053 ∆ and too small to

contribute to the energy dispersion of electrons.

The associated energy dispersion relation is given by εξ,σγ (k) = Eξ,σ0 (k) + γ
{

[∆ξ,σ
0 (k)]2 + (t0a0k)2

}1/2

, which is

formally identical to gapped graphene 38,92 but with a k-dependent gap term ∆ξ,σ
0 (k) = ~2k2β/(4me)+∆/2− ξσ λ0/2,

as well as a k-dependent band shift Eξ,σ0 (k) = ~2k2α/(4me)+ξσ λ0/2. As a leading-order approximation, by neglecting
all higher order terms O(k4), we find
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FIG. 3: (Color online) Energy dispersions and density-of-states (DOS) for molybdenum disulfide in (a) and (b). Panel (a)
represents low-energy dispersions around K valley (ξ = 1) for MoS2. Linear dispersion (dashed lines), corresponding to gapless
material with ~vF = a0t0, is also included for comparison. The wave-vector range in (b) is enlarged to highlight a small
curvature for MoS2 energy dispersions. Comparisons of MoS2 results are presented for dispersions (in (a)) and DOS (in (b)),
which are calculated respectively by Eq. (13) (black dashed curve in (a) and black solid curve in (b)) and by Eq. (12) (red solid
curves). The exact numerical calculation for MoS2 DOS is also displayed in (b) (wine dashed curve) as a demonstration for the
accuracy of Eq. (12).

εξ,σγ (k) w
1

2
ξσλ0 +

α~2

4me
k2 +

γ

2

{[
(2t0a0)2 + (∆− ξσ λ0)β~2/me

]
k2 + (∆− ξσ λ0)

2
}1/2

, (12)

which is the major result employed to describe the energy dispersion of MoS2 in this paper. It should be noticed that
the w k4 terms, trigonal warping and anisotropy are all considered as non-essential even though they may produce
certain discrepancies in the calculated DOS.111 We also find (see Appendix A) that the curvature of MoS2 energy
subbands is usually so small that even the highest possible doping density 1013 cm−2 only leads to EF v λ0. Thus,
at zero or low T , we will not consider any high-energy corrections to Eq. (12). At very high T , on the other hand,
the electronic states far from the Dirac point could be thermally populated by electrons. 91 In this case, our model
Hamiltonian in Eq. (11) and the simplified dispersion relation in Eq. (12) become inaccurate. Therefore, our main
focus here will be limited to small but finite T for which the doping density and EF can still play an important role
in selecting convolution paths beyond the O

(
T 2/T 2

F

)
approximation introduced in Ref. [70].

Similar to buckled honeycomb lattices, the spin and valley indices of MoS2 always appear as a product. Therefore,
we can use a single composite index ν = ξσ to specify an energy band for the rest of our discussion. By neglecting the
mass terms in Eq. (12) as a vanishing-curvature approximation (formally me → ∞), 93 the result in Eq. (12) reduces
to

ενγ(k) w νλ0/2 + γ
√

(t0a0)2k2 + (∆− νλ0)2/4 . (13)

This simplified expression has a few advantages, including simplicity and its formal resemblance to gapped graphene,
so that known DOS, wave function, polarizability and many other quantities can be adopted. Additionally, it also
provides an adequate description for the band structure of MoS2 by taking into account a large gap parameter and
ν-dependent splitting of two hole subbands. Nevertheless, we still find that the mass terms must be taken into account
for accurate evaluations of the DOS and most other T -dependent electronic properties of MoS2. As demonstrated in
Appendix A, even in the simplest parabolic approximation for k → 0, the mass terms lead to a contribution comparable
to the Dirac cone and bandgap parts of the Hamiltonian in Eq. (11). On the other hand, a very small curvature of
energy subbands due to a large bandgap gives rise to a tremendous DOS (proportional to effective mass). Therefore,
even a correction term α/(4me), which is hardly noticeable in the electron band structure, becomes significant for
DOS. In fact, we have to drop the oversimplified result in Eq. (13) in calculations of the DOS, and the importance of
the mass and higher-order terms for plasmon dispersion was discussed in Ref. [38].

Calculated energy dispersions and DOS of MoS2 are presented in Fig. 3. For MoS2, we only consider the K valley
ξ = 1 with a single bandgap ∆ and a hole subband splitting 2λ0. The MoS2 energy dispersions in (a) are very weak
due to its very large bandgap ∆, and the k-dependent spin dependence of electron energy bands is also small. By
taking into account all the terms in Eq. (11), a rigorous numerical calculation is performed and the exact DOS result
of MoS2 is presented in (b). As can be seen, whenever a subband is populated, a step occurs in the DOS. Since no
electronic and hole states are available inside the gap region, we simply have ρd(E) = 0 for −(∆/2− λ0) < E < ∆/2.
Although the energy difference calculated from Eqs. (12) and (13) is small in (a) for electron and hole subbands, the
corresponding change of DOS in (b) is significant due to very small curvature of subbands. In fact, we find the DOS
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TABLE I: Piecewise density of states ρd(E) = Ai + Bi E of monolayer molybdenum disulfide for each of three non-degenerate
subbands, along with ρd(E) = 0 within the gap region −∆/2 + λ0 < E < ∆/2.

Range Index Energy Range γ ν Ai[1/(t0a
2
0)] Bi[1/(t0a0)2]

i = 1 E < −∆/2− λ0 −1 +1 0.0174 −0.169
i = 2 |E + ∆/2| < λ0 −1 −1 0.043 −0.308
i = 3 E > ∆/2 +1 0.078 +0.179

from Eq. (13) is nearly twice as large as the exact one. 38,92 In contrast, the DOS calculated from Eq. (12) appears as
a very good approximation to the exact one, especially in the low-energy range.

Numerically, we consider a piecewise linear approximation to ρd(E) of MoS2 for each of three subbands, i.e.,
ρd(E) = Ai + Bi E and ρd(E) = 0 within the gap region −∆/2 + λ0 < E < ∆/2. The expansion coefficients {Ai, Bi}
for three subbands are listed in Table I. We adopt these coefficient values for ρd(E), which arise from the exact
numerical calculations in order to achieve the highest possible precision and credibility for our finite-T derivations.
However, our effective model, presented in Appendix A, also gives out DOS results which show good agreement with
these numerical values and could be applied to decisive estimates of various collective calculations for MoS2 in the
next section.

Once the piecewise linear DOS is found, we can easily calculate EF for a fixed n of doped electrons (e) or holes
(h). The new ingredient here is that the full ρd(E) is not proportional to energy E (different from Eq. (13)) so that
EeF for spin-degenerate electron subbands is determined from

ne =

(
EeF −

∆

2

) [
A3 +

B3

2

(
∆

2
+ EeF

)]
, (14)

or equivalently,

EeF =
1

2B3

[
−2A3 +

√
(2A3 +B3 ∆)

2
+ 8neB3

]
. (15)

For hole doping, on the other hand, its Fermi energy EhF differs from the electron doping case, i.e.,

EhF =
1

B1

−A1 +

√
−2B1 nh +

[
A1 −B1

(
∆

2
− λ0

)]2
 , (16)

where only the lowest hole subband is populated due to nearly flat dispersions of hole subbands. The calculated EeF
and EhF as functions of ne and nh are shown in insets (i1) and (i2) of Fig. 4. Here, both the linear and quadratic
EeF terms in the doping density equations are present (see Eq. (14)), and most importantly, there is no symmetry
between electron and hole states. Unlike graphene, the linear dependence here dominates for both electrons and holes
due to large energy bandgap ∆. Each Fermi-energy curve starts from the corresponding bandedge ∆/2 = 8.13E0 for

electrons and −∆/2+λ0 = −7.45E0 for holes. The well-known result for gapped graphene, i.e., E2
F −∆2

0 = πn (~vF )
2

from Eq. (8), can be formally recovered from Eqs. (14) and (16) by setting λ0 = 0, A1,3 = 0 and |B1,3| = 2/(π~2v2
F ).

Based on our piecewise DOS model for MoS2, µ(T ) can be computed in a similar way, as we have done for buckled
honeycomb lattices, except that we now need to evaluate four different terms related to two split hole subbands
(see Eq. (B13)). The numerically calculated µ(T ) of MoS2 are presented in Fig. 4. As discussed above, the most
special property of MoS2 is the broken electron/hole symmetry. Consequently, µ(T ) for electron doping switches from
positive to negative at kBT ≈ 2.5E0, while µ(T ) for hole doping remains negative. Broken electron-hole symmetry
leads to two substantially different ways to select various paths for a thermal convolution. In comparison with other
Dirac materials, MoS2 can be considered as a unique material with different electron-hole symmetry properties and
corresponding T dependence in µ(T ).

III. TEMPERATURE-DEPENDENT PLASMON MODES

After the discussion in Sec. II on selecting different convolution paths based on field-tunable bandgaps and gate-
depleted electron doping densities, we now turn to thermal convolutions for temperature-dependent dielectric prop-
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FIG. 4: (Color online) Calculated µ(T ) for MoS2. Panels (a) and (b) present µ(T ) as functions of T for various electron [in (a)]
and hole [in (b)] doping densities: n = 2.0× 1012 cm−2 (black solid curve), 3.0× 1012 cm−2 (red dashed curve), 5.0× 1012 cm−2

(blue dash-dotted curve) and 10.0× 1012 cm−2 (green short-dashed curve). Insets (i1) and (i2) illustrate how EF depends on
n at T = 0.
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FIG. 5: (Color online) Single-particle excitation regions or particle-hole modes, outlined by non-zero Im [ΠT (q, ω|µ, T )] at an
arbitrary T for silicene with ∆SO/E0 = 0.7 and ∆z/E0 = 0.2. The upper panels (a) and (b) are for T = 0 , while the lower
plots (c) and (d) are for kBT/E0 = 0.5. Moreover, left panels (a) and (c) correspond to EF /E0 = 1.0, whereas the right ones
correspond to EF /E0 = 1.5. The white regions for Im [ΠT (q, ω|µ, T )] = 0 specify damping-free plasmon-excitation regions.

erties in silicene and molybdenum disulfide 2D materials. As one of the most relevant applications of our analytically
calculated µ(T ), we consider plasmon modes in a doped and self-sustained gapped Dirac cone material. The plasmon
dispersion relation can be obtained from zeros of the system dielectric function εT (q, ω), which is calculated within
the random-phase approximation (RPA) as

εT (q, ω) = 1− v(q) ΠT (q, ω |µ, T ) = 0 , (17)

where v(q) = e2/2ε0εrq is the Fourier-transformed 2D Coulomb potential, and εr is the dielectric constant of the
2D material. At finite T , the dynamical polarization function ΠT (q, ω |µ, T ) in Eq. (17) for electron doping can be
acquired from a thermal convolution 84 of its T = 0 counterpart Π0(q, ω |EF ), i.e.,

ΠT (q, ω |µ, T ) =
1

2kBT

∞∫
0

dξ
Π0(q, ω | ξ)

1 + cosh [(µ− ξ)/kBT ]
, (18)
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FIG. 6: (Color online) Dynamic polarization functions and plasmon dispersions for silicene with ∆SO/E0 = 0.7 and ∆z/E0 =
0.2, where both subbands are populated at T = 0. Panels (a)-(d) present Re [ΠT (q, ω|µ, T )] at ω = Ω0 as a function of q, where
~Ω0/E0 = 0.0, 0.5, 1.0, 1.2 and 1.6 are indicated by black solid, red dashed, blue short-dashed, green long-dashed and orange
dash-dotted curves, respectively. Panels (a)-(b) are for T = 0, while (c)-(d) for kBT/E0 = 0.5. Moreover, we set EF /E0 = 1.0 in
(a) and (c) while EF /E0 = 1.5 for (b) and (d). Plasmon dispersions at kBT/E0 = 0.5 are presented in plot (e) for EF /E0 = 1.0
and in (f) for EF /E0 = 1.5.

where electron doping is assumed. The chemical potential µ as functions of both temperature T and the Fermi
energy EF characterizes a specific selection of a convolution path for a particular material band structure, and
(1/2kBT ){1+cosh[(µ− ξ)/kBT ]}−1 can be regarded as the response function for a preselected thermal convolution of
fermions. The thermal convolution of the T = 0 polarizability in Eq. (18) is quite similar for buckled honeycomb lattices
and MoS2, since in both cases their low-energy band structure is characterized by two inequivalent doubly-degenerate
pairs of subbands labeled by a composite index ν = σ ξ. For a doubly-degenerate pair, its zero-T polarization function

Π
(ν)
0 in the one-loop approximation takes the form

Π
(ν)
0 (q, ω |EF ) =

1

4π2

∫
d2k

∑
γ,γ′=±1

[
1 + γγ′

k · (k + q) + ∆2
ν

|ενγ(k) ενγ′(|k + q|)|

]
Θ(EF − ενγ(k))−Θ(EF − ενγ′(|k + q|))

~(ω + i0+) + ενγ(k)− ενγ′(|k + q|)
, (19)

where γ = ±1 labels the electron and hole states, while ν ≡ σξ = ±1 corresponds to two combinations of spin and
valley gaps. Moreover, the zero-T dynamical polarization function introduced in Eq. (18) is obtained from

Π0(q, ω |EF ) =
∑
ν=±1

Π
(ν)
0 (q, ω |EF ) . (20)
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FIG. 7: (Color online) Plasmon modes, obtained from the solutions of Re[ε(Q0, ω |µ, T )] = 0, for silicene, graphene and
molybdenum disulfide with various electron densities n0 as a function of T . Panel (a) presents the plasmon frequencies for
silicene with ∆SO/E0 = 0.7 and ∆z/E0 = 0.2. Panel (b) is for gapless graphene with vF = 8.6× 107m/s. In both (a) and (b),
each curve corresponds to: n0 = 1.0 × 1010 cm−2 (red), 2.0 × 1010 cm−2 (black), 5.0 × 1010 cm−2 (blue) and 7.0 × 1010 cm−2

(green). Plots (c) and (d) show T -dependent plasmons for electron- and hole-doped MoS2 in the unit of E
(1)
0 = 54.6meV . Here,

various curves are attributed to: n0 = 1.0×1012 cm−2 (red), 2.0×1012 cm−2 (black), 5.0×1012 cm−2 (blue) and 7.0×1012 cm−2

(green). A fixed wave vector Q0 = E0/(~vF ) is set for each plot, where v
(gr)
F = 1.59 v

(si)
F and v

(mo)
F = a0t0 = 0.47 ~v(gr)F . There

are two insets within each panel, showing the T -dependent chemical potential for each case and electron-hole modes at T = 0.

Numerical results of Eq. (18) at finite T are presented in Figs. 5 and 6 for dynamical polarization functions and
additionally for plasmon dispersions in Figs. 6 and 7.

We first discuss the imaginary part of the polarizability Im [ΠT (q, ω|µ, T )] since it specifies the regions and intensity
of plasmon damping. It is found that the plasmon dissipation usually increases with T and the regions for damping-
free plasmon excitation shrink dramatically at the same time, as shown in Fig. 5. Once T becomes high enough,
however, Im [ΠT (q, ω|µ, T )] shows a reduction scaled as 1/T . 70,91 Therefore, the T dependence of plasmon dissipation
is not uniform on a fixed convolution path µ(T ). Doping density, on the other hand, broadens the plasmon-excitation
regions, as demonstrated by Fig. 5. As a result, the thermal and doping effects are expected to compete with each
other in controlling plasmon dissipations by selecting different convolution paths with various doping densities or
Fermi energies.

The plasmon dispersions at finite T are compared in Figs. 6(e) and 6(f) for two values of EF or doping densities,
where the plasmon energy is slightly pushed up by increased doping at this elevated T . We have also presented
Re [ΠT (q, ω|µ, T )] in Figs. 6(a)-6(d), where the peaks in Re [ΠT (q, ω|µ, T )] must be kept positive in order to find a real
solution of Eq. (17) for a plasmon mode. Obviously, increased EF always pushes Re [ΠT (q, ω|µ, T )] peaks to higher q
values at a low T for fixed ω, implying a smaller group velocity and lower energy of the plasmon mode. On the other
hand, the rise of T shifts Re [ΠT (q, ω|µ, T )] peaks to lower q values for a higher doping.

In all our numerical calculations, we used ~γ = 0.01E0 = 6.28 × 10−5 eV . The effect of such broadening on the
width of the plasmon branch is found negligible, especially at finite temperatures for which the imaginary part of the
dynamical polarization function is nonzero at nearly all frequencies and wave vectors, as displayed in Figs. 5 (c) and
(d).

Graphene and silicene, shown in Fig. 7 (a) and (b), differ by the Fermi velocities as well as the existence of the
energy gap. In our calculation with a fixed electron density for each curve, the major difference is found from the
Fermi velocity due to the 1/v2

F dependence in Eq. (9). We used larger electron densities v 1016m−2 for MoS2 in
order to make the Fermi energy at least slightly distinguishable from the bandedges. The corresponding energy unit
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FIG. 8: (Color online) T -dependent nonlocal plasmon modes for a silicene-based hybrid system with ∆SO/EF = 0.1 and
∆z/EF = 0.4. Density plots of the real part of Sc(q, ω|µ, T ) for fixed q/kF = 0.3 are presented. Here, panel (a) corresponds to
an intrinsic system with EF /E0 = 7.0, while plot (b) is for EF /E0 = 10.5.

is E
(1)
0 = 54.6meV which was decided in a similar way with the Fermi velocity a0t0 = 0.47 v

(gr)
F . For such electron

doping, the plasmon dispersion in the long-wavelength limit 38 Ω2
p v q (t0a0/∆0)

2
EF n, where the Fermi energy EF

has the same order of magnitude and little above the bangap ∆0 in the conduction band.
From Fig. 7 we find that similar temperature dependence is seen for all the cases with various doping values and

temperature ranges, i.e., the branch is lowered first, reaching a minimum, then monotonically increases for intermediate
and finite temperatures. Particularly, we find in molybdenum disulfide that the plasmon branches for electron doping
are slightly higher than those for hole doping, which is in agreement with the zero-temperature results in Ref. [38].

However, the electron/hole asymmetry is relatively small for intermediate temperatures kBT w 2.0E
(1)
0 .

The selection of a convolution path can not only affect plasmon modes at finite T , but also influence their interaction
with the surrounding environment in so-called 2D open systems (2DMOS). Let us consider a typical hybrid nano-
structure in graphene-based devices, 94,95 which consists of a 2D layer (2DEG, graphene, buckled honeycomb layer, or
MoS2) coupling with surface plasmons supported by a semi-infinite conductor. 96,97 Although plasmon excitations in
a closed system are solely determined by two-particle Green’s functions, they become more complicated in 2DMOS,
depending on the Coulomb interaction with the environment. 98,99 The key player in this 2DMOS is the screened
Coulomb coupling between electrons in 2D materials and within a conducting substrate. 42 Such a screened potential
could be found from a nonlocal frequency-dependent inverse dielectric function. 100–103 Consequently, two 97 or more 104

acoustic-like plasmon branches were predicted and verified experimentally. 64,105 At finite T , plasmon coupling to an
external electron reservoir is highlighted by occurrence of additional plasmon-dissipation channels. 91

The plasmon branches in 2DMOS are obtained from zeros of the so-called structure factor Sc(q, ω|µ, T ), playing
the role of a dielectric function εT (q, ω) in Eq. (17) for a self-sustained layer. Here, the structure factor is calculated
as 91,97

Sc(q, ω|µ, T ) = 1− v(q) ΠT (q, ω|µ, T )

[
1 +

1− εB(ω)

1 + εB(ω)
e−2qa

]
, (21)

where a is the distance between the 2D layer and the conductor surface, the conductor dielectric function in the local
limit is given by εB(ω) = 1 − Ω2

p/ω
2, Ωp is the bulk-plasma frequency defined by Ω2

p = (Nme
2)/(4πε0εbM

∗), Nm is
the electron concentration, M∗ is the effective mass of electrons, and εb is the substrate dielectric constant. This local
approximation stays valid for a large range of wave vectors q � 2 × 107cm−1 since the Fermi wavelength in metals
becomes comparable with the inverse lattice constant. As a result, the frequency of the calculated upper plasmon
branch in Fig. 8, which equals Ωp/

√
2 as q → 0, might range from ultra-violet (metal substrate) down to infrared or

even terahertz (doped semiconductor substrate).

Previously, we reported that for spin- and valley-dependent single-particle excitations in a 2D layer 92 (which is also
true for buckled honeyomb lattices and MoS2), such a hybrid structure could be used to measure surrounding dielectric
properties or spin-orbit couplings because the energy and damping rate of each plasmon branch are determined
independently by band-structure parameters of the 2D layer. As an example, two plasmon branches in silicene or

MoS2 depend on bandgaps as ∆
1/2
i or ∆

1/4
i (i => or <), but the outermost single-particle excitation boundaries are

determined solely by ∆<. Therefore, it is believed that an additional linear plasmon branch in this hybrid system
can provide us with new information on surrounding materials.
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In the present work, we add effects of finite doping and temperature into silicene-based hybrid systems. Our
numerical results for nonlocal plasmon modes are presented in Fig. 8. Here, we find both dispersion and damping of
the two plasmon branches are substantially modified with respect to EF = 7.0E0 and EF = 10.5E0 by selecting two
different thermal-convolution paths. At the considered temperature range, the plasmon modes are mostly damped.
Here, the upper branch always stays above the surface plasmon Ωp/

√
2. These modes become nearly undamped for

higher temperatures.

IV. CONCLUDING REMARKS

In this paper, we have carried out an extensive investigation of gapped Dirac materials with doping at finite T and
obtained a set of explicit equations determining µ(T ) for the system. The system we considered include graphene,
with or without an energy gap, buckled honeycomb lattices with spin- and valley-dependent energy subbands and
reduced degeneracy, as well as the transition metal dichalcogenides having broken symmetry between electron and
hole states. Our results could also be employed to calculate µ(T ) at finite T for parabolic or quasi-parabolic energy
subbands in semiconductors with doped light or heavy holes. 106,107 In general, our model is limited only by the linear
dependence in the DOS which remains valid over a wide energy range for all materials mentioned above.

Physically, we have demonstrated that µ(T ) depends substantially on the energy bandgap(s) of the materials
considered here since the DOS depends on the curvature of each subband. Specifically, we studied structures with two
non-degenerate, spin- and valley-resolved energy subbands for both valence and conduction electrons, such as silicene.
The upper subband could still receive a thermal population even if it is an undoped sample. Such a phenomenon is
always seen as an enhanced reduction rate in µ(T ) whenever the initially-empty upper subband becomes thermally
occupied. Consequently, one can always tune the T -dependence in µ(T ) by bringing EF very close to the bottom of
an empty upper subband. Similar behavior also occurs in quantum wells and quasi-one-dimensional nanoribbons, 108

which could be treated equally by our model.

In addition, we would like to emphasize that the T dependence in µ(T ) relies on a symmetry between electron and
hole states. If such a DOS symmetry can be maintained for electrons and holes around a Dirac point, e.g., silicene,
µ(T ) will keep its sign unchanged. For MoS2, on the other hand, µ(T ) is able to change its sign since no symmetry
between electron and hole states exists. In calculating the DOS of MoS2, we have developed a piecewise-linear model
assisted by the Hamiltonian parameters, which provides exact results for ρd(E) at the bandedges, and becomes a good
approximation for the DOS at very high energies.

Furthermore, besides tuning by doping density, we have demonstrated that the band structures of silicene and MoS2

can also be tuned effectively by applying a perpendicular electric field, which facilitates varying the T dependence
in µ(T ). As a result, a pre-selected path can be input into a response function for thermal convolutions, acquiring a
unique thermal dependence in collective electronic properties. Quantitatively, we have found that doping can affect
plasmon dispersions, given by (~ω/EF )2 w Λq in which Λ is regarded as an effective length depending on EF . On
the other hand, in the absence of doping, the thermal excitations of electrons at finite T can still produce a nonzero
polarization function 70, giving rise to a plasmon dispersion proportional to (qT )1/2.

Technically, the selection of a particular path for thermal convolutions can be adopted for engineering the T
dependence of plasmon dispersions and damping. The thermal shift of plasmon frequency is expected to be used for
remotely measuring the local dielectric environment and local hot-electron temperature in nano-plasmonic structures
and transistors, respectively.
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Appendix A: Density-of-states

Silicene and Germanene

The DOS of electron and hole states with energy dispersion ε ξ,σγ (k) is defined as
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ρd(E) =

∫
d2k

(2π)2

∑
γ=±1

∑
ξ,σ=±1

δ
(
E− ε ξ,σγ (k)

)
, (A1)

where ξ = ±1 and σ = ±1 are valley and spin indices which always appear as a product σξ. We use a single
composite index ν = σξ = ±1 to specify doubly-degenerated energy bands and the transformation

∑
ξ,σ=±1

=⇒ 2
∑
ν=±1

for summations over band indices.

In calculating the DOS in Eq. (A1), the following identity has been employed, i.e.,

δ(f(x)) =
∑
i

δ(x− xi)∣∣∣∣df(x)

dx

∣∣∣∣
x=xi

, (A2)

where xi are the roots of f(x) = 0. By using Eqs. (A1) and (A2), the DOS calculation for both silicene and germanene
can be done in a straightforward way, yielding

ρd(E) =
1

π

∑
γ=±1

γ E
~2v2

F

∑
i=<,>

Θ

(
E
γ
−∆i

)
, (A3)

which indicates that the DOS for gapped Dirac systems is still linear in E similar to graphene. However, it is nonzero
only outside the gap region |E| > ∆<. The result in Eq. (A3) also applies to gapped graphene, where ∆< = ∆> = ∆0.
Moreover, the well-known V-shaped ρd(E) for gapless graphene can also be reproduced after taking ∆<,> → 0.

Molybdenum Disulfide

Here, we look into three effective models with different complexities and accuracies for MoS2 energy dispersion.
First, we use the simplified energy dispersion in Eq. (13), in which we leave out two mass terms proportional to α
and β. As shown in Fig. 3(a), Eq. (13) yields pretty accurate results for energy eigenstates. In a similar way, after
inserting Eq. (13) into Eqs. (A1) and (A2), we find

ρd(E) =
1

π (t0a0)2

∑
γ=±1

1

γ

∑
ν=±1

(
E− ν

2
λ0

)
Θ

(
γ

(
E− νλ0

2

)
− 1

2
(∆− νλ0)

)
, (A4)

However, the result in Eq. (A4) does not match the numerical one, as seen from Fig. 3(b). By including the mass
terms under the parabolic-subband approximation, we obtain the following energy dispersion

ενγ(k) =
1

2
[νλ0(1− γ) + γ∆] +

[
~2

4me
(α+ γβ) +

γ (t0a0)2

∆− νλ0

]
k2 . (A5)

Equation (A5) leads to the DOS, given by 92

ρd(E) =
1

2π~2

∑
γ, ν=±1

∣∣∣α+ γβ

4me
+

γ(t0a0)2

~2(∆− νλ0)

∣∣∣−1

Θ

(
γ

(
E− νλ0

2

)
− 1

2
(∆− νλ0)

)
. (A6)

Equation (A6) includes both the α and β mass terms due to vanishing curvature of each subband at k = 0 by a large
bandgap ∆. The importance that the mass and even higher-order terms must be taken into account for calculating
plasmon modes was discussed in Ref. [38].

Going beyond the parabolic-subband approximation, we keep all the terms except for the nonessential ones O(k4)
in energy dispersion, leading to
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ενγ(k) w
1

2
ν λ0 +

~2 α

4me
k2 +

γ

2

√
(∆− ν λ0)

2
+

[
(2t0a0)2 + (∆− ν λ0)

~2 β

me

]
k2 . (A7)

Here, we employ a general equation from our previous work 92 to construct a linear approximation which is valid for
all experimentally accessible electron and hole doping densities. 38,92 By substituting Eq. (A7) into Eq. (A1), we get

ρd(E) =
1

2π

∑
j

∑
γ, ν=±1

∣∣∣∣∣α̃+
γ Ãν(∆± λ0, β | a0t0)

2
{
E− ε̃ν − α̃ ξ (j)

ν (E)
}∣∣∣∣∣
−1

Θ

(
γ

(
E− µλ0

2

)
− 1

2
(∆− νλ0)

)
, (A8)

where ε̃ν = νλ0/2, ∆̃ν = (∆ − νλ0)/2, Ãν(∆ ± λ0, β | a0t0) = (∆ − νλ0)~2β/4me + (t0a0)2, and α̃ = ~2α/4me. In

addition, ξ
(j)
ν (E) represents the jth root of equation E − ε̃ν − αξ − γ

√
Ãνξ + ∆̃2

ν = 0. This root equation can be

rewritten as (αξ)2 + B ξ + C = 0, where B = Ãν + 2α and C = (E − ε̃ν)2 − ∆̃2
ν . The only physical solution for

this root equation is ξ
(1)
ν (E) = 1/(2α)2(B +

√
B2 − 4α2C ) (another spurious solution has been discarded), which is

independent of γ = ±1. Explicitly, this root ξ
(1)
ν (E) can be written as

ξ(1)
ν (E) =

1

2 α̃2

{
Ãν + 2 α̃

(
E− ε̃(0)

ν

)
−
[
Ã2
ν + 4 α̃2∆̃2

ν + 4 α̃ Ãν

(
E− ε̃(0)

ν

)]1/2}
, (A9)

which is accurate in the sense that no other approximations have been taken except for the nonessential ones O(k4)
in energy dispersion Eq. (A7). Substituting Eq. (A9) into Eq. (A8) gives the DOS at an arbitrary energy E for both
electrons and holes.

For simplicity, however, we only consider the DOS next to each subband edge. In this case, we write εν1(k) = ∆/2+δε
for δε� E ≈ ∆/2, which leads to

ξ (1)
ν w

4me

α ~2

{
1− (a0 t0)2 + ~2β/(4me) (∆− νλ0)

(a0 t0)2 + ~2/(4me) [(α+ β) (∆− νλ0)]

}
δε , (A10)

and the DOS is approximated as

ρd(E) =
1

2π

∑
ν=±1

[
∆− νλ0

(a0t0)2 + ~2/(4me) (α+ β)(∆− νλ0)
+

2 δε
[
(a0 t0)2 + ~2β/(4me) (∆− νλ0)

]2
{(a0 t0)2 + ~2/(4me) [(α+ β) (∆− νλ0)] }3

]
. (A11)

Numerically, we rewrite the above equation with two parameters c
(3)
0 and c

(3)
1 as

ρd(E) = c
(3)
0 + c

(3)
1

(
E− ∆

2

)
,

c
(3)
0 = 0.180

1

t0a2
0

= 11.74
E0

(~vF )2
,

c
(3)
1 = 0.268

1

(t0a0)2
= 1.218

1

(~vF )2
, (A12)

where E0 = 5.22meV is the scale of energy used in numerical calculations. For two valence subbands, their DOS can

be parameterized in a similar way. For γ = −1, ν = 1 and E ≈ −∆/2 +λ0, we find ρd(E) = c
(2)
0 + c

(2)
1

[
E−

(
∆
2 − λ0

)]
with the two expansion coefficients given by

c
(2)
0 =

1

2π

∆− λ0

(a0t0)2 + (β − α)(∆− λ0)
, (A13)

c
(2)
1 =

1

π

δε
[
(a0 t0)2 + ~2β/(4me) (∆− λ0)

]2
{(a0 t0)2 + ~2/(4me) [(β − α) (∆− λ0)] }3

< 0 ,
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or numerically,

c
(2)
0 = 0.105

1

t0a2
0

= 6.847
E0

(~vF )2
,

c
(2)
1 = −0.232

1

(t0a0)2
= −1.051

1

(~vF )2
. (A14)

Finally, for the lower hole subband with E ≈ −∆/2− λ0, we obtain

ρd(E) = c
(2)
0 + c

(2)
1

[
E−

(
∆

2
+ λ0

)]
, (A15)

c
(1)
0 =

1

2π

∑
ν=±1

∆− ν λ0

(a0t0)2 + (β − α)(∆− ν λ0)
,

c
(1)
1 =

1

π

∑
ν=±1

δε
[
(a0 t0)2 + ~2β/(4me) (∆− ν λ0)

]2
{(a0 t0)2 + ~2/(4me) [(β − α) (∆− ν λ0)] }3

< 0 ,

or numerically,

c
(1)
0 = 0.233

1

t0a2
0

= 15.17
E0

(~vF )2
,

c
(1)
1 = −0.458

1

(t0a0)2
= 2.077

1

(~vF )2
. (A16)

It is straightforward to obtain our previous DOS results for the gapped graphene model (A4) after setting α = β = 0.
We also note that the slope of the DOS in the valence band is negative, as it should be according to Fig. 1(b), and
the summation over the ν index is present in all cases (with ξ = 1) except for the upper hole subband in Eqs. (A13).

Our results in Eqs. (A12)-(A16) (i.e., moving from conduction to valence bands or from right to left) represent a
fairly good match with the previously obtained numerical values, specified in Sec. II and later used for all our finite T

calculations. The coefficients c
(i)
0 , i = 1, 2, 3 are equal to the giant discontinuities δρd(E) in the DOS at each subband

edge, except for c
(1)
0 w δρ

(2)
d (−∆/2 + λ0) + δρ

(1)
d (−∆/2 − λ0)), and they are accurate. The linear coefficients c

(i)
1

are 20 − 25% larger, compared with the numerical results, since all the v k4 terms in energy dispersions have been
neglected. The inclusion of these terms leads to increased energies for a chosen wave vector and a decrease of the

DOS. This discrepancy becomes larger for higher energies, which is seen well for c
(1)
1 with E < −∆/2− λ0. However,

such higher-energy states are kept undoped unless T is really high. For situations considered in this paper, we are

limited to δε ≈ λ0 within two subband edges for holes. Within such a small energy range, we have δεc
(i)
1 � c

(i)
0 so

that the actual DOS values remain unaffected and our model yields accurate results.

Appendix B: Chemical potential at a finite temperature

µ(T ) for Molybdenum Disulfide

In contrast to the previously discussed buckled honeycomb lattices and graphene, the electron/hole symmetry in
MoS2 becomes broken. Even with the simplest gapped graphene model given by Eq. (13), the two hole subbands are
no longer degenerate, but are separated by λ0 at k = 0. For the highest accessible doping densities n < 1013 cm−2,
the lower hole subband could not be populated at T = 0. This can be verified by evaluating Eq. (B15) as

nc =
2

π

λ0 ∆

(t0 a0)
2 = 1.0× 1014 cm−2 . (B1)
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From now on, we will use a piecewise-linear model given by Eqs. (A12) - (A16) for the DOS with the empirical
coefficients given in Appendix A. Let us first consider electron doping with density ne. For this case, the corresponding
Fermi energy EeF is determined by

ne =
c
(3)
1

2

(
E2
F −

∆2

4

)
+ c

(3)
0

(
EF −

∆

2

)
, (B2)

or

E e
F =

1

c
(3)
1

−c(3)
0 +

[(
c
(3)
0 + c

(3)
1

∆

2

)2

+ 2ne c
(3)
1

]1/2
 . (B3)

For hole doping with density nh, the result for its Fermi energy EhF is quite similar, except that c
(2)
1 < 0 and the

upper valence subband edge sits at E = −∆/2 + λ0. This yields

EhF =
1

c
(2)
1

−c(2)
0 +

{
−2nh c

(2)
1 +

[
c
(2)
0 − c

(2)
1

(
∆

2
− λ0

)]2
}1/2

 . (B4)

Using the above expression, we can further improve the result in Eq. (B1) for the critical hole doping density nhc required

to populate the lower subband at T = 0. In such a case, we have EhF = −∆/2− λ0 and nhc = −λ0 ∆ c
(2)
1 + 2c

(2)
0 λ0 =

3.3×1013 cm−2. This critical density is still far above the experimentally accessible value w 1.0×1013 cm−2. Therefore,
we will assume the lower hole subband is unpopulated at T = 0 for all our calculations.

We now turn to deriving a set of explicit equations for µ(T ) of MoS2. Our derivation is based on the total carrier
density conservation and includes thermally-excited electrons and holes, yielding 73

n = ne(T )− nh(T ) =

∞∫
0

dE ρd(E)fγ=1(E, T )−
0∫

−∞

dE ρd(E) {1− fγ=1(E,T)} . (B5)

Here, the electron and hole occupation probabilities are complimentary, and the hole term does not play a role in
Eq. (B5) for electron doping (see Ref. [109] for details).

Mathematically, Eq. (B5) can be formally rewritten as n = Ie(∆|T )−Ih(∆, λ0|T ). For further simplifying calcula-
tions, we introduce the following two auxiliary functions

A0(E, T ) =

{
1 + exp

[
E− µ(T )

kBT

]}−1

, (B6)

A1(E, T ) = EA(0)(E, T ) = E
{

1 + exp

[
E− µ(T )

kBT

]}−1

.

As a result, we can write

Ie(∆|T ) =

1∑
j=0

c
(3)
j

∞∫
∆/2

dEAj(E, T ) . (B7)

By introducing a variable substitution ξ = (E−∆<)/kBT and the following notation

Rp(T,X) =

∞∫
0

dξ ξp {1 + exp[ξ −X/(kBT )]}−1
, (B8)
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Ie(∆|T ) can be explicitly calculated as

Ie(∆|T ) = kBT

(
c
(3)
0 +

∆

2

)
R0 (T, µ(T )−∆/2) + c

(3)
1 (kBT )

2 R1 (T, µ(T )−∆/2) , (B9)

where the two terms with p = 0, 1 correspond to a 2DEG and gapless graphene. After a simple computation, Eq. (B8)
turns into 89,90

R0(T,X) = ln

{
1 + exp

[
X

kBT

]}
,

R1(T,X) = −Li 2

{
−exp

[
X

kBT

]}
, (B10)

where Li 2(z) is the second-order polylogarithm function or dilogarithm, defined by

Li 2(z) = −
z∫

0

ln(1− t)
t

dt . (B11)

In a similar way, the hole term introduced in Eq. (B5) can be expressed as

0∫
−∞

dE ρd(|E|) {1− f1(E,T)} =

−∆/2+λ0∫
−∞

dE
[
−c(2)

1 E + c
(2)
0

]{
1 + exp

[
µ(T )− E
kBT

]}−1

+

−∆/2−λ0∫
−∞

dE
[
−δc(1)

1 E + δc
(1)
0

]{
1 + exp

[
µ(T )− E
kBT

]}−1

=

4∑
j=1

I(j)
h (∆, λ0|T ) , (B12)

where δc
(1)
i = c

(1)
i − c

(2)
i for i = 0, 1, and

I(1)
h (∆, λ0|T ) = kBT

(
∆

2
− λ0 + c

(0)
2

)
R0 (T, − [µ(T ) + ∆/2− λ0]) ,

I(2)
h (∆, λ0|T ) = c

(1)
2 (kBT )

2 R1 (T, − [µ(T ) + ∆/2− λ0]) ,

I(3)
h (∆, λ0|T ) = kBT

(
∆

2
+ λ0 + δc

(0)
1

)
R0 (T, − [µ(T ) + ∆/2 + λ0]) ,

I(4)
h (∆, λ0|T ) = δc

(1)
1 (kBT )

2 R1 (T, − [µ(T ) + ∆/2 + λ0]) . (B13)

Combined with the electron terms in Eq. (B9), these hole terms in Eq. (B13) give the right-hand side of Eq (B5). The
left-hand side of Eq (B5) is given by Eq. (B2) for electron doping and for hole doping by

nh =

(
∆

2
+ EhF − λ0

){
c
(2)
0 +

c
(2)
1

2

[
∆

2
−
(
EhF + λ0

)]}
. (B14)

It is evident that the symmetry between electron and hole states no longer holds, which strongly affects the finite T
behavior of µ(T ) in MoS2.

µ(T ) for buckled honeycomb lattices

The DOS of silicene is given by Eq. (5). The expression for EeF at T = 0 with a fixed ne depends on whether one
or both electron subbands are populated. For the former case, we require
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ne ≤ nc =
1

2π

∆2
> −∆2

<

~2v2
F

=
2

π~2v2
F

∆SO∆z , (B15)

and EeF is obtained from

ne =
1

2π

(EeF )2 −∆2
<

~2v2
F

. (B16)

Alternatively, if both subbands are populated, EeF is determined by

ne =
1

π

1

~2v2
F

[
(EeF )2 − 1

2

(
∆2
< + ∆2

>

)]
. (B17)

At finite T , we once again use the conservation of the carrier density in Eq. (B5). In this case, µ(T ) of silicene is
easily obtained as a limiting case of our derivation above

ne =

(
kBT

~vF

)2 ∑
γ=±1

γ

π

∑
i=<,>

R1 (T, γµ(T )−∆i) +
∆i

kBT
R0 (T, γµ(T )−∆i) . (B18)

Using the polylogarithm functions, we can explicitly write

ne

(
~vF
kBT

)2

=
∑
γ=±1

γ

π

∑
i=<,>

−Li 2

{
−exp

[
γµ(T )−∆i

kBT

]}
+

∆i

kBT
ln

{
1 + exp

[
γµ(T )−∆i

kBT

]}
. (B19)

As a special example, µ(T ) for gapped graphene with two fourfold degenerate energy subbands can be obtained by

setting ∆< = ∆> = ∆0 and
∑

i=<,>

=⇒ 2. Moreover, for gapless graphene, we have ∆0 = 0 and πne = [EeF /(~vF )]
2
.

As a result, we find

(EeF )2

2 (kBT )
2 =

∑
γ=±1

γR1(T, γµ(T )) = −
∑
γ=±1

γ Li 2

{
−exp

[
γ µ(T )

kBT

]}
. (B20)

If kBT � EeF is satisfied, the above result is simplified to 73

R1(T, γµ(T )) w

(
Y 2

2
+
π2

6

)
Θ(Y ) + Y ln

(
1 + e−|Y |

)
, (B21)

where Y = γµ(T )/kBT .

At last, we would briefly address the case of hole doping with EhF < 0. In this case, the left-hand part of Eq. (B5)
takes the form

−nh = − 2

π

1

(~vF )2

∑
i=<,>

−∆i∫
−∞

dE |E| Θ(−E + EhF ) . (B22)

In analogy with electron doping, EhF depends on whether only the ∆<-subband (which is the higher one now) or both
subbands are occupied. The equations for determining EhF for a given nh are the same as Eqs. (B16) and (B17), which
confirms a complete symmetry between electron and hole states in silicene. The right-hand side of Eq. (B5) remains
unchanged except for µ(T ) < 0 at a finite T .
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into account. As k ≈ 5.0 k0, we find the correction w β∆ k4 from our exact numerical result becomes no longer negligible.


