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We extend the theory of dipole moments in crystalline insulators to higher multipole moments.
As first formulated in Ref. 1, we show that bulk quadrupole and octupole moments can be realized
in crystalline insulators. In this paper, we expand in great detail the theory presented in Ref. 1,
and extend it to cover associated topological pumping phenomena, and a novel class of 3D insulator
with chiral hinge states. We start by deriving the boundary properties of continuous classical
dielectrics hosting only bulk dipole, quadrupole, or octupole moments. In quantum-mechanical
crystalline insulators, these higher multipole bulk moments manifest themselves by the presence of
boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic
theory of classical continuous dielectrics. In the presence of certain symmetries, these moments
are quantized, and their boundary signatures are fractionalized. These multipole moments then
correspond to new symmetry-protected topological phases. The topological structure of these phases
is described by “nested” Wilson loops, which we define. These Wilson loops reflect the bulk-
boundary correspondence in a way that makes evident a hierarchical classification of the multipole
moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole
pumping, and a varying octupole generates quadrupole pumping. For non-trivial adiabatic cycles,
the transport of these moments is quantized. An analysis of these interconnected phenomena leads
to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized
modes in 3D. We provide the minimal models for the quantized multipole moments, the non-trivial
pumping processes and the hinge Chern insulator, and describe the topological invariants that
protect them.

I. Introduction

A successful theory describing the phenomenon of bulk
electric polarization in crystalline insulators remained
elusive for decades after the development of the band
theory of crystals. The difficulty stemmed from the fact
that the macroscopic electric polarization of a periodic
crystal cannot be unambiguously defined as the dipole of
a unit cell2 and, therefore, the absolute macroscopic po-
larization of a crystal is ill-defined. The recognition that
only derivatives of the polarization are well-defined ob-
servables and correspond to experimental measurements2

led to a resolution of this problem and to the formulation
of what is now known as the modern theory of polariza-
tion3–7 in crystalline insulators. This theory is formu-
lated in terms of Berry phases8,9, which account for the
dipole moment densities in the bulk of a material, and
it has its minimal realization in 1 dimension10,11 (1D).
A bulk dipole moment manifests itself through the exis-
tence of boundary charges4 (Fig. 1a). When the dipole
moment densities vary over time, e.g., by an adiabatic
evolution of an insulating Hamiltonian over time, elec-
tronic currents appear across the bulk of the material
where the polarization is changing (Fig. 1b)3,4. In par-
ticular, if adiabatic evolutions of the Hamiltonian are

carried over closed cycles (i.e., those in which the ini-
tial and final Hamiltonians are the same), the electronic
transport is quantized12. This quantization is given by
a Chern number, and, mathematically, in systems with
charge conservation, is closely related to the Hall conduc-
tance of a Chern insulator13 (Fig. 1c).

A remarkable pattern develops in the topological ob-
jects describing these systems that follows a hierarchical
mathematical structure as the dimensionality of space
increases. For example, the expressions for the po-
larization P1

3,9, the hall conductance σxy of a Chern
insulator13–15, and the magneto-electric polarizability P3

of a 3D time-reversal invariant or inversion symmetric
topological insulator16–19, are given by

P1 = − e

2π

∫
BZ

Tr [A] (I.1)

σxy = − e2

2πh

∫
BZ

Tr [dA+ iA ∧A] (I.2)

P3 = − e2

4πh

∫
BZ

Tr

[
A ∧ dA+

2i

3
A ∧A ∧A

]
, (I.3)

where BZ is the Brillouin zone in one, two, and three
spatial dimensions respectively, and A is the Berry con-
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FIG. 1. (Color online) Multipole moments, associated mul-
tipole pumping processes, and derived topological insula-
tors. (a,d,e) Dipole, quadrupole, and octupole insulators, re-
spectively. Dots of different color represent corner-localized
charges of opposite charge. When protected by symme-
tries, charges are quantized to either 0 or ±e/2 as denoted
by the Z2 topological indices ν1, ν2, and ν3, respectively.
(b,e,h) Charge, dipole, and quadrupole pumping, respec-
tively. Pumping over non-trivial closed cycles pumps quanta
of charge, dipole, and quadrupole, described by Chern num-
bers n1, n2, and n3, respectively. (c,f) Insulators with same
topology as pumping processes: Chern insulator with chiral
edge-localized modes (c), and Chern insulator with hinge-
localized modes (f).

nection, with components [Ai(k)]mn = −i〈umk |∂ki |unk〉,
where |unk〉 is the Bloch function of band n, and m,n run
only over occupied energy bands.

This hierarchical mathematical structure positions
the concept of charge polarization at the basis of the
field of topological insulators and related phenomena.
Fermionic SPTs with time-reversal, charge-conjugation,
and/or chiral symmetries20 in all spatial dimensions
were categorized in a periodic classification table of
topological insulators and superconductors16,21,22. Fol-
lowing this classification, many different groups have
begun classifying SPTs protected by reflection23–28,
inversion18,19,29,30, rotation31–35, non-symmorphic sym-
metries36–38 and more39–49.

The mathematical topological invariants that charac-
terize these phases are tied to quantized physical observ-
ables. For example, in 1D insulators in the presence of in-
version symmetry, the polarization in Eq. I.1 is quantized
to either 0 or e/2 and is in exact correspondence with the
Berry phase topological invariant9,16,18,19. Recently, we
showed the existence of quantized quadrupole and oc-

tupole moments, as well as quantized dipole currents, in
crystalline insulators1. The primary goal of this paper
is to thoroughly develop the theory of quantized electro-
magnetic observables in topological crystalline insulators.
In addition to the work presented in Ref. 1, in this pa-
per we discuss in more detail the observables of multipole
moments and their relations, both in the classical contin-
uum theory and in the quantum-mechanical crystalline
theory and also discuss the extension of the theory of po-
larization to account for non-quantized higher multipole
moments. To carry this out we systematically extend the
theory of charge polarization in crystalline insulators by
taking a different route than the extension suggested by
the hierarchical mathematical structure evident in Eqs.
I.1, I.2, and I.3, which deals primarily with polariza-
tions. Our topological structure is also of hierarchical na-
ture, but subtly involves the calculation of Berry phases
of reduced sectors within the subspace of occupied en-
ergy bands. To find the relevant subspace we resolve the
energy bands into spatially separated “Wannier bands”
through a Wilson-loop calculation, or equivalently, a di-
agonalization of a ground state projected position oper-
ator. We call this structure ‘nested Wilson loops’. It
goes one step beyond the previous developments in the
understanding of topological insulator systems in terms
of Berry phases50–54. At its core, this nested Wilson loop
structure reflects the fact that even gapped edges of topo-
logical phases can signal a non-trivial bulk-boundary cor-
respondence when the gapped edge Hamiltonian is topo-
logical itself and inherits such non-trivial topology from
the bulk.

This topological structure reveals that, in addition
to bulk dipole moments, crystalline insulators can real-
ize bulk quadrupole and octupole moments, as initially
shown in Ref. 1 (Figs. 1d, g). In addition, this structure
reveals other phenomena, detailed in this paper. When
we allow for the adiabatic deformation and evolution of
Hamiltonians having non-zero quadrupole and octupole
moments we find new types of quantized electronic trans-
port and currents, extending what is already known in
the case of the adiabatic charge pumping (Fig. 1b)12.
In particular, the new types of adiabatic electronic cur-
rents are localized not in the bulk, but on edges or hinges
of the material. They essentially amount to pumping a
dipole or quadrupole across the bulk of the material, re-
spectively (Figs. 1e, h). If the adiabatic process forms a
closed cycle the transport is quantized, i.e., the amount
of dipole or quadrupole being pumped is quantized. The
first Chern number characterizes the 1D adiabatic pump-
ing process; this process can be connected to a Chern
insulator phase in one spatial dimension higher. The
dipole pumping process in the 2D quadrupole system
correspondingly predicts the existence of an associated
3D ‘hinge Chern insulator’ having the same topologi-
cal structure as a family of 2D quadrupole Hamiltoni-
ans forming an adiabatic evolution through a ‘non-trivial’
cycle (i.e., a cycle that connects a quantized topological
quadrupole insulator with a trivial insulator, while main-
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taining the energy gap open). This insulator has four
hinge localized modes which are chiral and disperse in
opposite directions at adjacent hinges, as shown schemat-
ically in Fig. 1f. In principle, the quadrupole pumping of
the 3D octupole system would predict a 4D topological
phase, though we will not discuss it any further here.

Our focus throughout this paper is on tight-binding
lattice models. A summary of the organization of this
paper is detailed in the next subsection. The paper is self-
contained, starting with a pedagogical description of the
modern theory of polarization. Readers already familiar
with the modern theory of electronic polarization, and
the connection between Berry phase, Wannier functions,
and Wilson loops can easily skip Section III after reading
Section II.

A. Outline

In Section II we first define electric multipole moments
within the classical electromagnetic theory, characterize
their boundary signatures, and establish the criteria un-
der which these moments are well defined.

We then start the discussion of the dipole moment in
crystalline insulators in 1 dimension (1D) in Section III,
and in 2 dimensions (2D) in Section IV and in Section
V. Our formulation differs from the original one4 in that,
instead of referring to the relationship between electric
current and change in electric polarization, we directly
calculate the position of electrons in the crystal by means
of diagonalizing the position operator projected into the
subspace of occupied bands. This approach naturally
connects the individual electronic positions with the po-
larization (i.e., dipole moment), as well as this polariza-
tion with the Berry phase accumulated by the subspace
of occupied bands across the Brillouin zone of the crystal.
Additionally, this approach provides us with eigenstates
of well defined electronic position, which we then use to
extend the formulation to higher multipole moments.

In addition to this formulation, we discuss the sym-
metry constraints that quantize the dipole moments and
present the case of the Su-Schrieffer-Hegger (SSH) model
as a primitive model for the realization of the dipole
symmetry-protected topological (SPT) phase. We fur-
ther use extensions of this model that break the symme-
tries that protect the SPT phase and thus allow an adi-
abatic change in polarization and the appearance of cur-
rents. We will discuss the topological invariant that char-
acterizes the quantization of charge transport in closed
adiabatic cycles.

In Section IV, we extend the 1D treatment of the prob-
lem to 2D and introduce the concept of Wannier bands,
which plays a crucial role in the description of higher
multipole moments. We also characterize - in terms of
Wannier bands - the topology of a Chern insulator and
the Quantum Spin Hall insulator as examples, and make
connections between the topology of a Chern insulator
and the quantization of particle transport of Section III.

In Section V we describe the recently found phe-
nomenon of edge-polarization55 and its relation to cor-
ner charge. In particular, we use this as an example that
allows discriminating corner charge arising from converg-
ing edge-localized dipole moments from the corner charge
arising from higher multipole moments.

We then describe the existence of the first higher multi-
pole moment, the quadrupole moment, in Section VI. We
first present the theory in terms of the diagonalization of
position operators. Just as in the case of the dipole, the
quadrupole moment is indicated by a topological quan-
tity, which relates to the polarization of a Wannier band-
resolved subspace within the subspace of occupied energy
bands. From this formulation, we derive the conditions
(i.e., the symmetries) under which the quadrupole mo-
ment quantizes to ±e/2, realizing a quadrupole SPT. We
then present a concrete minimal model with quadrupole
moment. We describe the observables associated with it:
the existence of edge polarization and corner charge, as
well as the different symmetry-protected phases associ-
ated with this model and the nature of its phase tran-
sitions. We then break the symmetries that protect the
SPT to cause adiabatic transport of charge, but in a pat-
tern that amounts to a net pumping of dipole moment.
This dipole moment transport can also be quantized in
an analogous manner to the charge transport in a vary-
ing dipole. We describe the invariant associated with
this quantization and the extension of this principle to
the creation of unusual insulators, not described so far
to the best of our knowledge, which present chiral hinge-
localized dispersive modes due to its non-trivial topology.

In Section VII we describe the existence of octupole
moments. We describe the hierarchical topological struc-
ture that gives rise to higher multipole moments, as well
as the minimal model that realizes a quantized octupole
SPT. We also describe, by means of a concrete exam-
ple, how the quantization of quadrupole transport can
be realized.

In Section VIII we present a discussion that highlights
and summarizes the main findings in this paper, and its
implications in terms of future extensions of this work to
other fermionic or bosonic systems, as well as a discus-
sion on the anomalous nature of the boundaries of these
multipole moment insulators.

II. The multipole expansion in the continuum
electromagnetic theory

Since the classical theory of multipole moments, even
in the absence of a lattice, has various subtleties, we
will spend time reviewing it in this Section. Our goal
is to provide precise definitions for, and to extract
the macroscopically observable signatures of, the dipole,
quadrupole, and octupole moments in insulators.
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FIG. 2. (Color online) Macroscopic material divided in small
voxels over which the multipole moment densities are calcu-
lated. Each voxel is labeled by its center point ~R. ~r is the
position (far) outside the material at which the potential is
calculated.

A. Definitions

In this section we define multipole electric moments in
macroscopic materials based on classical charge configu-
rations in the absence of a lattice. We define a macro-
scopic material as one which can be divided into small
volume elements (voxels), as shown in Fig. 2, over which
multipole moment densities can be defined, and in such
a way that these densities can be treated as continuous
functions of the position at larger length scales. For a
material divided into such voxels, the expression for the
electric potential at position ~r due to a charge distribu-
tion over space is

φ(~r) =
1

4πε

∑
~R

∫
v(~R)

d3~r′
ρ(~r′ + ~R)

|~r − ~R− ~r′|
, (II.1)

where ρ(~r) is the volume charge density, ε is the dielectric

constant, ~R labels the voxel, and in the integral r′ runs

through the volume v(~R) of voxel ~R. Since the voxels
are much smaller than the overall size of the material,

we have that |~r′| � |~r − ~R| as long as ~r is outside of the
material and sufficiently away from it. Then, one can

expand the potential (II.1) in powers of 1/|~r − ~R| (see
details in Appendix A) to define the multipole moment
densities

ρ(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)

pi(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′i

qij(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
j

oijk(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
jr
′
k (II.2)

which allow to write the terms in the expansion of the
potential

φ(~r) =

∞∑
l=0

φl(~r), (II.3)

as

φ0(~r) =
1

4πε

∫
V

d3 ~R

(
ρ(~R)

1

|~d|

)

φ1(~r) =
1

4πε

∫
V

d3 ~R

(
pi(~R)

di

|~d|3

)

φ2(~r) =
1

4πε

∫
V

d3 ~R

(
qij(~R)

3didj − |~d|2δij
2|~d|5

)

φ3(~r) =
1

4πε

∫
V

d3 ~R

(
oijk(~R)

5didjdk − 3|~d|2dkδij
2|~d|7

)
,

(II.4)

where V is the total volume of the macroscopic material

and ~d = ~r − ~R. The potential φ0(~r) is due to the free
‘coarse-grained’ charge density in Eq. II.2. In the limit

of v(~R) → 0, this coarse grained charge density is the
original continuous charge density, and we recover the
original expression (II.1). In this case, all other multipole
contributions identically vanish.

B. Dependence of the multipole moments on the
choice of reference frame

The multipole moments are in general defined with re-
spect to a particular reference frame. For example, given
a charge density per unit volume ρ(~r), consider the defi-
nition of the dipole moment

Pi =

∫
v

d3~rρ(~r)ri. (II.5)

If we shift the coordinate axes used in that definition
such that our new positions are given by r′i = ri + Di,
and the charge density in this new reference frame is

ρ′(~r′) = ρ(~r), the dipole moment is now given by

P ′i =

∫
v

d3~r′ρ′(~r′)r′i

=

∫
v

d3~rρ(~r)(ri +Di)

=

∫
v

d3~rρ(~r)ri +Di

∫
v

d3~rρ(~r)

= Pi +DiQ (II.6)

where Q is the total charge. Notice, however, that the
dipole moment is well defined for any reference frame
if the total charge Q vanishes. Similarly, a quadrupole
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moment transforms as

Q′ij =

∫
v

d3~r′ρ′(~r′)r′ir
′
j

=

∫
v

d3~rρ(~r)(ri +Di)(rj +Dj)

=Qij + PiDj +DiPj +DiDjQ (II.7)

which is not uniquely defined independent of the refer-
ence frame unless both the total charge and the dipole
moments vanish. In general, for a multipole moment to
be independent of the choice of reference frame, all of the
lower moments must vanish.

C. Boundary properties of multipole moments

Now let us consider the macroscopic physical mani-
festations of the multipole moments. In all cases, we
will consider the properties that appear at the bound-
aries of materials having non-vanishing multipole mo-
ments in their bulk. We consider each multipole density
separately, assuming as indicated above, that all lower
moments vanish.

1. Dipole moment

The potential due to a dipole moment density pi(~R)
is given by the second equation in (II.4). As shown in
Appendix B, this potential can be recast in the form

φ1(~r) =
1

4πε

∮
∂V

d2 ~R

(
nipi

1

|~r − ~R|

)

+
1

4πε

∫
V

d3 ~R

(
−∂ipi

1

|~r − ~R|

)
. (II.8)

Since both terms scale as 1/|~r − ~R|, where |~r − ~R| is the
distance from a point in the material to the observation
point, we can define the charge densities

ρ(~R) = −∂ipi(~R)

σface(~R) = nipi(~R). (II.9)

From now on, we will drop the label of the dependence

of the variables on ~R for convenience. The first term
is the volume charge density due to a divergence in the
polarization, and the second is the areal charge density
on the boundary of a polarized material. Hence, one
manifestation of the dipole is a boundary charge as shown
in Fig. 3.

FIG. 3. (Color online) Boundary charge in a material with
uniform dipole moment per unit volume px 6= 0, py = pz =
0. Red (blue) color represents positive (negative) charge per
unit area of magnitude px. The three arrows pointing out
of the flat surfaces represent the unit vectors n̂(x), n̂(−y) and
n̂(z). The other three unit vectors are not shown for clarity
of presentation.

2. Quadrupole moment

As shown in Appendix B, the potential due to a
quadrupole moment per unit volume qij as listed in Eq.
II.4 is equivalent to

φ2(~r) =
1

4πε

∑
a,b

∫
Lab

d~R

(
1

2
n

(a)
i n

(b)
j qij

)
1

d

+
1

4πε

∑
a

∫
Sa

d2 ~R
(
−∂jn(a)

i qij

) 1

d

+
1

4πε

∫
V

d3 ~R

(
1

2
∂j∂iqij

)
1

d
. (II.10)

This calculation was carried out for a system with a cu-
bic geometry. Sa represents the plane of surface normal
to vector n̂(a) and Lab represents the hinge at the in-
tersection of surfaces with normal vectors n̂(a) and n̂(b).
Since all the potentials scale as 1/d, where ~d = ~r − ~R
is the distance from the point in the material to the ob-
servation point, each expression in a parentheses can be
interpreted as a charge density in its own right. Thus,
we define the charge densities

λhinge a,b =
1

2
n

(a)
i n

(b)
j qij

σface a = −∂j
(
n

(a)
i qij

)
ρ =

1

2
∂j∂iqij . (II.11)

The first term is the charge density per length at the
hinge Lab of the material. The second term is the area
charge density at the boundary surface Sa of the material

due to a divergence in the quantity n
(a)
i qij . Finally, the

third term is the direct contribution of the quadrupole
moment density to the volume charge density in the bulk
of the material. For a cube with constant quadrupole
moment qxy and open boundaries we illustrate the the
charge density in Fig. 4a, as indicated by the expression
for λhinge. Notice that the expression for the surface
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FIG. 4. (Color online) Boundary properties of a cube with
uniform quadrupole moment per unit volume qxy 6= 0, qyz =
qzx = 0. (a) Boundary charge. Red (blue) color represents
positive (negative) charge densities per unit length of mag-
nitude qxy. (b) Boundary polarization. Arrows in represent
boundary dipole moment per unit area of magnitude qxy. The
unit vectors n̂(x), n̂(−y) and n̂(z) are shown in (a) for reference.

charge density σbound could be written as

σface a = −∂jpface aj , (II.12)

where

pface aj = n
(a)
i qij (II.13)

resembles the polarization for the volume charge density

ρ in Eq. II.9. Thus, we interpret pface aj as a bound

dipole density (per unit area). This polarization exists
on the surface perpendicular to n̂(a) and runs parallel to
that surface. An illustration of this polarization for a
cube with constant quadrupole moment qxy is shown in
Fig. 4b.

Notice, from (II.11) and (II.13), that the magnitudes
of the hinge charge densities and the face dipole densities
have the same magnitude as the quadrupole moment,

|λhinge| = |pfacej | = |qxy| (II.14)

since the implied sums over i and j in the first Eq. of
(II.11) cancel the factor 1/2, because qxy = qyx.

3. Octupole moment

Following a similar procedure as that employed for the
dipole and quadrupole moments, the potential due to an
octupole moment per unit volume oijk (Eq. II.4) can be

rewritten as

φ3(~r) =
1

4πε

∑
a,b,c

1

6
n

(a)
i n

(b)
j n

(c)
k oijk

1

r

+
1

4πε

∑
a,b

∫
Lab

d~R

(
−1

2
n

(a)
i n

(b)
j ∂koijk

)
1

d

+
1

4πε

∑
i

∫
Sa

d2 ~R

(
1

2
n

(a)
i ∂j∂koijk

)
1

d

+
1

4πε

∫
V

d3 ~R

(
−1

6
∂i∂j∂koijk

)
1

d
, (II.15)

from which we read off the various charge densities

δcorner a,b,c =
1

6
n

(a)
i n

(b)
j n

(c)
k oijk

λhinge a,b = −1

2
n

(a)
i n

(b)
j ∂koijk

σface a =
1

2
n

(a)
i ∂j∂koijk

ρ = −1

6
∂i∂j∂koijk. (II.16)

The new quantity δcorner a,b,c represents localized charge
bound at a corner where the three surfaces normal to
n̂(a), n̂(b), and n(c) intersect. Comparing (II.16) with the
expressions for dipole and quadrupole moments we see
that we can re-write the surface charge density per unit
area, and the hinge charge density per unit length as

σface a =
1

2
∂j∂kq

face a
jk

λhinge a,b = −∂kphinge a,bk , (II.17)

where

qface ajk = n
(a)
i oijk

phinge a,bk =
1

2
n

(a)
i n

(b)
j oijk (II.18)

are the quadrupole moment density per unit area on faces
perpendicular to n̂(a) and the polarization per unit length
on hinges where surfaces normal to n̂(a) and n̂(b) inter-
sect, respectively. These manifestations at the boundary
are illustrated in Fig. 5 for a cube with uniform octupole
moment.

Notice, from (II.16) and (II.18), that the magnitudes
of the corner charge densities, the hinge dipole densities,
and the face quadrupole densities have the same magni-
tude as the octupole moment,

|δcorner| = |phingek | = |qfacejk | = |oxyz| (II.19)

since the implied sums over i and j in the first Eq. of
(II.16) and second Eq. of (II.18) cancel the prefactors of
1/6 and 1/2, respectively, because oxyz = oyzx = ozxy =
oxzy = ozyx = oyxz.
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FIG. 5. (Color online) Boundary properties of a cube with
uniform octupole moment per unit volume oxyz.. (a) Corner-
localized charges. Red (blue) color represents positive (nega-
tive) charges with magnitude oxyz. (b) Hinge-localized dipole
moments per unit length of magnitude oxyz. (c) Surface local-
ized quadrupole moment densities. Purple squares represent
quadrupole moments per unit area of magnitude oxyz. The
unit vectors n̂(x), n̂(−y) and n̂(z) are shown in (c) for reference.

D. Bulk moments vs. boundary moments

In this section we draw an important distinction be-
tween boundary observables arising from the presence of
a bulk moments vs. boundary observables arising from
“free” moments of lower dimensionality attached to a
boundary. The potential confusion is illustrated in Fig. 6
where we consider a neutral, insulating material with no
free charge in the bulk or boundary, so that all charge
accumulation is induced by either dipole or quadrupole
moments. In Fig. 6a there is charge accumulation where
two boundary polarizations converge at a corner (in 2D)
or a hinge (in 3D). These surface dipoles are meant to
be a pure surface effect and not due to a bulk moment.
In Fig. 6b there are both surface polarizations and cor-
ner/hinge charge accumulation, but this time exclusively
due to a quadrupole moment. The phenomenology in
both cases are similar, so the natural question is how to
distinguish the surface effect in Fig. 6a from the bulk
effect in Fig. 6b.

Te be explicit, let us consider the 2D case. We first
consider the existence of only boundary-localized dipole
moments. The contribution to charge density due to a
dipole moment density ~p = ~p(~r) is

ρ = −~∇ · ~p
σ = ~p · ~n (II.20)

which is a restatement of (II.9). The first term is the
polarization-induced charge density per unit volume of
the material, and ~p ·~n is the charge density per unit area
on a boundary surface with unit normal vector ~n induced
by the bulk polarization ~p. For the purpose of calculating
the accumulated charge, let us consider an area v which
encloses the corner on which charge is accumulated, as
shown by the red circle in Fig. 6a. To relate the induced
charge in this volume to the polarization at its boundary

FIG. 6. (Color online) Corner charges due to (a) a pair of
convergent dipoles and (b) a constant quadrupole. The most
general case up to quadrupole expansion will have a superpo-
sition of both contributions.

we use the first Eq. in (II.20)

Qcorner =

∫
v

ρdv =

∫
v

(
−~∇ · ~p

)
dv

= −
∮
∂v

~p · d~s

where in the second line we have applied Stokes’ theorem,
and where ∂v is the boundary of area v. We see from
Fig. 6a that the boundary dipoles ~p1 and ~p2 puncture
the boundary of v. If we treat the polarizations as fully
localized on the edge we can write

~p1(~r) = x̂p1δ(~r − ~r1)

~p2(~r) = ŷp2δ(~r − ~r2),

where ~r1 and ~r2 are shown in Fig. 6. Taking into account
that the boundary ∂v has normal vector −x̂ at ~r1 and
−ŷ at ~r2, we have

Qcorner = p1 + p2. (II.21)

In contrast, let us now consider the charge accumula-
tion inside area v due to a quadrupole moment qxy, as
shown in Fig. 6b. It follows from (II.11) that, in this
case, the induced charge is

ρ =
1

2
∂j∂iqij , (II.22)

where summation is implied for repeated indices. The
blue region has quadrupole density qxy = qyx 6= 0, and
outside this region is vacuum. The total charge enclosed
in the area v (shown in red) is

Qcorner =

∫
v

ρdv =

∫
v

(
1

2
∂j∂iqij

)
dv

=
1

2

∮
∂v

(∂iqij)njds, (II.23)

where in the second line we have applied Stokes’ theorem.
Here, nj is the jth component of the unit vector n̂ normal
to the boundary δv. Since the quadrupole moment den-
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sity is constant, there are only two places in ∂v where the
derivative ∂iqij does not vanish (see Fig. 6b): (i) at ~r1

the unit vector normal to the boundary ∂v, and pointing
away from the area v, is n̂ = −x̂ and

∫ ε
−ε ∂yqyxdy = −qyx,

and (ii) at ~r2 the unit vector normal to ∂v pointing away
from v is n̂ = −ŷ, which leads to

∫ ε
−ε ∂xqxydx = −qxy.

Thus, the corner charge is,

Qcorner =
1

2
(qxy + qyx) = qxy. (II.24)

By comparing Eq. II.21 with Eq. II.24, we conclude
that, in the case of only boundary-localized “free” dipole
moments, the corner-localized charge is given by the
sum of the converging boundary polarizations. However,
in the case of a bulk quadrupole moment, the magni-
tude of the corner charge matches the magnitude of the
quadrupole moment. Since the boundary polarizations
induced from a bulk quadrupole have the same magni-
tude as the quadrupole itself (see Eq. II.13) adding up
the two boundary polarizations in a similar way over-
counts the corner charge. Heuristically the two bound-
ary polarizations share the corner charge if arising from a
bulk quadrupole moment, whereas they both contribute
independently if arising from “free” surface polarization.
In summary, even though both cases in Fig. 6 have edge-
localized polarizations converging at a corner of the ma-
terial, the resulting corner charge is not determined the
same way from the boundary polarizations. For exam-
ple, if we set p1 = p2 = qxy so that the magnitudes of the
edge polarizations match in both cases, the case of con-
verging edge polarizations Eq. II.21 gives a corner charge
Qcorner = 2qxy, while the case of a uniform quadrupole
moment gives a corner charge Qcorner = qxy.

We now generalize the relations between bulk and
boundary moments and their associated boundary
charges. In 1D the difference between the total charge on
the end of the system and the free charge (i.e., monopole
moment) attached to the end is captured by the dipole
moment

Qend −Qfree = px. (II.25)

In 2D the difference between the total corner charge and
that coming from the total surface polarization contribu-
tions is determined by the bulk quadrupole moment

Qcorner − pedgex − pedgey = −qxy. (II.26)

Finally, in 3D, we can relate the octupole moment to
the difference in the corner charge and the total surface
quadrupole and total hinge polarization via

Qcorner −

 ∑
i=x,y,z

phingei + qfacexy + qfaceyz + qfacexz


= oxyz. (II.27)

We have implicitly assumed in these three equations that

the surfaces, hinges, and corners are all associated with
positively oriented normal vectors. For simplicity we
have also dropped Qfree in the latter two equations: a
free corner monopole has to be subtracted from the cor-
ner charge.

E. Symmetries of the multipole moments

Since we are primarily interested in cases where the
multipole moments are quantized by symmetry, we need
to consider their symmetry transformations. A full dis-
cussion of all the transformation properties of all of the
components of every multipole moment can be done but
would take us too far afield, so we only briefly comment
on the simplest properties that provide useful physical
intuition.

We focus on systems with d-dimensional cubic-like
symmetries, e.g., the crystal families of orthorhombic,
tetragonal, and cubic materials. For a cubic point
group, a non-zero, off-diagonal, 2d-pole configuration
(e.g., 20 : 1 for charge, 21 for dipole px, 22 for quadrupole
qxy, and 23 for octupole oxyz) is only invariant under
the d-dimensional “tetrahedral” subgroup (T (d)) of the
d-dimensional cubic symmetry group (O(d)). In 1D,
T (1) is just the identity operation. In 2D, T (2) is
the normal subgroup of the dihedral group D4 (sym-
metries of the square) which contains the symmetries
{1, C4Mx, C4My, C

2
4}, where Mx,y is a reflection of only

the x, y coordinate respectively, and C4 is the rotation
by π/2. The quadrupole moment qxy is invariant un-
der T (2). In 3D, oxyz is invariant under the tetrahedral
subgroup (T (3) = Td) of the cubic group (O(3) = O).

Since the subgroup which leaves the 2d-pole invariant
is a normal subgroup, we can consider the coset group,
for example O/Td ≡ Z2. The trivial element of this coset
represents all of the elements of T (d), i.e., the ones that
leave the multipole moment invariant. The non-trivial
element represents the other transformations in O, all
of which will cause the off-diagonal 2d-poles to switch
sign. In 1D this is simple, as the full symmetry group is
just G = {1,Mx}, and the polarization is invariant only
under 1, so G/1 = G ≡ Z2. In conclusion, under a sym-
metry in G that projects onto the non-identity element
of the Z2 factor group, the 2d-pole of a crystal insulator
should be quantized. In addition, charge conjugation, C,
quantizes the 2d-pole moment (note that each moment
depends linearly on the charge). Under these symme-
tries the moment is odd, and is hence required to either
vanish or be quantized to a non-trivial value allowed by
the presence of the lattice.

Having defined the multipole moment densities in con-
tinuum electromagnetic theory, and having characterized
their important observable properties, we now move to
describe how they arise in crystalline insulators. We start
with a review of dipole moments in 1D crystals, and se-
quentially advance our description towards bulk and edge
dipole moments in 2D crystals, quadrupole moments in



9

2D crystals, and finally octupole moments in 3D crystals.
Due to the dependence of the multipole moments on the
origin of coordinates when lower multipole moments do
not vanish, we assume in what follows that, for any mul-
tipole moment in question, all lower multipole moments
vanish.

III. Bulk dipole moment in 1D crystals

Neutral one-dimensional crystals only allow for a
dipole moment. In insulators, the electronic contribu-
tion to the polarization arises from the displacement of
the electrons with respect to the ionic positive charges.
In this section, to calculate the polarization, we diagonal-
ize the electronic projected position operator11,50,52,56,
and construct the Wannier centers and Wannier func-
tions57,58. The polarization can then be easily extracted.
In doing so, we will recover the result that the electronic
polarization is given by the Berry phase accumulated by
the parallel transport of the subspace of occupied bands
across the Brillouin zone (BZ). The electronic polariza-
tion can have a topological nature in the presence of cer-
tain symmetries3,9.

A. Preliminary considerations

Let us first consider insulators with discrete translation
symmetry, but simply composed of point charges. As
seen in section II B, the polarization is well defined only
if it has zero net charge. Discrete translation symmetry
implies that it is sufficient to characterize the polarization
by considering a single unit cell. Thus, given a definition
of a unit cell, and a coordinate frame fixed within it, the
dipole moment density per unit length is given by

λ =
1

a

(
Nnuclei∑
α=1

qαRα +

Nelec∑
α=1

−erα

)
, (III.1)

where Rα are the positions of the positive charges (i.e.
the atomic nuclei), rα are the electronic positions, and a
is the lattice constant (from now on, we will set a = 1
for simplicity, unless otherwise specified). We are free to
reposition the coordinate frame so that its origin is at
the center of charge of the atomic nuclei, i.e., at

Rc =
1

Qnuclei

Nnuclei∑
α=1

qαRα, (III.2)

where Qnuclei =
∑Nnuclei
α=1 qα is the total positive charge

within the unit cell. This choice of coordinate frame can-
cels out the contribution to the polarization density due
to positive charges. Although the coordinate frame is
now fixed, there is still an ambiguity in the definition of
the unit cell, as illustrated in Fig. 7, where the same lat-
tice charge configuration is shown with two definitions of

FIG. 7. (Color online) Ambiguity in the definition of the elec-
tronic positions. Two 1D lattices with one atomic site (blue
dots) and one electron (red circles) per unit cell. Although
the two physical configurations for the two 1D lattices are the
same, the electronic positions r and r′ = r− a differ by a lat-
tice constant due to the difference in the definitions of their
unit cells.

the unit cell. In both cases the locations of both ionic cen-
ters (blue dots) and electrons (red circles) are the same,
but the electronic positions relative to the ionic charges
in the same cell (black arrows), r and r′, differ by a lattice
constant, i.e., r′ = r − a. This difference has no physical
meaning, and thus the ambiguity is removed by making
the identification

rα ≡ rα mod a, (III.3)

where a is the lattice constant.

With this important subtlety in mind, we now describe
the quantum mechanical theory of electronic polariza-
tion in crystals developed by King-Smidth, Vanderbilt,
and Resta3,4,7. This theory characterizes the bulk dipole
moment, and is commonly know as the modern theory
of polarization. At the core, the approach is as follows:
since the electronic wavefunctions are distributed over
the material, we calculate their positions by solving for
the eigenvalues of the periodic position operator x̂ pro-
jected into the subspace of occupied bands50,52. These
eigenvalues, or Wannier centers57, will then map the
quantum mechanical problem into the classical problem
of point charges4. Notably, we find that the eigenfunc-
tions associated to these centers are useful in the formu-
lation of higher multipole moments, as we will see for the
case of quadrupole (Section VI) and octupole (Section
VII) moments.
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B. The large Wilson loop, Wannier centers and
Wannier functions

The position operator for the electrons in a crystal with
N unit cells and Norb orbitals per unit cell is56

x̂ =
∑
R,α

c†R,α |0〉 e
−i∆k(R+rα) 〈0| cR,α, (III.4)

where α ∈ 1 . . . Norb labels the orbital, R ∈ 1 . . . N labels
the unit cell, rα is the position of orbital α relative to
the center of positive charge within the unit cell or, more
generally, relative to the (fixed) origin of system of coor-
dinates (see Section III A), and ∆k = 2π/N (remember
we have set a = 1). Consider the discrete Fourier trans-
form

cR,α =
1√
N

∑
k

e−ik(R+rα)ck,α

ck,α =
1√
N

∑
R

eik(R+rα)cR,α, (III.5)

where k ∈ ∆k · (0, 1, . . . N −1). We impose the boundary
conditions

cR+N,α = cR,α → ck+G,α = eiGrαck,α, (III.6)

where G is a reciprocal lattice vector (the phase eiGrα is
generally eiG·rα , and can be positive or negative depend-
ing on the choice of origin). In this new basis, we can
alternatively write the position operator as

x̂ =
∑
k,α

c†k+∆k,α
|0〉 〈0| ck,α, (III.7)

as well as the second quantized Hamiltonian

H =
∑
k

c†k,α[hk]α,βck,β , (III.8)

where summation is implied over repeated orbital indices.
Due to the periodicity (III.6), the Hamiltonian hk obeys

hk+G = V −1(G)hkV (G), (III.9)

where

[V (G)]α,β = e−iGrαδα,β . (III.10)

We diagonalize this Hamiltonian as

[hk]α,β =
∑
n

[unk ]αεn,k[u∗nk ]β , (III.11)

where [unk ]α is the α-th component of the eigenstate |unk 〉.
To enforce the periodicity (III.9), we impose the periodic
gauge

[unk+G]α = [V −1(G)]α,β [unk ]β . (III.12)

This diagonalization allows us to write Eq. III.8 as

H =
∑
n,k

γ†n,kεn,kγn,k, (III.13)

where

γn,k =
∑
α

[u∗nk ]αck,α (III.14)

is periodic in the BZ, as it obeys

γn,k = γn,k+G. (III.15)

As we are interested in insulators at zero temperature,
we will focus on the occupied electron bands. We hence
build the projection operator into occupied energy bands

P occ =

Nocc∑
n=1

∑
k

γ†n,k |0〉 〈0| γn,k, (III.16)

where Nocc is the number of occupied energy bands.
From now on we assume that summations over bands
include only occupied energy bands. We now proceed
to diagonalize the position operator projected into the
subspace of occupied bands56

P occx̂P occ =
∑
n,k

∑
n′,k′

γ†n,k |0〉 〈0| γn′,k′×(∑
q,α

〈0| γn,kc†q+∆k,α
|0〉 〈0| cq,αγ†n′,k′ |0〉

)
.

(III.17)

From III.14 we have 〈0| γn,kc†q,α |0〉 = [u∗nk ]αδk,q, so the
projected position operator reduces to

P occx̂P occ =

Nocc∑
m,n=1

∑
k

γ†m,k+∆k
|0〉
〈
umk+∆k

∣∣ unk〉 〈0| γn,k
(III.18)

where we have adopted the notation
〈
umq
∣∣ unk〉 =∑

α[u∗mq ]α[unk ]α (
〈
umk
∣∣ unq 〉 6= δm,nδk,q in general. They

only obey 〈umk | unk 〉 = δm,n).
The matrix Gk with components [Gk]mn =〈
umk+∆k

∣∣ unk〉 is not unitary due to the discretization of
k. However, it is unitary in the thermodynamic limit, as
seen in Appendix C. To render it unitary for finite N ,
consider the singular value decomposition59

G = UDV †, (III.19)

where D is a diagonal matrix. The failure of G to be uni-
tary is manifest in the fact that the (real valued) singular
values along the diagonal of D are less than 1. Therefore,
we define, at each k,

F = UV † (III.20)
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which is unitary. We refer to Fk as the Wilson line el-
ement at k. In the thermodynamic limit, N → ∞, we
have that [Fk]mn = [Gk]mn. To diagonalize the projected
position operator, let us write the eigenvalue problem:

(P occx̂P occ)
∣∣Ψj
〉

= Ej
∣∣Ψj
〉
, (III.21)

which, in the basis γn,k |0〉, adopts the following form


0 0 0 . . . FkN
Fk1 0 0 . . . 0
0 Fk2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0



νk1
νk2
νk3
...

νkN


j

= Ej


νk1
νk2
νk3
...

νkN


j

,

(III.22)

where k1 = 0, k2 = ∆k, . . . , kN = ∆k(N − 1), and
j ∈ 1 . . . Nocc. Here we have replaced Gk in Eq. III.21 by
Fk to restore the unitary character of the Wilson line el-
ements. By repeated application of the equations above,
one can obtain the relation

Wkf←ki

∣∣∣νjki〉 = (Ej)(kf−ki)/∆k

∣∣∣νjkf〉 , (III.23)

where we are adopting the bra-ket notation
∣∣∣νjkl〉 for the

vector formed by the collection of values [νjkl ]
n, for n ∈

1 . . . Nocc. We define the discrete Wilson line as

Wkf←ki = Fkf−∆k
Fkf−2∆k

. . . Fki+∆k
Fki (III.24)

For a large Wilson loop, i.e. a Wilson line that goes
across the entire Brillouin zone (from now on, by Wilson
loop we refer exclusively to large Wilson loops), Eq. III.23
results in the eigenvalue problem

Wk+2π←k

∣∣∣νjk〉 = (Ej)N
∣∣∣νjk〉 . (III.25)

where the subscript k labels the starting point, or base
point, of the Wilson loop. While the Wilson-loop eigen-
states depend on the base point, its eigenvalues do not.
Furthermore, since the Wilson loop is unitary, its eigen-
values are simply phases

(Ej)N = ei2πν
j

(III.26)

which has N solutions

Ej,R = ei2πν
j/N+i2πR/N

= ei∆k(νj+R) (III.27)

for R ∈ 0 . . . N − 1. The phases νj are the Wannier
centers. They correspond to the positions of the electrons
relative to the center of the unit cells. The eigenfunctions
of the Wilson loop at different base points are related to
each other (up to a U(1) gauge, which we now fix to be

the identity) by the parallel transport equation∣∣∣νjkf〉 = e−i(kf−ki)ν
j

Wkf←ki

∣∣∣νjki〉 , (III.28)

which is a restatement of Eq. III.23. Since j ∈ 1 . . . Nocc
and R ∈ 0 . . . N−1, there are as many projected position
operator eigenstates and eigenvalues as there are states
in the occupied bands. Given the normalized Wilson-
loop eigenstates, the eigenstates of the projected position
operator, which now reads

(P occx̂P occ)
∣∣∣Ψj

R

〉
= ei∆k(νj+R)

∣∣∣Ψj
R

〉
(III.29)

are ∣∣∣Ψj
R

〉
=

1√
N

Nocc∑
n=1

∑
k

[
νjk

]n
e−ikRγ†nk |0〉 , (III.30)

where
[
νjk

]n
is the nth component of the jth Wilson-

loop eigenstate
∣∣∣νjk〉. This form of the solution follows

directly from (III.22). We call these functions the Wan-
nier functions (WF). Here, j ∈ 1 . . . Nocc labels the WF
and R ∈ 0 . . . N − 1 identifies the unit cell to which they
are associated. These states obey〈

Ψi
R1

∣∣∣ Ψj
R2

〉
= δi,jδR1,R2

, (III.31)

i.e., they form an orthonormal basis of the subspace of oc-
cupied bands of the Hamiltonian. Before using these re-
sults to calculate the polarization, let us comment on the

gauge freedom of the Wannier functions. If
∣∣∣νjk0〉 is the

eigenstate of Wk0+2π←k0 , then so is eiφ0

∣∣∣νjk0〉. Naively,

one could assign different phases eiφk to each of the
∣∣∣νjk〉

in the expansion of (III.30). However, this is not al-
lowed, because the phases of the Wilson-loop eigenstates
at subsequent crystal momenta k are fixed to eiφ0 by the
parallel transport relation (III.28) –which is our gauge-
fixing condition. Thus, the Wannier functions (III.30)
inherit only an overall phase factor eiφ0 , as expected.

C. Polarization

The prescription detailed above for the diagonalization
of P occx̂P occ reveals that the expected value of the elec-
tronic positions relative to the center of positive charge
within the unit cell is given by the Wannier centers, which
are encoded in the phases of the Wilson-loop eigenvalues,
i.e., in

Wk+2π←k

∣∣∣νjk〉 = ei2πν
j
∣∣∣νjk〉 . (III.32)

For j = 1 . . . Nocc, the Wannier centers are the collection
of values {νj}. There are Nocc Wannier centers associ-
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ated to each unit cell, and there areNocc electrons per cell
in the ground state. The electronic contribution to the
dipole moment, measured as the electron charge times
the displacement of the electrons from the center of the
unit cell is proportional to

p =
∑
j

νj . (III.33)

In the expression above we have set the electron charge
e = 1 for convenience in the reminder of the paper, unless
otherwise noted. The expression (III.33) is true for any
unit cell due to translation invariance, and thus it is a
bulk property of the crystal. Since the Wannier centers
are the phases of the eigenvalues of the Wilson loop, we
can alternatively write the polarization as

p = − i

2π
Log Det [Wk+2π←k] . (III.34)

Furthermore, in the thermodynamic limit (see Appendix
C), if we write the Wilson loop in terms of the Berry
connection

[Ak]mn = −i 〈umk | ∂k |unk 〉 , (III.35)

we have

p = − i

2π
Log Det

[
e−i

∫ k+2π
k

Akdk
]

= − 1

2π

∫ k+2π

k

Tr[Ak]dk mod 1, (III.36)

which is the well known expression for the polarization
in the modern theory of polarization3,4,7. The electronic
polarization is proportional to the Berry phase that the
subspace of occupied bands P occk = |unk〉 〈unk| accumulates
as it is parallel-transported around the BZ.

1. Polarization and gauge freedom

If the electrons are ‘reassigned’ to new unit cells, the
polarization with the new assignment changes by an in-
teger (see Fig. 7). Mathematically, this is evident in
(III.33) from the fact that the Wannier centers νj , de-
fined as the log of a U(1) phase, are also defined mod 1.
In the expression (III.36), it is not obvious a priori how
this ambiguity appears. However, this expression for the
polarization is not gauge invariant in the following sense.
One is free to choose a different “gauge” for the functions
|unk 〉,

|u′mk 〉 =
∑
n

[Uk]mn |unk 〉 . (III.37)

The Slater determinant that forms the many-body in-
sulating wavefunction is left invariant by this transfor-
mation. The gauge transformation leads to a changed

connection

A′k = U†kAkUk − iU
†
k∂kUk. (III.38)

This new adiabatic connection gives a polarization

p′ = p+
i

2π

∫ k+2π

k

dkTr
[
U†k∂kUk

]
= p+

i

2π

∫ k+2π

k

dkTr [∂k lnUk]

= p+
i

2π
Tr [lnUk]

∣∣∣∣k+2π

k

= p+
i

2π
ln [detUk]

∣∣∣∣k+2π

k

= p+
i

2π

∑
i

[iφi(k + 2π)− iφi(k)]

= p+ n (III.39)

where n is an integer. In the second to last line, {φi(k)}
are the phases of the eigenvalues of Uk. The fact that Uk
is periodic in k implies that the phases of its eigenvalues
can differ at most by a multiple of 2π between k and
k + 2π. Thus, we see that different gauge choices may
vary the polarization, but only by integers.

In what follows we will use the Wilson loop formulation
of the polarization instead of the expression (III.36) writ-
ten in terms of the gauge-dependent Berry connection.
We will later see that the formulation in terms of Wilson
loops has a key additional advantage: the Wilson-loop
eigenfunctions give us access to the Wannier functions
(III.30), which in turn allow as to generalize the concept
of a quantized dipole moment, as discussed in the next
subsection, to quantized higher multipole moments.

D. Symmetry protection and quantization

The polarization can be restricted to specific values in
the presence of symmetries. For example, a two-band
inversion-symmetric insulator at half filling has only one
electron per unit cell. Thus, the electron center of charge
has to be located at either the atomic center or halfway
between centers, as any other position of the electron vi-
olates inversion symmetry. We say that in this case the
polarization is ‘quantized’ to be either 0, for electrons
at atomic sites, or 1/2, for electrons in between atomic
sites. In what follows, we show how symmetries impose
constraints on the allowed values of the Wannier centers
and consequently on the polarization. For that purpose,
we refer to the relations for Wilson loops52 that are de-
tailed in Appendix D. We first define the notation for
Wilson loops. We denote a Wilson loop with base point
k, and with parallel transport towards increasing values
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of momentum until reaching k + 2π as

Wx,k ≡ Fk+N∆k
Fk+(N−1)∆k

. . . Fk+∆k
Fk, (III.40)

where Fk is the unitary matrix resulting from the sin-
gular value decomposition of Gk, which has components
[Gk]mn =

〈
umk+∆k

∣∣ unk〉 (see Section III B). Similarly, de-
note the Wilson loop with base point k that advances the
parallel transport towards decreasing values of momen-
tum until reaching k − 2π as

W−x,k ≡ Fk−N∆k
Fk−(N−1)∆k

. . . Fk−∆k
Fk. (III.41)

These Wilson loops obey

W−x,k =W†x,k (III.42)

as shown in Appendix D. We now show the quantization
of the polarization in 1D crystals due to inversion and
chiral symmetries.

1. Inversion symmetry

A crystal with inversion symmetry obeys

ÎhkÎ−1 = h−k, (III.43)

where I is the unitary (I−1 = I†) inversion operator.
As shown in Appendix D, in the presence of inversion
the Wilson loops obey

BI,kWx,kB
†
I,k

I
=W†x,−k (III.44)

where BmnI,k =
〈
umk
∣∣I∣∣un−k〉 is the unitary ‘sewing’ matrix

that connects the states at |umk 〉 and
∣∣um−k〉 having equal

energies (see Appendix D for details). Since the Wilson-
loop eigenvalues are independent of the base point, Eq.
III.44 implies that the set of Wilson-loop eigenvalues has
to be equal to its complex conjugate, which implies, for
the set of Wannier centers,

{νj}
I
= {−νj} mod 1. (III.45)

This forces the Wannier centers to be either 0, 1/2, or
to come in complex conjugate pairs {ν,−ν}. Physically,
inversion implies that the electrons have to either be: (i)
centered at an atomic site (ν = 0), (ii) in between sites
(ν = 1/2), or (iii) to come in pairs arranged on opposite
sides of each atomic center and equally distant from it
({ν, −ν}). In the first and third cases, the polarization
is 0, while in the second case it is 1/2. Hence, in general,
we have that

p
I
= −p mod 1. (III.46)

Î eigenval. Î eigenval. W eigenval.
at k = 0 at k = π

+ + +1

+ − −1

TABLE I. Relation between inversion and Wilson-loop eigen-
values for an insulator with one occupied band. Î is the inver-
sion operator. W is the Wilson loop. The signs ± represent
±1 if I2 = +1 or ±i if I2 = −1.

That is, under inversion,

p
I
= 0 or 1/2. (III.47)

This quantization under inversion symmetry allows for
an alternative way of calculating the Wannier centers.
From (III.43) it follows that at the inversion-symmetric
momenta k∗ = 0, π we have

[Î, hk∗ ] = 0. (III.48)

Thus, the eigenstates of the Hamiltonian at k∗ can be
chosen to be simultaneous eigenstates of the inversion
operator

Î |uk∗〉 = I(k∗) |uk∗〉 , (III.49)

where I(k∗) are the inversion eigenvalues at momenta
k∗ = 0, π. The inversion eigenvalues can then be used
as labels for the inversion representation at k∗ that the
occupied bands take. If the representation is the same
at k = 0 and k = π, the topology is trivial, and the
polarization is zero. However, if the representations at
these two points of the BZ differ, we have a non-trivial
topology associated with a non-zero polarization18,19,30.
We can encode these relations in the expression

ei2πp = I(0)I∗(π), (III.50)

where the asterisk stands for complex-conjugation. A
formal and complete derivation of the relation between
Wilson-loop eigenvalues and inversion eigenvalues was
first shown in Ref. 52. The relations between inversion
and Wilson-loop eigenvalues that we will use are shown
in Tables I and II.

2. Chiral symmetry

Although less evident, chiral (sublattice) symmetry
also quantizes the polarization. Chiral symmetry implies
that the Bloch Hamiltonian obeys

ΠhkΠ−1 = −hk, (III.51)
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Î eigenval. Î eigenval. W eigenval.

at k = 0 at k = π

(++) (++) (+1,+1)

(++) (+−) (+1,−1)

(++) (−−) (−1,−1)

(+−) (+−) (c.c.)

TABLE II. Relation between inversion and Wilson-loop eigen-
values for an insulator with two occupied bands. Î is the
inversion operator. W is the Wilson loop. The signs ± repre-
sent ±1 if I2 = +1 or ±i if I2 = −1. c.c. stands for complex
conjugate pair of values of magnitude 1.

where Π is the unitary (Π−1 = Π†) chiral operator. Un-
der this symmetry, the Wilson loop obeys

BΠ,kWocc
k B†Π,k

Π
=Wunocc

k . (III.52)

Here, Wocc
k (Wunocc

k ) is the Wilson loop at base point
k over occupied (unoccupied) bands, and BmnΠ,k =

〈umk |Π|unk 〉 is a sewing matrix that connects states |umk 〉
and |unk 〉 having opposite energies, that is, such that
εm,k = −εn,k. Eq. III.52 implies that the Wannier cen-
ters from the occupied νj bands equal those calculated
from the unoccupied bands ηj ,

{νj}
chiral

= {ηj} mod 1 (III.53)

and thus,

pocc
chiral

= punocc. (III.54)

It is important to recall that to have strict chiral symme-
try as we assume here, the number of occupied bands in a
gapped system will be equal to the number of unoccupied
bands. To conclude our argument, an additional consid-
eration is necessary: The Hilbert space over all bands
(occupied and unoccupied) is topologically trivial. Thus,
the polarization that results from both the occupied and
unoccupied bands is necessarily also trivial, i.e.,

pocc + punocc = 0 mod 1, (III.55)

which leads to

pocc
chiral

= −punocc mod 1. (III.56)

From (III.54) and (III.56) we conclude that

p
chiral

= 0 or 1/2, (III.57)

i.e., the polarization is quantized in the presence of chiral
(sublattice) symmetry.

In what follows, we discuss the features of a sys-
tem with non-zero polarization by studying the mini-
mal model that realizes the dipole phase. In general a

bulk polarization per unit length of p manifests itself at
the boundary in the existence of bound surface charges
of magnitude p, in exact correspondence to the classical
electromagnetic theory [cf. Eq. II.9]. Consequently, the
topological dipole phase exhibits quantized, fractional
boundary charge of ±e/2, which can be protected, e.g.,
by inversion or chiral symmetries. Additionally, we give
a concrete example of adiabatic current being pumped in
this model60–63.

E. Minimal model with quantized polarization in
1D

A minimal model for an insulator with bulk po-
larization in one dimension is the Su-Schrieffer-Hegger
model10, which describes a chain with alternating strong
and weak bonds between atoms, as in polyacetylene10.
A tight-binding schematic of this structure is shown in
Fig. 8a,b. Its Hamiltonian is

HSSH =
∑
R

(
γc†R,1cR,2 + λc†R,2cR+1,1 + c.c.

)
, (III.58)

where γ and λ are hopping terms within and between unit
cells respectively. Its corresponding Bloch Hamiltonian
in momentum space is

hSSH(k) =

(
0 γ + λe−ik

γ + λeik 0

)
, (III.59)

where the basis of the matrix follows the numbering in
Fig. 8a. More compactly, we will write this, and the
Hamiltonians to come, in terms of the Pauli matrices σi,
for i = 1, 2, 3:

hSSH(k) = [γ + λ cos(k)]σ1 + λ sin(k)σ2. (III.60)

The SSH model has energies

ε(k) = ±
√

(λ2 + 2λγ cos(k) + γ2). (III.61)

The model is gapped unless |γ| = |λ|. Thus, at half
filling, the SSH model is an insulator, unless γ = λ (γ =
−λ) where the bands touch at the k = π (k = 0) points
of the BZ and the system is metallic.

1. Symmetries

The Hamiltonian III.59 has inversion symmetry
Ih(k)I† = h(−k), with I = σ1, and chiral symmetry
Πh(k)Π† = −h(k) with Π = σ3. Thus, this model has
quantized polarization: p = 0 for |γ| > |λ| and p = 1/2
for |γ| < |λ|. At |γ| = |λ|, the energy gap closes. This
crossing is necessary to change the insulating phase from
one with p = 0 to p = 1/2, or vice versa. Thus, the
polarization is an index that labels two distinct phases,
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FIG. 8. (Color online) Su-Schrieffer-Hegger model with
Hamiltonian (III.58). (a) Trivial phase (|γ| > |λ|). (b)
Topological dipole phase (|γ| < |λ|). (c) Energy spectrum
for a chain with open boundaries as a function of γ when
λ = 1. Red energies correspond to two degenerate edge-
localized states. (d) Electron density in the topological dipole
phase (λ = 1, γ = 0.5). The total charge at the edges is ±e/2
relative to background.

the ‘trivial’ p = 0 phase and the ‘non-trivial’ or ‘dipole’
phase p = 1/2. This is the simplest example of a symme-
try protected topological (SPT) phase, because the two
phases are clearly distinguished only in the presence of
the symmetries that quantize the dipole moment. How-
ever, both the trivial and the “non-trivial” state are de-
scribed in terms of localized Wannier states – therefore
a more appropriate term for the “non-trivial” state is an
obstructed atomic limit48. An illustration of these two
phases and the transition point is shown in Fig. 8c, where
the spectrum of the open-boundary Hamiltonian is para-
metrically plotted as a function of γ, for a fixed value of
λ = 1.

2. Quantization of the boundary charge

In an SSH crystal with open boundaries, one conse-
quence of the quantization of the bulk polarization to e/2
in the dipole phase is the appearance of ±e/2 charge at
its edges. This accumulation is due to the existence two,
degenerate and edge-localized modes. In the presence of
chiral symmetry, the edge mode energies are pinned to
zero, and the edge modes are eigenstates of the chiral
operator. In the absence of chiral symmetry, the zero en-
ergy protection of the edge modes is lost; chiral-breaking
terms lift the energies of the edge modes away from 0,
but they will remain degenerate (resulting in a twofold
degenerate ground-state at half-filling) as long as inver-
sion is preserved in the system with open boundaries.

To determine a fixed sign for the polarization one must

weakly break the degeneracy of the edge modes. For N
unit cells, half filling implies that there are N electrons,
N − 1 of which fill bulk states. The extra electron thus
will fill one of the edge states, but if they are degenerate,
the electron cannot pick which state to fill. Splitting the
degeneracy infinitesimally is enough to decide which end
mode is filled, thus choosing the ‘sign’ of the dipole. In
the SSH model, the symmetry breaking can be achieved
by adding the term δσ3 to (III.60) for an infinitesimal
value of delta δ. Notice that σ3 breaks both chiral and
inversion symmetries, as required.

F. Charge pumping

In this section we describe the pumping of electronic
charge in insulators by means of adiabatic deformations
of the Hamiltonian. Originally conceived by Thouless12

as a method to extract current out of an insulator, this
mechanism also has a well established connection with
the quantum anomalous Hall effect16. We exploit an
analogous connection in Section VI F to construct an in-
sulator with chiral hinge states that has the same topol-
ogy as a 2D quadrupolar pumping cycle. In what follows,
we describe two concrete examples of charge pumping.
We start with a pedagogical example that allows us to
closely follow the motion of the Wannier centers during
the adiabatic evolution. However, this model requires a
piecewise continuous parametrization. Therefore we also
describe a pumping with a fully continuous parametriza-
tion - although it is less obvious pictorially.

The pedagogical example uses the SSH model as fol-
lows. Consider the SSH Hamiltonian (III.60) with addi-
tional on-site energies δσ3, which breaks the chiral and
inversion symmetries,

hSSHδ = [γ + λ cos(k)]σ1 + λ sin(k)σ2 + δσ3. (III.62)

We modify the parameters λ, γ, and δ adiabatically:

(δ, λ, γ) =

{
(cos(t), sin(t), 0) 0 < t ≤ π
(cos(t), 0, | sin(t)|) π < t ≤ 2π

(III.63)

where t is the adiabatic parameter. This parametriza-
tion represents an evolution of a family of Hamiltonians
through a closed cycle that returns to the original con-
figuration when t = 2πp for integer p. In the process,
however, an electron is transferred from the left to the
right at each unit cell. The first half of the cycle is illus-
trated in Fig. 9. At t = 0 the the Hamiltonian is +σ3, i.e.,
it is in the atomic limit, and at half filling the basis sites
‘2’ are occupied. In Fig. 9a, this corresponds to the north
pole of the Bloch sphere. As time progresses, the hopping
amplitude λ increases while keeping γ = 0, which results
in the wave functions progressively leaking into sites ‘1’
of the neighboring unit cells to their right. At t = π/2
the occupancy of the sites is uniform, with Wannier cen-
ter in between unit cells. This is the dipole phase, with
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FIG. 9. (Color online) Adiabatic pumping of an electron in
the SSH model (Eq. III.62) parametrized by (III.63) dur-
ing the first half of the cycle (the second half of the cycle
generates no transport). (a) As the adiabatic parameter t
advances, the Berry phase of the occupied band across the
BZ increases proportional to the solid angle enclosed by the
ground-state projector on the Bloch sphere. (b) Electronic
positions at t = 0, π/2, π that illustrate how the positions
advance proportionally to the Berry phase illustrated in (a).

p = 1/2. Then, for π/2 < t < π the hopping amplitude
decreases while the on-site potentials reverse sign. Thus,
the eigenstates increasingly occupy states ‘1’. At t = π,
the Hamiltonian is −σ3, and only sites ‘1’ are occupied.
In Fig. 9a, this corresponds to the south pole of the Bloch
sphere. During this first half of the cycle, electrons have
crossed one unit cell to the right. Topologically, the entire
Bloch sphere of the Hamiltonian in Eq. III.62 has been
swept, which is characterized by a Chern number n = 1.
The second half of the cycle does not cause transport, as
it switches the electron occupancy from sites ‘1’ back to
sites ‘2’ on the same unit cell (since λ = 0). At t = 3π/2,
the system is again inversion-symmetric, and the occu-
pancy is uniform, with Wannier center in the middle of
the unit cell. This is the p = 0 phase. Hence we can
think of the above interpolation as an cycle between the
p = 1/2 and the p = 0 phases, during which, as explicitly
shown, an electron has been moved from one side of the
chain to the other.

Although the pumping method described above has an
intuitive pictorial representation, we also want to gener-
ate electronic adiabatic pumping with a fully continuous
parametrization. If we can find such a representation
then we can use it to generate a lattice model in one spa-
tial dimension higher which will be topologically equiv-
alent to a quantum anomalous Hall (Chern) insulator.
This is carried out by reinterpreting the adiabatic pa-
rameter as an additional momentum quantum number
for a 2D system16. One way to realize this is by the
family of Hamiltonians

h(k, t) =[γ + cos(k)]σ1 + sin(k)σ2

+m sin(t)σ3 + [1 +m cos(t)]σ2, (III.64)

where t is the adiabatic parameter. Fig. 10 shows the
energy bands and the Wannier centers as a function of the
adiabatic parameter. Eq. III.64 encloses a monopole of
Berry flux as it sweeps out a torus T 2 instead of a sphere

FIG. 10. (Color online) Adiabatic pumping of an electron
with the adiabatic family of Hamiltonians (III.64). (a) En-
ergies when boundaries are open as function of the adiabatic
parameter t. (b) Wannier centers in the unit cell as function
of the adiabatic parameter t. In both plots γ = 0.5, m = 1.

S2 as in (III.63). In Fig. 10, γ = 0.5 and m = 1. Thus,
at t = 0 the system is in the trivial phase, while at t = π
the lattice is in the SSH dipole phase. Correspondingly,
we see that at t = 0 there are no zero-energy modes when
boundaries are open (Fig. 10a), and the Wannier center
(and consequently its polarization) is at a value of zero
(Fig. 10b). At t = π, there are two states with zero
energy when we have open boundaries, and the Wannier
center is at ν = 1/2. Finally at t = 2π the system has
returned back to its initial state in the atomic limit after
the charge has moved by one unit cell.

IV. Bulk dipole moment in 2D crystals

We now investigate the existence of dipole moments
in 2D crystals. Without loss of generality, we calculate
the position operator along x projected into the occupied
bands56

P occx̂P occ =
∑
k

γ†m,(kx+∆kx ,ky) |0〉 〈0| γn,(kx,ky)×〈
un(kx+∆kx ,ky)

∣∣∣ um(kx,ky)

〉
(IV.1)

which is similar to Eq. III.18, but with the extra quan-
tum number ky. Importantly, notice that the operator is
diagonal in ky. Thus, all the findings in Section III fol-
low through in this case too, but with the extra label ky.
In particular, for a large Wilson loop Wx,k, which has
k = (kx, ky) as its base point and runs along increasing
values of kx, as the obvious extension to 2D of definition
(III.40), we have

Wx,k

∣∣∣νjx,k〉 = (Ej)N
∣∣∣νjx,k〉 , (IV.2)

where

(Ej)N = ei2πν
j
x(ky) (IV.3)
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are its eigenvalues and
∣∣∣νjx,k〉 its eigenstates. The WFs

along x are then

∣∣∣Ψj
Rx,ky

〉
=

1√
Nx

Nocc∑
n=1

∑
kx

γ†n,k |0〉
[
νjx,k

]n
e−ikxRx ,

(IV.4)

where k = (kx, ky) is the crystal momentum, with
kx,y = nx,y∆kx,y , for nx,y ∈ 0, 1, . . . , Nx,y − 1 and
∆kx,y = 2π/Nx,y. These functions obey〈

Ψj
Rx,ky

∣∣∣ Ψj′

R′x,k
′
y

〉
= δj,j′δRx,R′xδky,k′y , (IV.5)

i.e., they form an orthonormal basis of the subspace of oc-
cupied energy bands of the Hamiltonian. For the Wilson-

loop eigenstates
∣∣∣νjx,k〉, the subscript x specifies the di-

rection of its Wilson loop, and k specifies its base point,
so, for example, Eq. IV.2 is explicitly written as

W(kx+2π,ky)←(kx,ky)

∣∣∣νjx,(kx,ky)

〉
= (Ej)N

∣∣∣νjx,(kx,ky)

〉
.

(IV.6)

Although the phases νjx(ky) of the eigenvalues of the Wil-
son loop Wx,k do not depend on kx, in general they do
depend on ky. Thus, the polarization for one-dimensional
crystals translates into polarization as a function of ky in
its 2D counterpart, that is

px(ky) =

Nocc∑
j=1

νjx(ky) = − i

2π
Log Det[Wx,k], (IV.7)

which, in the thermodynamic limit becomes

px(ky) = − 1

2π

∫ 2π

0

Tr[Ax,k]dkx, (IV.8)

where k = (kx, ky) and [Ax,k]mn = −i 〈umk | ∂kx |unk〉 is
the non-Abelian Berry connection (where m,n run over
occupied energy bands). The total polarization along x
is

px =
1

Ny

∑
ky

px(ky). (IV.9)

In the thermodynamic limit, 1
Ny

∑
ky
→ 1

2π

∫
dky, the

polarization in 2D crystals is

px = − 1

(2π)2

∫
BZ

Tr[Ax,k]d2k. (IV.10)

Here BZ is the 2D Brillouin zone. The 2D polarization
is thus given by the vector p = (px, py), where each com-
ponent pi is calculated using (IV.10) with [Ai,k]mn =
−i 〈umk | ∂ki |unk〉, for i = x, y.

A. Symmetry protection and quantization

As in 1D, the polarization in 2D can have the values
0 or 1/2 (in appropriate units) under the presence of
certain symmetries. In this section we consider the sym-
metries that protect the quantization of the polarization
in 2D. The conclusions detailed below follow from the
symmetry transformations of the Wilson loops derived
in Appendix D.

1. Reflection symmetries

In the presence of reflection symmetries Mx : x→ −x
and My : y → −y, the Bloch Hamiltonian obeys

M̂xh(kx,ky)M̂
−1
x = h(−kx,ky),

M̂yh(kx,ky)M̂
−1
y = h(kx,−ky), (IV.11)

respectively. The polarization along x as a function of ky
(IV.8) under these symmetries obeys

px(ky)
Mx= −px(ky)

px(ky)
My
= px(−ky), (IV.12)

and similarly for py(kx). These relations imply that, un-
der Mx,

px(ky)
Mx= 0 or 1/2 (IV.13)

(and similarly for py(kx) under My). This quantized
value can be easily computed by comparing the reflection
representations at the reflection-invariant lines in the BZ.
Concretely, from (IV.11) it follows that

[M̂x, h(k∗x,ky)] = 0 (IV.14)

for k∗x = 0, π and for ky ∈ [−π, π). Thus, following with
the rationale in Section III D 1 for the case of inversion
in 1D, the polarization px(ky) under reflection symmetry
Mx can be found by calculating

ei2πpx(ky) = mx(0, ky)m∗x(π, ky). (IV.15)

where mx(k∗x, ky) are the reflection eigenvalues at the
reflection invariant lines of the BZ and the superscript
asterisk stands for complex-conjugation (in the case of
double-groups for which reflection symmetries have com-
plex eigenvalues). Now, the polarization at fixed ky can
be thought of as the polarization of a 1D Bloch Hamilto-
nian h(kx, ky), for kx ∈ [−π, π). It follows from (IV.13)
that, under reflection Mx, this 1D Hamiltonian has quan-
tized polarization. Since this polarization is a topologi-
cal index, a change in this index px(ky) across ky is only
possible if the Hamiltonian h(kx, ky) closes the gap at
certain values of ky. Thus, for Hamiltonians that are
gapped in energy for all kx, ky ∈ [−π, π), their polariza-
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tions px(ky) are not only quantized, but also continuous
across ky ∈ [−π, π). This implies that the overall polar-
ization is also quantized,

pi
Mi= 0 or 1/2 (IV.16)

for i = x, y.

2. Inversion symmetry

Under inversion symmetry,

IhkI−1
x = h−k, (IV.17)

we have the relation

px(ky)
I
= −px(−ky) mod 1. (IV.18)

This implies that the polarization (IV.9) obeys

px
I
= −px mod 1, (IV.19)

i.e., under inversion symmetry the polarization is quan-
tized:

px
I
= 0 or 1/2. (IV.20)

However, the restriction (IV.18) does not quantize the
polarization at each ky, as in (IV.13) for reflection sym-
metries. This allows for px(ky) to acquire any value [0, 1],
except at the inversion symmetric momenta k∗y = 0, π,
where we have

px(k∗y)
I
= 0 or 1/2. (IV.21)

The two values, px(0) and px(π), are topological in-
dices that are related to the parity of the Chern number
(defined in Eq. IV.29)18,19

eiπn = ei2πpx(0)ei2πpx(π). (IV.22)

This relationship between the parity of the Chern number
and the polarizations px(0), px(π) will become apparent
in the discussion to follow in Section IV B. Using (III.50),
this expression reduces to

eiπn = I(Γ)I(X)I(Y)I(M), (IV.23)

where the momenta Γ, X, Y, and M are shown in Fig. 11.
(Note that the inversion eigenvalues are real for both sin-
gle and double groups, and hence complex conjugation is
not necessary).

The polarization of an insulator with a non-zero Chern
number is a subtle matter and requires special care be-
cause of the partial occupation of the chiral edge states64.
We will only consider the polarization of insulators with
vanishing Chern number. When the Chern number is
zero, the polarization can be determined from the inver-

FIG. 11. (Color online) Brillouin zone in 2D and its reflection
invariant points and lines of the Brillouin zone. In the pres-
ence of reflection symmetriesMx,y and inversion I, the Hamil-

tonian at the solid blue (dashed red) lines commutes with M̂x

(M̂y). At the points Γ = (0, 0), X = (π, 0), Y = (π, 0), and

M = (π, π) the Hamiltonian also commutes with Î.

sion eigenvalues of the occupied bands via18,19

px
I
=

{
0 if I(Γ)I(X) = +1 and I(Y)I(M) = +1

1/2 if I(Γ)I(X) = −1 and I(Y)I(M) = −1
.

(IV.24)

For a system with vanishing Chern number, the polariza-
tion px(ky) for ky = 0 and ky = π are identical. Hence
we only need to compare either I(Γ) and I(X) together
or I(Y) and I(M) together to determine px. Similarly,
py can be inferred by

py
I
=

{
0 if I(Γ)I(Y) = +1 and I(X)I(M) = +1

1/2 if I(Γ)I(Y) = −1 and I(X)I(M) = −1
.

(IV.25)

A simple realization of an insulator with polarization
(px, py) = (1/2, 0) is shown in Fig. 12a, which consists
of a series of 1D SSH chains in the topological dipole
phase oriented along x and stacked along y. It has inver-
sion eigenvalues as shown in Fig. 12b. Such a stacked
insulator is called a weak topological insulator (weak
TI)34,35,65,66, because, although it is a 2D system, its
non-trivial topology is essentially one dimensional. Thus,
they can be realized by stacking layers of 1D topological
insulators. In this particular case the ground state of
the system can be described by localized Wannier states
in both the trivial and non-trivial phases, and hence we
could again identify it with an obstructed atomic limit48.
In general, the polarization of a weak TI is described by
an index34,35,65

G = pxby + pybx, (IV.26)

where px and py are the polarizations (IV.10), which can
be determined by (IV.24) and (IV.25), and bx, by are
unit reciprocal lattice vectors of the crystal.

In the case of insulators with multiple occupied bands,
the single inversion eigenvalue I(k∗) in (IV.24) and
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FIG. 12. (Color online) A weak topological insulator formed
by stacking 1D insulators in the topological dipole phase.
(a) Lattice. (b) Inversion eigenvalues at the high symmetry
points Γ, X, Y, and M.

(IV.25), for k∗ = Γ, X, Y, and M, is replaced by the
multiplication of the inversion eigenvalues of all the oc-
cupied bands at k∗. For example, consider the two insu-
lators with Bloch Hamiltonians

h1(k) = [cos(kx)τx + sin(kx)τy]

⊕ [cos(ky)τx + sin(ky)τy]

+ γτx ⊗ (τ0 + τx),

h2(k) = [cos(kx − ky)τx + sin(kx − ky)τy]

⊕ [cos(kx + ky)τx + sin(kx + ky)τy]

+ γτx ⊗ (τ0 + τx), (IV.27)

which have lattices, inversion and reflection eigenvalues
as shown in Fig. 13 and Fig. 14, respectively. Their
weak indices are G1 = (1/2, 1/2) and G2 = (0, 0), re-
spectively. In the case of h1(k), the two Wannier cen-
ters of the two occupied bands are (νx, νy) = (0, 1/2)
and (νx, νy) = (1/2, 0), as indicated by the red cir-
cles in Fig. 13a. This leads to a non-trivial polariza-
tion along both directions. In the case of h2(k), on the
other hand, the two Wannier centers have the same value
(νx, νy) = (1/2, 1/2), leading to trivial polarization when
combined. Notice, from the inversion eigenvalues shown
in Fig. 14b, that although h2(k) has trivial polarization,
it is not a trivial atomic limit insulator (a trivial insulator
has all inversion eigenvalues at all high symmetry points
equal), it is an obstructed atomic limit where the Wan-
nier centers are located away from the atom positions48.
We also point out that the inversion and reflection eigen-
values in Fig. 13 and 14 are compatible with the relations
shown in Table II.

A more comprehensive classification of topological
crystalline insulators takes into account the full structure
of the inversion eigenvalues of the occupied bands, or,
more generally, the point group corepresentations on the
subspace of occupied bands, to construct crystalline topo-
logical invariants18,19,23–49. Such a classification, how-
ever, is outside of the scope of this paper.

FIG. 13. (Color online) Insulator with Bloch Hamiltonian
h1(k) as in the first Eq. of (IV.27). Periodic boundaries
are imposed, so that top and bottom edges, as well as left
and right edges, are identified. (a) Lattice. Hopping terms
(black lines) have strength 1. Couplings within unit cells (red
lines) have strength γ � 1. Red circles indicate 2D Wannier
centers. (b) Inversion eigenvalues at the high symmetry points
Γ, X, Y, and M. (c) Mx eigenvalues along the (0, ky) and
(π, ky) invariant lines. (d) My eigenvalues along the (kx, 0)
and (kx, π) invariant lines.

B. Wilson loops and Wannier bands

We now introduce the concept of Wannier bands as
the set of Wannier centers along x as a function of ky,
νx(ky), or, vice versa, as the set of Wannier centers along
y as a function of kx, νy(kx). Unless otherwise specified,
we will use the generic term Wannier bands to refer to
νx(ky). The Wannier bands have associated hybrid Wan-
nier functions (IV.4) that are localized along x but are
Bloch-like along y. Although the term ‘hybrid Wannier
function’ is rather general, as more than one definition
exist to refer to partially-localized states55,67–69, here we
refer exclusively to the eigenstates of the projected po-
sition operator along one direction as a function of the
perpendicular crystal momentum, as in Eq. IV.4. They
will be useful in the formulation of higher multipole mo-
ments in Section VI. Fig. 15 shows the Wannier bands
for (a) the insulator h1(k) and (b) the insulator h2(k),
as well as for (c) a Chern insulator, and (d) a Quantum
Spin Hall (QSH) insulator. These last two insulators have
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FIG. 14. (Color online) Insulator with Bloch Hamiltonian
h2(k) as in the second Eq. of (IV.27). Periodic boundaries
are imposed, so that top and bottom edges, as well as left and
right edges, are identified. (a) Lattice. Hopping terms (black
lines) have strength 1. Couplings within unit cells (red lines)
have strength γ � 1. Red circles indicate 2D Wannier centers.
(b) Inversion eigenvalues at the high symmetry points Γ, X,
Y, and M. (c) Mx eigenvalues along (0, ky) and (π, ky). (d)
My eigenvalues along (kx, 0) and (kx, π).

corresponding Hamiltonians

hChern(k) = sin(kx)τx + sin(ky)τy

+ [m+ cos(kx) + cos(ky)] τz,

hQSH(k) = sin(kx)(Γzx + Γxx)

+ sin(ky)(Γyx + Γ0y)

+ [2−m− cos(kx)− cos(ky)] Γ0z, (IV.28)

where Γij = σi ⊗ τj , and σi (τi) are Pauli matrices cor-
responding to the spin (orbital) degrees of freedom. We
consider these models at half filling. At this filling all of
them are insulators.

The models h1(k) and h2(k), described in Section
IV A 2, admit the construction of 2D Wannier centers,
because their projected position operators P occx̂P occ and
P occŷP occ commute. Although this property is not true
in general, even for some trivial insulators, these two
models serve the illustrative purpose of mapping the elec-
tronic wave functions to classical point-charges in 2D4.
Indeed, the electron Wannier centers in these two mod-
els can be essentially located by inspection. Specifically,
with vanishing couplings within unit cells (γ = 0), re-
flection symmetry then implies that, at half-filling (with
2 electrons per unit cell), the electron positions have to

FIG. 15. (Color online) Wannier bands in (a) weak topologi-
cal insulator, (b) trivial insulator, (c) Chern insulator, and (d)
QSH insulator. The Wannier band in (b) is twofold degener-
ate. (a,b) have Hamiltonians (IV.27), respectively. (c,d) have
Hamiltonians (IV.28) with m = 1 and m = 3, respectively.

be as shown with red circles in Figs. 13a and 14a. Their
Wannier bands are compatible with these electronic posi-
tions. Having two occupied bands, these insulators have
two Wannier bands each. For h1(k), the νx(ky) bands
are ν1

x(ky) = 0, ν2
x(ky) = 1/2. These values are fixed

by reflection symmetry (Fig. 13c), and are compatible
with the electronic positions in Fig. 13a. For h2(k), we
have ν1

x(ky) and ν2
x(ky) coming in opposite pairs. This

is allowed by its reflection eigenvalues (Fig. 14c). No-
tice, however, that the inversion eigenvalues in this model
(Fig. 14b) impose certain degeneracies in the Wannier
values, ν1

x(0) = ν2
x(0) = 1/2 and ν1

x(π) = ν2
x(π) = 1/2.

Thus, the two electronic positions have to be degenerate
at a value of 1/2, as shown in the pictorial representation
of Fig. 14a. When Wannier bands νy(kx) are calculated
in these two models, we obtain the similar plots.

The case of the Chern insulator and the QSH insu-
lator are not as straightforward to interpret because in
these systems P occx̂P occ and P occŷP occ do not commute.
Thus, it is not possible to map the electronic wave func-
tions to ‘point-like’ charges as in the case of the insula-
tors in (IV.27). In the case of the Chern insulator, the
Wannier band νx(ky) winds around 1 time across the 1D
BZ ky ∈ [0, 2π). In general, a Chern insulator will wind
around n times, where

n =
1

2π

∫
BZ

d2kTr[F(k)] (IV.29)

is the Chern number of the Chern Insulator. Here F(k) =
∂kxAy,k−∂kyAx,k + i[Ax,k,Ay,k] is the Berry curvature.
To see how the Chern number encodes this winding of
the Wannier bands, let us take the simple case in which
[Ax,k,Ay,k] = 0. Furthermore, let us make the gauge
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choice ∂kxAy,k = 0. Then we have

n =
1

2π

∫
BZ

d2kTr[F(k)]

=
1

2π

∫
BZ

d2k
(
−∂kyTr[Ax,k]

)
=

∫ 2π

0

dky∂ky

(
− 1

2π

∫ 2π

0

dkxTr[Ax,k]

)
=

∫ 2π

0

dky∂kypx(ky). (IV.30)

Notice the resemblance of the Wannier bands in Fig. 15c
with those as a function of the adiabatic parameter t
in Fig. 10b. Indeed, both insulators are systems with
topology indexed by n = 1; if in Eq. III.64 we make the
change t → ky, the system becomes a Chern insulator.
The reverse procedure, termed dimensional reduction, is
one method for a hierarchical classification of topological
insulators16. The dimensional reduction ‘connects’ the
2D Chern insulator with the adiabatic pumping of charge
by means of a changing bulk dipole moment in 1D.

In general, this type of dimensional hierarchy mathe-
matically connects topological insulators of different di-
mensions, having the dipole moment as its starting point
in 1D. However, this connection does not provide a nat-
ural physical generalization of the 1D dipole moment to
higher multipole moments. In Section VI we show that,
in order to generate a classification that generalizes the
1D dipole moment to higher multipole moments in higher
dimensions, the notion of Wannier bands is crucial.

1. Symmetry constraints on Wannier bands

The Wannier bands, being related to the position of
electrons in the lattice, are constrained in the presence
of symmetries. In Appendix D, we show that the con-
straints due to time reversal (TR), chiral (Π), and charge
conjugation (CC) symmetries are{

νix(ky)
} TR

=
{
νix(−ky)

}
{
νix(ky)

} Π
=
{
ηix(ky)

}
{
νix(ky)

} CC
=
{
ηix(−ky)

}
(IV.31)

mod 1. In the last two relations, the values {ηix(ky)}
are Wannier bands calculated over unoccupied energy
bands. The Chern insulator with Hamiltonian as in the
first Eq. of (IV.28) breaks TR symmetry, because its
Wannier bands (Fig. 15c) are not symmetric with re-
spect to ky = 0, as required by the first Eq. in (IV.31).
In contrast, the QSH insulator with Hamiltonian as in
the second Eq. of (IV.28) shows Wannier bands compat-
ible with TR symmetry (Fig. 15d)50,70,71. Indeed, the
QSH insulator has non-trivial topology protected by TR
symmetry due to Kramers degeneracy. This protection

Q̂ eigenval. Q̂ eigenval. Eigenval. of

at k∗ at k∗ + G/2 Wk∗+G←k∗

(++) (++) (1, 1)

(++) (+−) (1,−1)

(++) (−−) (−1,−1)

(+−) (+−) (λ, λ∗)

TABLE III. Relation between eigenvalues of Q̂ = Î, M̂x or
M̂y and Wilson loops. ± are the eigenvalues of reflection or
inversion operators at high-symmetry momenta k∗ and k∗ +
G/2 over the subspace of two occupied energy bands. The
corresponding Wilson loop eigenvalues are for the Wilson loop
in the direction of the reciprocal lattice vector G52. The signs
± represent ±1 if Q̂2 = +1 or ±i if Q̂2 = −1.

is also manifest in the degeneracy of the Wannier values
(see Appendix D).

Additionally, the constraints due to the reflection
(Mx,My), inversion (I) and C4 symmetries are{

νix(ky)
} Mx=

{
−νix(ky)

}
{
νix(ky)

} My
=
{
νix(−ky)

}
{
νix(ky)

} I
=
{
−νix(−ky)

}
{
νix(ky)

} C4=
{
νiy(kx = −ky)

}
{
νiy(kx)

} C4=
{
−νix(ky = kx)

}
(IV.32)

mod 1 (see Appendix D). Recall that in 2D inversion I
and C2 transform the coordinates the same way, hence
the constraints on the Wannier bands due to C2 are the
same as those generated by I in 2D. Now, notice in par-
ticular that in the presence of the reflection symmetry
Mx, the first relation implies that the Wannier bands are
either flat bands locked to 0 or 1/2, or can disperse, but
must occur in pairs {−νx(ky), νx(ky)}. Since in gapped
systems the values of νix(ky) cannot change abruptly from
0 to 1/2 across different values of ky ∈ [−π, π), Mx re-
flection implies that the polarization is either px = 0 or
1/2. This is the case in the insulators h1(k) and h2(k)
with Hamiltonians (IV.27), having Wannier bands as in
Fig. 15a,b. Notice that these descriptions are compatible
with the constraints on the polarization in Eq. IV.13 and
Eq. IV.16. Indeed, for spinless insulators in 2D, the con-
straints due to Mx (which for spinless fermions has real
eigenvalues ±1) on νx(ky) at each ky are the same as the
constraints due to I in 1D (see Eq III.45). Thus, Table II
in 1D is extended to Table III in 2D. These relations be-
tween inversion, reflection, and Wilson loop eigenvalues
can be verified in the insulators h1(k) and h2(k), defined
in (IV.27). Each of these two insulators have both inver-
sion and reflection symmetries with eigenvalues as shown
in Fig. 13 and Fig. 14, and with Wannier values as shown
in Fig. 15a,b.
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2. Wannier bands and the edge Hamiltonian

Being unitary, we can express the Wilson loop as the
exponential of a Hermitian matrix,

WC,k ≡ eiHWC (k). (IV.33)

We refer to HWC (k) as the Wannier Hamiltonian. Notice
that in the definition above, the argument k of the edge
Hamiltonian is the base point of the Wilson loop. The
eigenvalues of HWC (k) are precisely the Wannier bands,
{2πνx(ky)} or {2πνy(kx)}, which only depend on the co-
ordinate of k normal to C, e.g., in two-dimensions, the
eigenvalues depend on ky for C along kx and vice versa.

The Wannier Hamiltonian HWC (k) has been shown to
be adiabatically connected with the Hamiltonian at the
edge perpendicular to C51. We remark here that the map
is not an exact identification, but rather, a map that
preserves the topological properties of the Hamiltonian
at the edge. The Wannier bands, being the spectrum
of HWC (k), are adiabatically connected with the energy
spectrum of the edge. Indeed, we see from Fig. 15 that
this interpretation correctly describes the edge properties
of the systems in Eq. (IV.28). For example, we recognize
the standard edge state patterns for the Chern insulator
and the QSH insulator, while the weak topological insu-
lator has a flat band of edge states as expected for an
ideal system with vanishing correlation length.

Let us now mention some useful relations obeyed by the
Wannier Hamiltonian. If we denote with −C the contour
C but in reverse order, it follows that

W−C,k =W†C,k = e−iHWC (k), (IV.34)

thus, we make the identification

HW−C (k) = −HWC (k). (IV.35)

The transformations of Wilson loops under the symme-
tries studied here are derived in detail in Appendix D.
Insulators with a lattice symmetry obey

gkhkg
†
k = hDgk, (IV.36)

where gk is the unitary operator

gk = e−i(Dgk)·δUg. (IV.37)

Ug is an Norb × Norb matrix that acts on the internal
degrees of freedom of the unit cell, and Dg is an operator
in momentum space sending k→ Dgk. In real space, on
the other hand, we have r → Dgr + δ, where δ = 0 in
the case of symmorphic symmetries, or takes a fractional
value (in unit-cell units) in the case of non-symmorphic
symmetries.

Using the definition of the Wannier Hamiltonian
(IV.34), we can rewrite the expression for the transfor-

mation of Wilson loops in Appendix D into the form

Bg,kHWC (k)B†g,k = HWDgC
(Dgk), (IV.38)

where

Bmng,k =
〈
umDgk

∣∣∣gk∣∣∣unk〉 (IV.39)

is the unitary sewing matrix that connects states at k
with those at Dgk which have the same energy.

Hence, we can interpret the usual sewing matrix Bg,k
for the bulk Hamiltonian as a symmetry operator of the
edge/Wannier Hamiltonian. In particular, we have

BMx,kHWx
(k)B†Mx,k

= −HWx
(Mxk)

BMy,kHWx
(k)B†My,k

= HWx
(Myk)

BI,kHWx(k)B†I,k = −HWx(−k). (IV.40)

V. Edge dipole moments in 2D crystals

Before discussing the bulk quadrupole moment in 2D
insulators, we take the intermediate step of studying 2D
crystalline insulators which may give rise to edge-localized
polarizations55. In particular, we describe the procedure
to calculate the position-dependent polarization in an in-
sulator, and then we show in an example how the edge
polarization arises. We start by considering a 2D crys-
tal with Nx ×Ny sites. For calculating the polarization
along x as a function of position along y, we choose the
insulator to have periodic boundary conditions along x
and open boundary conditions along y. In this configu-
ration there is no crystal momenta ky, and we can treat
this crystal as a wide, pseudo-1D lattice by absorbing
the labels Ry ∈ 1 . . . Ny into the internal degrees of free-
dom. We are essentially forming a redefined unit cell that
extends along the entire length of the crystal in the y-
direction. This is shown schematically in Fig. 16b. Thus,
the formulation in Section III B follows through in this
case, with the redefinition:

ck,α → ckx,Ry,α (V.1)

which allows us to write the second-quantized Hamilto-
nian as

H =
∑
kx

c†kx,Ry,α[hkx ]Ry,α,R
′
y,βckx,R′y,β , (V.2)

for α, β ∈ 1 . . . Norb, and Ry, R
′
y ∈ 1 . . . Ny. In the above

redefinitions, notice that, since the boundaries remain
closed along x, kx is still a good quantum number. We
diagonalize this Bloch Hamiltonian as

[hkx ]Ry,α,R
′
y,β =

∑
n

[unkx ]Ry,αεn,kx [u∗nkx ]R
′
yβ , (V.3)
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where n ∈ 1 . . . Norb × Ny. So, if the 2D Bloch Hamil-
tonian with periodic boundary conditions along x and y,
h(kx,ky), has Nocc occupied bands, its associated pseudo-
1D Bloch Hamiltonian hkx in (V.3) has Nocc ×Ry occu-
pied bands. We can diagonalize the Hamiltonian (V.2)
as

H =
∑
n,kx

γ†n,kxεn,kxγn,kx , (V.4)

where

γn,kx =
∑
Ry,α

[u∗nkx ]Ry,αckx,Ry,α. (V.5)

Following Section III B, the matrices

[Gkx ]mn ≡
∑
Ry,α

[u∗mkx+∆kx ]Ry,α[unkx ]Ry,α, (V.6)

are used in the construction of the Wilson line el-
ements [Fkx ]mn and subsequently the Wilson loops
[Wkx+2π←kx ]mn, where m,n ∈ 1 . . . Nocc × Ny. Notice
that the size of these Wilson-loop matrices is Ny-times
larger than the size of Wilson-loop matrices when both
boundaries are closed in the crystal.

The hybrid Wannier functions have the same form as
in (III.30):

∣∣∣Ψj
Rx

〉
=

1√
Nx

Nocc×Ny∑
n=1

∑
kx

[
νjkx

]n
e−ikxRxγ†n,kx |0〉 ,

(V.7)

for j ∈ 1 . . . Nocc ×Ny, Rx ∈ 1 . . . Nx, and where
[
νjkx

]n
is the nth component of the jth Wilson-loop eigenstate∣∣∣νjkx〉, and γ†n,kx is given in (V.5). In order to spatially

resolve the x-component of the polarization along the
y direction, we calculate the probability density of the
hybrid Wannier functions (V.7),

ρj,Rx(Ry) =
∑
R′x,α

〈
Ψj
Rx

∣∣∣ φRy,αR′x

〉〈
φ
Ry,α
R′x

∣∣∣ Ψj
Rx

〉
=

1

Nx

∑
kx,α

∣∣∣[unkx ]Ry,α[νjkx ]n
∣∣∣2 (V.8)

(in the first equation above no sums are implied over re-
peated indices). Notice that there is no dependence on
the unit cell Rx –as expected since the density is transla-
tionally invariant in the x direction. Thus, we can write
ρj,Rx simply as ρj . This probability density then allows
us to resolve the hybrid Wannier functions (V.7) along
the y-direction. In particular, it will let us determine
whether any of these functions are localized at the (open)
edges at Ry = 0, Ny. This probability density also allows

FIG. 16. (Color online) Edge polarization in insulator with
Hamiltonian (V.10) (inversion-symmetric). (a) Lattice with
periodic boundaries. (b) Lattice with periodic boundaries
along x and open along y. Long vertical rectangles are re-
defined, effective unit cells in the pseudo-1D lattice construc-
tion. (c) On-site potential on the lattice. Red (blue) sites
represent the on-site energies of +δ (−δ) that break Mx and
My symmetry but preserve inversion. (d,g) Wannier bands
νx(ky) and νy(kx) for the configuration in (a). (e) Wannier
values νx and (f) polarization px(Ry) for the configuration in
(b) which has an open boundary. (h) Wannier values νy and
(i) polarization py(Rx) for a configuration as in (b) but with
boundaries open along x and closed along y. In all plots we
set λx = 1, λy = 0.5, γ = 0.1, δ = 0.2, and the strength of the
small perturbation to break chiral and time-reversal symme-
tries (see text) to 0.15. We verify that this perturbation does
not close the energy gap.

us to calculate the x-component of the polarization via

px(Ry) =
∑
j

ρj(Ry)νjx (V.9)

which is resolved at each site Ry.

We now illustrate the existence of edge polarization
with an example. Consider the insulator with Bloch
Hamiltonian

h(k) =

(
δτ0 q(k)

q†(k) −δτ0

)
,

q(k) =

(
γ + λxe

ikx γ + λye
iky

γ + λye
−iky γ + λxe

−ikx

)
, (V.10)
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FIG. 17. (Color online) Electronic charge density in an in-
sulator with Hamiltonian (V.10) with full open boundaries.
There are boundary charges at the four corners.

where τ0 is the 2 × 2 identity matrix, and τa, a = 1, 2, 3
are Pauli matrices. A tight-binding representation of this
model is shown in Fig. 16a. γ is the strength of the
coupling within unit cells, represented by red lines in
Fig. 16a, and λx,y are the strengths of horizontal and
vertical hoppings between nearest neighbor cells. δ is the
amplitude of an on-site potential (Fig. 16c) that breaks
reflection symmetry along x and y, but maintains inver-
sion symmetry. When δ = 0, this model has reflection
and inversion symmetries, with operators M̂x = τx ⊗ τ0,
M̂y = τx ⊗ τx, and I = τ0 ⊗ τx.

This insulator also has fine-tuned chiral and time-
reversal symmetries. However, since we are only inter-
ested in protection due to spatial symmetries, we add a
small perturbation to (V.10) in our numerics of the form:

hpert(k) = EE cos(kx) +OE sin(kx)

+ EE cos(ky) + EO sin(ky),

where EE, OE, and EO are 4× 4 random matrices that
obey

[EE, M̂x] = 0, [EE, M̂y] = 0,

{OE, M̂x} = 0, [OE, M̂y] = 0,

[EO, M̂x] = 0, {EO, M̂y} = 0, (V.11)

and with entries in the range [0, 1]. These nearest-
neighbor perturbations break the chiral and time-reversal
symmetries, while preserving the reflection symmetries
along both x and y, as well as inversion symmetry. These
perturbations are added to ensure that the interesting
features do not rely on these fine-tuned symmetries.

We first consider the general case of generating non-
quantized edge polarizations by breaking reflection sym-
metries (Fig. 16 and Fig. 17), and later on discuss the
special case in which these edge polarizations are quan-
tized by restoring reflection symmetries (Fig. 18). In
both cases, however, preserving inversion symmetry is
necessary in order to have an overall vanishing bulk po-
larization. In particular, in order to have well defined

edge polarizations, we require that the edges do not ac-
cumulate charge and are neutral, hence, the bulk of the
insulator should not be polarized.

For the general case of non-quantized edge polariza-
tions, we consider λx > λy and γ � |λx − λy|. Under
these conditions, the crystal is an insulator at half filling.
The inversion eigenvalues of the occupied bands come in
±1 pairs at all symmetry points. Therefore, there is no
protection of degeneracies in the Wannier bands, as we
can see from the plots of νx(ky) and νy(kx) shown in
Fig. 16d,g. If all the boundaries of the system are closed,
the crystal has uniform, vanishing bulk polarization pro-
tected by inversion symmetry. If instead we open the
boundaries along y, as in Fig. 16b, we can use the formu-
lation from earlier in this section to treat this crystal as
a pseudo-1D insulator, with redefined unit cells as shown
by the long vertical rectangles in Fig. 16b. The Wannier
values νjx, for j ∈ 1 . . . 40 (Nocc = 2, Ny = 20), ob-
tained from this calculation are shown in Fig. 16e. Using
these values and their associated hybrid-Wannier func-
tions, we calculate the polarization px(Ry) using (V.9).
This is shown in Fig. 16f. Remarkably, although the po-
larization vanishes in the bulk, there is edge-localized po-
larization parallel to the edge. If, instead of opening the
boundaries along y, we choose to open them in x, we
observe the Wannier values νjy, for j ∈ 1 . . . 40, and po-
larization py(Rx) shown in Fig. 16h,i, respectively. We
find a vanishing polarization in the bulk, but non-zero
edge-localized polarizations tangent to the edge. For our
choice of λx > λy the values of |py| localized at the
Rx = 0, Nx edges are larger than the values |px| local-
ized at Ry = 0, Ny.

To complete the picture, we ask what happens if the
edge polarization is terminated at a corner. Fig. 17
shows the charge density in this insulator (V.10) with
both boundaries open. We see that, relative to the
background charge density of 2e per unit cell, there are
corner-localized charges Qcorner. These charges and the
edge polarizations obey Qcorner = pedge x + pedge y, as
expected for insulators with vanishing bulk dipole and
quadrupole moments (Section II D). As such, this polar-
ization is purely a surface effect and not generated by a
bulk quadrupole moment.

Now let us consider the case with reflection symmetry.
As is typical for these types of calculations we still must
break the reflection symmetries infinitesimally by setting
0 < δ � γ, λx,y. This infinitesimal, non-zero δ perturba-
tion breaks reflection symmetries softly and is necessary
to choose an unambiguous sign for the quantized edge
polarizations. In a lattice with full open boundary con-
ditions, this perturbation serves to split the degeneracy
of the four corner-localized mid-gap modes to determine
how they are filled at half-filling. This then chooses the
signs of the corner charges in a way consistent with the
choice of edge polarizations.

We find that for λx > λy we have Qcorner = pedge y =
1/2 and pedge x = 0, while for λy > λx we find Qcorner =
pedge x = 1/2 and pedge y = 0. Let us focus on the case
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FIG. 18. (Color online) Insulator with Bloch Hamiltonian
(V.10) and δ = 0. Here, we set λx > λy. (a) Mx eigenval-
ues along the (0, ky) and (π, ky). (b) My eigenvalues along
the (kx, 0) and (kx, π). (c) Wannier bands νx(ky). (d) Wan-
nier values νx when boundaries are open along y. (e) px(Ry)
for configuration as in (d). (f) Wannier bands νy(kx). (g)
Wannier values νy when boundaries are open along x. Val-
ues at νx = 0.5 have edge localized eigenstates. (h) py(Rx)
for configuration as in (g). The parameters used here are as
in Fig. 16 but with δ = 0, except for (e) and (h), for which
δ = 10−4.

λx > λy. By setting δ = 0, the reflection eigenvalues
for this insulator are indicated in Fig. 18a,b. Based on
the analysis of reflection eigenvalues summarized in Ta-
ble III, we conclude that Mx fixes the Wannier bands to
ν1,2
x (ky) = 1/2, as in Fig 18c, while My does not restrict

the values of ν1,2
y (kx) to either 0 or 1/2. Instead, they only

have to obey ν1
y(kx) = −ν2

y(kx), as in Fig. 18f. If we now

open the boundaries along y and calculate νjx, we obtain
degenerate values νjx = 1/2 (Fig. 18d), which result in
px(Ry) = 0 (Fig. 18e). If we instead open the boundaries
along x and calculate νjy we obtain the gapped bands
which have corresponding Wannier eigenstates that have
weight primarily in the bulk of the sample. Interestingly,
in addition to the gapped bulk Wanner states, we find a
pair of Wannier values pinned at 1/2 that have Wannier
eigenstates localized at the edges Rx = 0 and Rx = Nx
(Fig. 18g). It is this pair of states that results in the
edge polarization of ±1/2, as shown in Fig. 18h (a small
value of δ = 10−4 was chosen for plots e and h to break
Wannier degeneracies).

In contrast to this phenomenology, we will see in Sec-
tion VI that insulators with quadrupole moments also
have edge-localized polarizations and corner-localized
charges, but, unlike in the present case, these bound-
ary properties obey |Qcorner| = |pedge x| = |pedge y|, as
required for a quadrupole (see Section II D).

VI. Bulk quadrupole moment in 2D crystals

Any quadrupole insulator should have three basic
properties: (i) its bulk dipole moment must vanish, oth-
erwise the quadrupole moment is ill defined (see Section
II B); (ii) the insulator must have at least two occupied
bands, since a crystal with one occupied band can only
generate dipole moments (a quadrupole is made from two
separated dipoles); and (iii) it should have edges that are
insulators themselves, as only insulating edges can host
edge-localized polarization (hence, edges should not host
gapless states and thus the bulk must have Chern number
n = 0).

From the classical analysis of Section II C 2 we con-
cluded that the boundary signatures of an ideal 3D in-
sulator with only bulk quadrupole moment density are
the existence of charge density per unit length at hinges

λhinge a,b = 1
2n

(a)
i n

(b)
j qij and polarization density per

unit area at faces pface a = n
(a)
i qij , where in these two

expressions summation is implied over repeated indices.
In 2D, these expressions reduce to corner charges and
edge polarization density per unit length, respectively:

Qcorner a,b =
1

2
n

(a)
i n

(b)
j qij

pedge aj = n
(a)
i qij . (VI.1)

In the expressions above, qij is the quadrupole moment
per unit area, with qxy = qyx 6= 0, qxx = qyy = 0.

The insulator with Hamiltonian (V.10) meets all the
three basic requirements: it is an insulator with two elec-
trons per unit cell, zero bulk polarization and no Chern
number. Furthermore, it does have corner charges when
both boundaries are open. However, it fails to meet
the relations (VI.1); its edge polarizations are not of the
same magnitude as its corner charge. Instead, they obey
Qcorner = pedge x + pedge y (see Section V) and can be
accounted for by the theory of polarization up to dipole
moments (see Section II D).

In this section, we describe a model realization of a
symmetry-protected quadrupole insulator– an insulator
with vanishing dipole moment and fractional, quantized
quadrupole moment– that manifests through the pre-
dicted the boundary signatures of Eq. VI.1. This model
has two occupied bands, and a vanishing Chern number.
Crucially, its pair of Wannier bands are gapped, and each
Wannier band can have an associated Berry phase. Phys-
ically, this corresponds to a bulk configuration in which
two parallel dipoles aligned along one direction are sepa-
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FIG. 19. (Color online) Gapped Wannier bands ν±x (ky) (red
lines to the right of the BZ) and ν±y (kx) (blue lines above
of the BZ) of the quadrupole insulator with Hamiltonian
(VI.31).

rated along its perpendicular direction. We first describe
the formalism of Wannier band topology for 2D insula-
tors, and then describe the observables of a quadrupole
insulator. We will then explore the quantization of dipole
pumping resulting from non-trivial adiabatic cycles that
connect the quadrupole and trivial phases, and end with
a description of an insulator with hinge localized chiral
modes in 3D which exhibits the same topology as the
dipole pumping process.

A. Wannier-sector polarization

In this section we study the topology of Wannier bands
νjx(ky) that are gapped across the entire 1D BZ ky ∈
(−π, π], a minimal example of which is shown in Fig. 19.
Due to the gap in the Wannier spectrum around νx = 1/2
we can broadly define two Wannier sectors

ν−x = {νjx(ky), s.t. νjx(ky) is below the Wannier gap}
ν+
x = {νjx(ky), s.t. νjx(ky) is above the Wannier gap}.

Since the Wannier bands are defined mod 1, we adopt the
convention of defining the Wannier sectors ν−x ∈ [0, 1/2)
and ν+

x ∈ [1/2, 1).

We then choose those above or below the gap and form

the projector

Pνx =

NW∑
j=1

∑
Rx,ky

∣∣∣Ψj
Rx,ky

〉〈
Ψj
Rx,ky

∣∣∣
=

NW∑
j=1

Nocc∑
n,m=1

∑
k

γ†n,k |0〉 [ν
j
x,k]n[ν∗jx,k]m 〈0| γm,k,

(VI.2)

where
∑NW
j is a summation over all Wannier bands in

the sector νx, for νx = ν+
x or ν−x . NW is the number

of Wannier bands in sector νx, Rx ∈ 0 . . . Nx − 1 labels
the unit cells, ky = ∆kyny, for ∆ky = 2π/Ny, and ny ∈
0, 1, . . . , Ny − 1 is the crystal momentum along y.

We are interested in studying the topological proper-
ties of the subspace spanned by Pνx in the reduced quasi-
1D BZ ky ∈ (−π, π]. As we will see in Section IV B 2, the
topology of the Wannier sectors is related to the topology
of the physical edge Hamiltonian. As such, it will provide
a bulk measure of the edge topology. In particular, we
want to diagonalize the position operator,

ŷ =
∑
R,α

c†R,α |0〉 e
−i∆ky (Ry+rα,y) 〈0| cR,α

=
∑

kx,ky,α

c†kx,ky+∆ky ,α
|0〉 〈0| ckx,ky,α, (VI.3)

projected into the Wannier sector νx,

Pνx ŷPνx =

NW∑
j,j′=1

∑
k

Nocc∑
n,m,n′,m′=1

γ†n,k+∆ky
|0〉 〈0| γn′,k×(

[νjx,k+∆ky
]n[ν∗jx,k+∆ky

]m×〈
umk+∆ky

∣∣∣ um′k

〉
[νj
′

x,k]m
′
[νj
′∗
x,k]n

′
)
. (VI.4)

To simplify the notation let us define the Wannier band
basis ∣∣∣wjx,k〉 =

Nocc∑
n=1

|unk〉 [ν
j
x,k]n (VI.5)

for j ∈ 1 . . . NW . This basis obeys,〈
wjx,k

∣∣∣ wj′x,k〉 = δj,j′ . (VI.6)

However, in general
〈
wjx,k

∣∣∣ wj′x,q〉 6= δj,j′δk,q. The pro-

jected position operator then reduces to

Pνx ŷPνx =

NW∑
j,j′=1

∑
k

Nocc∑
n,n′=1

γ†n,k+∆ky
|0〉 〈0| γn′,k×(

[νjx,k+∆ky
]n
〈
wjx,k+∆ky

∣∣∣ wj′x,k〉 [νj
′∗
x,k]n

′
)
,

(VI.7)



27

Notice that the operator is diagonal in kx. Explicitly,

Pνx ŷPνx =
∑
kx,ky

Nocc∑
n,n′=1

γ†n,(kx,ky+∆ky ) |0〉×

[F νxy,(kx,ky)]
n,n′ 〈0| γn′,(kx,ky), (VI.8)

where

[F νxy,(kx,ky)]
n,n′ =

NW∑
j,j′=1

[νjx,(kx,ky+∆ky )]
n×

〈
wjx,(kx,ky+∆ky )

∣∣∣ wj′x,(kx,ky)

〉
[νj
′∗
x,(kx,ky)]

n′ .

(VI.9)

To diagonalize Pνx ŷPνx , we calculate the Wilson loop
along y

[Wνx
y,k]n,n

′
= F νxy,k+Ny∆ky

. . . F νxy,k+∆ky
F νxy,k

= [νjx,k+Ny∆ky
]n[W̃νx

y,k]j,j
′
[νj
′∗
x,k]n

′

= [νjx,k]n[W̃νx
y,k]j,j

′
[νj
′∗
x,k]n

′
, (VI.10)

for n, n′ ∈ 1 . . . Nocc, and j, j′ ∈ 1 . . . NW . W̃νx
y,k is the

Wilson loop along y over the Wannier sector νx per-
formed over the Wannier band basis,

[W̃νx
y,k]j,j

′
=
〈
wjx,k+Ny∆ky

∣∣∣ wrx,k+(Ny−1)∆ky

〉
×〈

wrx,k+(Ny−1)∆ky

∣∣∣ . . .
. . .
∣∣∣wsx,k+∆ky

〉〈
wsx,k+∆ky

∣∣∣ wj′x,k〉 . (VI.11)

In the expression above, summation is implied over re-
peated indices r, . . . , s ∈ 1 . . . NW over all Wannier bands
in the Wannier sector νx.

Since NW < Nocc, this Wilson loop (VI.11) is calcu-
lated over a subspace within the subspace of occupied
energy bands. In general, we will indicate an operator
written in a Wannier band basis with a tilde, while no
tilde indicates that it is written in the basis of energy
bands. Since we have used νx as the label for the Wan-
nier bands along x, we will use the labels ννxy for the
eigenvalues and eigenvectors for the Wilson-loop along y
carried out for the Wannier band sector νx. This Wilson
loop diagonalizes as

W̃νx
y,k

∣∣∣ννx,jy,k

〉
= ei2πν

νx,j
y (kx)

∣∣∣ννx,jy,k

〉
(VI.12)

for j ∈ 1 . . . NW . The polarization over the Wannier
sector νx at kx is then given by the sum of the NW phases
ννxy (kx),

pνxy (kx) =

Nνx∑
j=1

ννx,jy (kx) mod 1. (VI.13)

This can be written as

pνxy (kx) = − i

2π
Log Det[W̃νx

y,k]. (VI.14)

The total polarization of the Wannier bands νx is

pνxy =
1

Nx

∑
kx

pνxy (kx). (VI.15)

In the thermodynamic limit it becomes

pνxy = − 1

(2π)2

∫
BZ

Tr
[
Ãνxy,k

]
d2k (VI.16)

where Ãνxy,k is the Berry connection of Wannier bands νx
having components

[Ãνxy,k]j,j
′

= −i
〈
wjx,k

∣∣∣ ∂ky ∣∣∣wj′x,k〉 , (VI.17)

where j, j′ ∈ 1 . . . NW run over the Wannier bands in
Wannier sector νx.

The Wannier-sector polarization has a physical signif-
icance. In the bulk of the material, a Wannier gap for
the Wilson loop along x implies the existence of a spatial
separation between electrons along x. For example, for
the Wannier bands of Fig. 19, electrons in the sector ν−x
are on the left side of the unit cell, and those in sector
ν+
x are on its right side. Thus, a non-zero polarization

in the y-direction of such a Wannier sector represents a
translation, up or down, of the electrons of that Wannier
sector.

We can see a simple example of this for the insula-
tor h1(k) in (IV.27) from Section IV B. Since its Wan-
nier bands are flat, we can assign the values (ν−x , ν

+
x ) =

(0, 1/2) (see Fig. 15a). The polarization along y of each

of these Wannier bands gives the centers (ν
ν−x
y , ν

ν+
x
y ) =

(1/2, 0). Thus, the electron at the center of the unit cell
along x is inbetween unit cells along y, and vice versa (see
Fig. 13a). For this model the position operators along x
and y projected into the full subspace of occupied bands
actually commute, and therefore this system has a full 2D
Wannier representation, as shown in Fig. 13a. The con-
cept illustrated here, however, is also valid in cases that
do not admit a 2D Wannier representation, i.e., when the
projected position operators along different directions do
not commute, as long as the Wannier bands are gapped.
This is what happens in a model that realizes a topo-
logical quadrupole insulator. This is schematically rep-
resented in Fig. 20. The solid half-circles represent the
maximally localized Wannier centers of the electrons in
a minimal quadrupole insulator, to be described in detail
in Section VI D.

Consider Fig. 20. If we first diagonalize the Wilson
loop along x at each ky, we find two Wannier bands,
±νx(ky), separated by a gap. Since these Wannier bands
depend on the value of ky, this is not an extremely sharp
resolution of the position of the electronic charge along x.
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FIG. 20. (Color online) Maximally localized Wannier centers
of electrons within the unit cell of a quadrupole insulator in
the non trivial phase (see Hamiltonian (VI.31) for the min-
imal quadrupole insulator) upon calculation of the Wilson
loop Wy,k followed by Wνy

x,k (blue path) or Wx,k followed by

Wνx
y,k (red path).The overall localizations do not coincide for

these two paths because [P occx̂P occ, P occŷP occ] 6= 0. The
quadrupole insulator has two electrons per unit cell.

However, the existence of the Wannier gap (see Fig. 19)
implies that there are two clouds of electrons, one corre-
sponding to each Wannier sector: one to the right of the
center of the unit cell and another one to its left (the cen-
ter of the unit cell is at the center of each panel). Thus,
we can assign an average x-coordinate to each cloud by
calculating the average values of the Wannier bands, i.e.,
ν1,2
x = 1/Ny

∑
ky
ν1,2
x (ky). Furthermore, we can resolve

the position of each of these two electronic clouds along
y by calculating the nested Wilson loop (VI.11). This
yields p±νxy = 1/2 in the non trivial quadrupole phase, as

in Fig. 20, or p±νxy = 0 in the trivial phase (not shown).
In Fig. 20 we also show the localization if we first resolve
the electronic positions along y and then along x. The
electronic localizations thus depend on the order in which
the positions along x and y are resolved. This is a tes-
tament to the fact that the projected position operators
along x and y do not commute.

Notice that, in the two paths for electron localiza-
tion represented in Fig. 20, the overall bulk polariza-
tion vanishes, which is a requirement for a well-defined
quadrupole moment (see Section II B). Since the over-
all polarization in the bulk has contributions from both
Wannier sectors, it follows that

p
ν+
x
y + p

ν−x
y = 0 mod 1 (VI.18)

for a well-defined quadrupole moment. This can be en-
forced by inversion symmetry, as shown in Appendix D.

B. Symmetry protection and quantization of the
Wannier-sector polarization

Under reflections Mx, My, and inversion I the
Wannier-sector polarizations obey

p
ν+
x
y

Mx= p
ν−x
y

p
ν±x
y

My
= −pν

±
x
y =⇒ p

ν±x
y

My
= 0 or 1/2

p
ν+
x
y
I
= −pν

−
x
y (VI.19)

mod 1. These relations are derived in Appendix D. The

relations for p
ν±y
x are the same as the above with the ex-

change of labels x ↔ y. We also note that in 2D the
constraints generated by C2 symmetry are the same as
those generated by inversion I symmetry.

In the expressions (VI.19), My directly quantizes p
ν±x
y .

Mx, on the other hand, also requires I to quantize p
ν±x
y

(see first and third relations in Eq. VI.19). Since in spin-
less systems the existence of both reflection symmetries
implies the existence of inversion symmetry, the Wannier-

sector polarizations p
ν±x
y and p

ν±y
x (calculated from HWx

and HWy
respectively) of a system with both reflection

symmetries take quantized values

p
ν±x
y , p

ν±y
x

Mx,My
= 0 or 1/2. (VI.20)

The quantization due to reflection symmetries can be
used to compute the Wannier-sector polarization in a
simpler way. The Wannier band basis (VI.5) obeys

M̂y

∣∣∣w±x,(kx,ky)

〉
= α±My

(kx, ky)
∣∣∣w±x,(kx,−ky)

〉
(VI.21)

with a U(1) phase α±My
(kx, ky) (see Appendix D). In

particular, at the reflection-invariant momenta, k∗y =
0 and π, α±My

(kx, k∗y) are the eigenvalues of the reflec-

tion representation of
∣∣∣w±x,k〉 at (kx, k∗y). These can take

the values ±1 (±i) for spinless (spinfull) fermions. If
the representation is the same (different) at k∗y = 0 and
k∗y = π, the Wannier-sector polarization is trivial (non-
trivial)18. Thus, in reflection-symmetric insulators the
Wannier-sector polarization can then be computed by

exp
{
i2πp

ν±x
y

}
= α±My

(kx, 0)α±∗My
(kx, π), (VI.22)

where the superscript asterisk stands for complex-
conjugation. The Wannier-sector polarization then takes
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the quantized values

p
ν±x
y

My
=

{
0 if trivial

1/2 if non-trivial
.

C. Conditions for the existence of a Wannier gap

In the previous subsection we saw that reflection sym-
metries quantize the Wannier-sector polarization. This
Wannier-sector polarization is well defined only if the
Wannier bands are gapped. In this section we show that,
in order to have gapped Wannier bands in the presence
of reflection symmetries, Mx and My, the reflection oper-
ators must not commute. We will prove this by showing
that if the reflection operators commute, we necessarily
have gapless Wannier bands1, i.e.,

[M̂x, M̂y] = 0 =⇒ Gapless Wannier bands. (VI.23)

Two natural ways to have noncommuting reflection sym-
metries are to have a model with magnetic flux so that
reflection is only preserved up to a gauge transformation
(see Appendix E), or to have spin-1/2 degrees of freedom.
For our simple quadrupole model below we chose the for-
mer interpretation for the simplicity of the description.

For a crystal with Nocc occupied energy bands and
reflection and inversion symmetries Mx, My, and I, such

that [M̂x, M̂y] = 0, various cases need to be considered1:

• Nocc = 2: In this case, the Wannier bands νx(ky)
are necessarily gapless at ky = 0, π.

• Nocc = 4: In this case, the Wannier bands νx(ky)
can be generically gapped, with each Wannier sec-
tor being two-dimensional. The two eigenvalues of
the nested Wilson loop over the Wannier sector νx,
for either νx = ν+

x or ν−x can be shown to come in
pairs (ννxy (kx),−ννxy (kx)) at kx = 0, π. This implies
that pνxy = 0.

• Nocc = 4n: In this case, we have a generalized ver-
sion of the Nocc = 4 case.

• Nocc = 4n+2: In this case, the Wannier bands split
as in the 4n case plus a leftover set of two bands,
and the Wannier spectrum is gapless.

• Nocc is odd: In this case, the Wannier bands split
as in one of the even band cases above plus one
extra band. The extra band is always gapless, as
its value is necessarily 0 or 1/2 since it does not
have partner (see Section III D 1).

Here we will elaborate on the first case. The other cases
for generic numbers of bands are detailed in Appendix F.
Consider a spinless crystal with reflection symmetries Mx

and My. For a tight binding Hamiltonian h(kx, ky), these
symmetries are expressed by Eq. IV.11. Such a system
also has the inversion symmetry expressed by Eq. IV.17.

The reflection operators M̂x,y and the inversion operator

Î are related by

Î = M̂yM̂x. (VI.24)

We should be careful at this point to note that in some
2D systems this definition of inversion is problematic
since the operator Î should obey Î2 = 1. If we have
M̂yM̂x = −M̂yM̂x, as we will encounter later, then by

this definition Î2 = −1 and so we should more precisely
identify M̂yM̂x as a C2 rotation operator in 2D instead.

The special high-symmetry points and lines in the Bril-
louin zone, at which a given operator Q̂ (we consider

Q̂ = M̂x, M̂y and Î) commutes with the Hamiltonian,

[hk∗ , Q̂] = 0. (VI.25)

are shown in Fig. 11 in blue for Mx, red for My, and
black dots for all Mx, My, and I. We are interested
in the conditions under which we have gapped Wannier
bands along both x and y. This can be inferred from the
Q̂ eigenvalues at the high-symmetry points52, as shown
in Table III.

There we see that, in order to have gapped Wannier
bands, the Wilson loop eigenvalues must come in com-
plex conjugate pairs (λ, λ∗) not pinned at 1 or −1. Hence,
we require that, along each of the blue and red lines of
Fig. 11, the reflection eigenvalues come in pairs (+−). To

these two conditions (one along blue lines for M̂x eigen-

values and another one along red lines for M̂y eigenval-
ues) we need to add the third requirement that the in-
version eigenvalues must also come in pairs (+−) at the
high-symmetry points k∗ = Γ,X,Y,M of the BZ. If the
condition is not also met for the inversion eigenvalues,
the complex conjugate pairs are still forced to be a pair
of 1 or pair of −1 at ky = 0, π for Wilson loops along
kx, and at kx = 0, π for Wilson loops along ky. We will
now see that this third condition is not possible to meet
simultaneously with the first two conditions if the reflec-
tion operators commute. If we have

[M̂x, M̂y] = 0, (VI.26)

it is possible to simultaneously label the energy states at
the high-symmetry points by their reflection eigenvalues,
e.g., |mx,my〉, where

M̂x |mx,my〉 = mx |mx,my〉
M̂y |mx,my〉 = my |mx,my〉 , (VI.27)

for reflection eigenvalues mx,y = ±. Since the inversion

operator is Î = M̂xM̂y = M̂yM̂x, the inversion eigenval-
ues are

Î |mx,my〉 = mxmy |mx,my〉 . (VI.28)

The two combinations of states that have M̂x and M̂y
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states Mx eigenval. My eigenval. I eigenval.

(|++〉 , |−−〉) (+−) (+−) (−1)s(+1,+1)

(|+−〉 , |−+〉) (+−) (−+) (−1)s(−1,−1)

TABLE IV. States with eigenvalues (+−) for Mx and My and
their I eigenvalues at the high-symmetry points. The signs
± represent ±1 if M̂2

x,y = +1 or ±i if M̂2
x,y = −1. Also, s = 0

(s = 1) if M̂2
x,y = +1 (M̂2

x,y = −1).

eigenvalues of (+−) are listed in Table IV. However, those

two options do not meet the third condition of having Î
eigenvalues (+−) at the high-symmetry points. Instead,

the Î eigenvalues at the high-symmetry points are always
either (++) or (−−). These inversion eigenvalues imply
that the Wilson loop eigenvalues come in complex conju-
gate pairs λ, λ∗, with λ = λ∗ = +1 or − 1. Thus, along
the high-symmetry lines (blue and red lines of Fig. 11)
the Wilson loops have eigenvalues

(λ, λ∗)→ (1, 1) or (−1,−1), (VI.29)

i.e., at those lines the Wannier bands close the gap. Con-
versely, if instead of imposing the conditions of having
(+−) for both M̂x and M̂y eigenvalues, we started by

first fixing (+−) for Î eigenvalues, at most only one of
the reflection eigenvalues will be (+−). The other one
will necessarily have either (++) or (−−). An example
of this case is insulator (V.10) with δ = 0, with reflection
eigenvalues shown in Fig. 18a,b.

D. Simple model with topological quadrupole
moment

We now focus on the detailed description of a model
for an insulator with a quadrupole moment. The minimal
model is a 2D crystal with two occupied bands. For sim-
plicity we choose a microscopic representation consisting
of four spinless fermion orbitals with Hamiltonian

Hq =
∑
R

[
γx

(
c†R,1cR,3 + c†R,2cR,4 + h.c.

)
+ γy

(
c†R,1cR,4 − c

†
R,2cR,3 + h.c.

)
+ λx

(
c†R,1cR+x̂,3 + c†R,4cR+x̂,2 + h.c.

)
+λy

(
c†R,1cR+ŷ,4 − c†R,3cR+ŷ,2 + h.c.

)]
, (VI.30)

where c†R,i is the creation operator for degree of freedom i
in unit cell R, for i = 1, 2, 3, 4 as shown in Fig. 21a. γx,y
are hopping matrix elements within a unit cell. Here
x̂ = (1, 0) and ŷ = (0, 1), so that λx,y represent the am-
plitudes of hopping to nearest neighbor unit cells along
x, y respectively. The negative signs, represented by the
dashed lines in Fig. 21a, are a gauge choice for the π-flux

FIG. 21. (Color online) Lattice (a) and energy spectrum (b)
of the minimal model with quadrupole moment density hav-
ing the Bloch Hamiltonian Eq. VI.31. In (a), dashed lines
have a negative sign to account for a flux of π threading each
plaquette. In (b) each energy band is twofold degenerate.

threaded through each plaquette (including within the
unit cell itself). The corresponding Bloch Hamiltonian is

hq(k) = [γx + λx cos(kx)] Γ4 + λx sin(kx)Γ3

+ [γy + λy cos(ky)] Γ2 + λy sin(ky)Γ1, (VI.31)

where Γ0 = τ3 ⊗ τ0, Γk = −τ2 ⊗ τk, Γ4 = τ1 ⊗ τ0 for
k = 1, 2, 3, where τ1,2,3 are Pauli matrices, and τ0 is the
2× 2 identity matrix. The energy bands are

ε(k) = ±
√
ε2x(kx) + ε2y(ky) (VI.32)

where εi(ki) =
√
γ2
i + 2γiλi cos(ki) + λ2

i for i = x, y.
Each of the upper and lower energy bands is twofold de-
generate.

This Hamiltonian is gapped across the entire bulk Bril-
louin zone (BZ) unless |γx/λx| = 1 and |γy/λy| = ±1. A
plot of the energy spectrum in the 2D BZ is shown in
Fig. 21b for γx/λx = γy/λy = 0.5. We consider this sys-
tem at half filling, so that only the lowest 2 bands are
occupied. This Hamiltonian has vanishing polarization,
and zero Chern number for the entire range of parameters
for which it is gapped. Thus, it meets the preliminary
requirements of an insulator with quadrupole moment
density (outlined at the beginning of Section VI). The
projected position operators along x and y do not com-
mute at half filling, and the Hamiltonian has a pair of
gapped Wannier bands, as shown in Fig. 19.

In the present form, this Hamiltonian has symme-
tries that quantize the Wannier-sector polarizations

p
ν±x
y , p

ν±y
x = 0 or 1/2, which we describe in the follow-

ing subsection. Associated to this quantization is the
existence of sharply quantized corner charges and edge
polarizations, in agreement with VI.1. Upon breaking
the symmetries that quantize the quadrupole moment,
a generalized version of this model can generate values
of quadrupole moment satisfying qxy ∈ (0, 1]. As an ex-
tension, we will see that when coupling this system to
an adiabatically varying parameter, a quantum of dipole
can be pumped in a way analogous to the quantum of
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charge pumped in the case of a cyclically varying bulk
dipole moment (Section III F).

1. Symmetries

The quadrupole moment qxy in 2D is even un-
der the group T (2), which contains the operations
{1, C4Mx, C4My, C

2
4} (see Section II E), where Mx,y

are reflections, and C4 is the rotation by π/2 around
the z-axis. This implies that none of the symmetries
{C4Mx, C4My, C

2
4} quantize the quadrupole moment qxy

in crystalline insulators. On the other hand, the reflec-
tion operations Mx,y and C4, transform qxy to −qxy.
Hence, crystalline insulators with vanishing bulk dipole
moment having any of {Mx,My, C4} will have a well-
defined, quantized quadrupole moment, though most in-
sulators may simply just have a vanishing moment.

The quadrupole model with Bloch Hamiltonian
(VI.31) has the reflection symmetries of (IV.11) with op-
erators

M̂x = iτ1 ⊗ τ3, M̂y = iτ1 ⊗ τ1, (VI.33)

as well as C2 symmetry

r̂2h
q(k)r̂†2 = hq(−k) (VI.34)

with the C2 rotation operator

r̂2 = M̂xM̂y = −iτ0 ⊗ τ2. (VI.35)

Notice that C2 symmetry for this model resembles the
inversion symmetry (IV.17). The reflection and C2 oper-

ators obey M̂2
x,y = −1 and r̂2

2 = −1. The point group of
hq(k) in (VI.31) is thus the quaternion group

Q =

〈
ē, M̂x, M̂y, r̂2

∣∣∣∣∣ ē2 = 1,

M̂2
x = M̂2

y = r̂2
2 = M̂xM̂y r̂2 = ē

〉
(VI.36)

with ē = −1. The quaternion group is of order 8, with
elements {±1,±M̂x,y,±r̂2}. The three operators (VI.33)
each have eigenvalues {−i,−i,+i,+i}. Due to the π-flux
threading each plaquette, the reflection operators do not
commute, instead, they obey

[M̂x, M̂y] = −2iτ0 ⊗ τ2
{M̂x, M̂y} = 0. (VI.37)

The energy band degeneracy is protected at the high
symmetry points of the BZ by the non-commutation of
the reflection operators M̂x, M̂y (see Appendix G). Thus,
it is not possible to lift the twofold degeneracy of the en-
ergy bands at those points while preserving both reflec-
tion symmetries. Indeed, at each of the high-symmetry
points of the BZ, the subspace of occupied bands lies
in the two-dimensional representation of the quaternion

group.
Since C2 transforms the Bloch Hamiltonian hq(k) the

same way as I does, C2 symmetry quantizes the bulk
dipole moment in hq(k) to p = 0, as required for an in-
sulator with well-defined quadrupole moment. Mx or My

then quantize the quadrupole moment of hq(k) to either
qxy = 0 or 1/2. The three symmetries in hq(k), Mx, My,
and C2 are simultaneously present due to the fact that
the existence of two of them implies the existence of the
third one.

Alternatively, C4 also quantizes qxy. If we set γx = γy
and λx = λy, hq(k) has also C4 symmetry,

r̂4h
q(k)r̂†4 = hq(R4k), r̂4 =

(
0 τ0
−iτ2 0

)
, (VI.38)

where R4 is the rotation by π/2 of the crystal momentum,
i.e., R4(kx, ky) = (ky,−kx). The C4 rotation operator
obeys r̂2

4 = r̂2 and r̂4
4 = −1 (the minus sign is due to the

flux per unit cell) and has eigenvalues {e±iπ/4, e±i3π/4}.
Finally, hq(k), as written in Eq. VI.31, lies in class

BDI, i.e., it has time-reversal, chiral and charge conjuga-
tion symmetries

Θhq(k)Θ−1 = hq(−k), Θ = K

Πhq(k)Π−1 = −hq(k), Π = Γ0

Chq(k)C−1 = −hq(−k), C = Γ0K. (VI.39)

However, these symmetries are not necessary for quan-
tization of the quadrupole moment. In fact, we show in
Appendix H that we can break all of these symmetries
and still preserve the quantization of the quadrupole ob-
servables as long as the reflection symmetries are pre-
served.

2. Boundary signatures of the quadrupole phase

Eq. VI.1 gives the physical signatures of the
quadrupole phase. With open boundaries, edge-localized
polarizations exist, which can generate observable charge
or currents as indicated by

Qedge a = −∂jpedge aj

Jedge aj = ∂tp
edge a
j . (VI.40)

When two perpendicular boundaries are open, the edge
polarizations along the boundaries generate a quadrupole
pattern (see Fig. 4), and the corner hosts charges having
the same magnitude as the edge polarizations. To il-
lustrate these symmetry-protected signatures it will be
convenient to use the Hamiltonian (VI.31) in the limit
γx = γy = 0, as shown in Fig. 22a. In this limit it is
straightforward to identify the localized 1D boundary TIs
associated with the edge polarization by eye, as well as
the degenerate, mid-gap modes responsible for the corner
charges.



32

FIG. 22. (Color online) (a) Schematic of quadrupole model
in the limit γx = γy = 0. (b) On-site perturbation that
breaks reflection symmetries in x and y while preserving C2

symmetry.

Before we proceed we point out a common subtlety in
the calculation of electric moments. In the symmetry-
protected topological phases with quantized quadrupole
moment, the observables are not unambiguously defined,
e.g., a value of qxy = 1/2 is equivalent to a value of −1/2,
and similarly for pedge and Qcorner. This occurs when
hq(k) has the quantizing symmetries that transform qxy
to −qxy. In order to unambiguously calculate the observ-
ables of the quadrupole insulator in a many-body ground
state, we infinitesimally break all the symmetries that
quantize the quadrupole so it will evaluate to a number
close to, but not equal to, either 1/2 or −1/2. For that
purpose, we consider the Hamiltonian

hqδ(k) = hq(k) + δΓ0, (VI.41)

where hq(k) is the pristine, reflection-symmetric Hamil-
tonian in Eq. VI.31 with quantized boundary signatures,
and Γ0 = τ3 ⊗ τ0 represents an on-site potential with
the pattern shown in Fig. 22b. This potential obeys
[Γ0, M̂x] 6= 0, [Γ0, M̂y] 6= 0 and [Γ0, r̂2] = 0, i.e., it breaks
the quantizing reflection symmetries of the quadrupole
moment (infinitesimally for δ � γx,y, λx,y), but, cru-
cially, retains C2 symmetry, which maintains a vanish-
ing, quantized value of the bulk dipole moment. In this
Section we will keep δ � γx,y, λx,y.

Edge polarization: A direct consequence of the non-
trivial bulk topology of the quadrupole phase is the ex-
istence of edge polarization. This polarization is tangent
(i.e., parallel), to the edge. Consider first the quadrupole
insulator in the limit γx = γy = 0 of Eq. VI.41, with
δ � λ = λx = λy, and having open boundaries along x
but closed along y, as shown in Fig. 23a. In the bulk, the
electrons are connected via hopping on the square plaque-
ttes, and form hybridized orbitals localized on the squares
in the zero-correlation length limit (shaded squares in
Fig. 23a). The overall electronic displacement in these
plaquettes is zero (see Appendix I). At the edges, how-
ever, electrons are only connected vertically as in the
1D symmetry-protected dipole phase of the SSH model
(compare red and blue edges of Fig. 23a with Fig. 8b),
and thus form hybridized orbitals localized on dimers.

FIG. 23. (Color online) Edge polarization in the quadrupole
insulator. (a) Schematic of quadrupole model in the limit
γx = γy = 0 with open boundaries along x and closed along
y. Gray squares are bulk plaquettes over which the polar-
ization is zero. Red and blue lines represent edge-localized
1D quantized dipole moments. (b) Polarization along y as a
function of x for γ/λ = 0, 0.5, 1.1 when an infinitesimal on-site
perturbation as in Fig. 22b is added.

The small value of δ breaks the reflection symmetries and
infinitesimally displaces the electrons away from 1/2 to
‘choose a sign’ for the edge polarizations, as shown in the
first plot of Fig. 23b, where we plot the polarization along
y resolved in space along x, py(Rx); this is calculated us-
ing the prescription in Section V that results in Eq. V.9.
If we turn on γx and γy, the edge polarization remains
quantized to 1/2 (although it exponentially penetrates
into the bulk), as long as |γx/λx| < 1 and |γy/λy| < 1,
as shown in the second plot of Fig. 23b. If, on the other
hand, |γx/λx| > 1 or |γy/λy| > 1, the edge polarization
drops to zero, as seen in the third plot of Fig. 23b.

Corner charge: In Section III we saw that a 1D bulk
dipole moment per unit length q is associated with edge-
localized charges ±q. This leads to the conclusion that,
in the quadrupole insulator with full open boundaries,
the edge-localized dipole moments will accumulate cor-
ner charge. Thus, if edge dipole moments per unit length
of q exist, we would expect a corner charge ±2q. How-
ever, the corner charge in the quadrupole insulator hq(k)
has equal magnitude to the edge-polarization, i.e., q, fol-
lowing (VI.1). Hence, since the contributions from edge
dipole moments alone over-count the corner charge, there
has to be an additional direct contribution from the bulk
to the corner charge.

The different contributions to the corner charge can be
clearly illustrated in the limit γx = γy = 0, as shown in
Fig. 24a. The large blue circles represent an ionic charge
of +2e per unit cell, which is constant across unit cells.
Each unit cell has four electronic degrees of freedom, and
thus, at half filling, each unit cell contributes 2 electrons.
The sites connected by lines represent localized hybrid or-
bitals of the occupied electrons in the many-body ground
state. In the bulk there are two localized square orbitals
on each inter-cell plaquette, and the electrons in these or-
bitals have equal weight on each site of the plaquette. On
the edges there are localized inter-cell dimer orbitals, one
per dimer, where the electrons have equal weight on each
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FIG. 24. (Color online) Corner charge in the quadrupole in-
sulator. (a) Schematic of charge in the limit γx = γy = 0
when an infinitesimal perturbation as in Fig. 22b is included.
The lines connecting sites represent localized hybrid electron
orbitals in the many-body ground state at half filling. This
is an exact representation of the ground state in the zero-
correlation length limit. Each blue, green, and red circle rep-
resents charges of +2e (ionic), −e/2, and −e, respectively.
White circles do not have charge. (b) Simulation of the charge
density for λx = λy = 1, γx = γy = 10−3, and δ = 10−3. Sites
in the square plaquette orbitals marked with a ∗ closest to
them represent half-charge contributions to the corner charge
from the bulk orbitals.

site of the dimer. In this limit where γx = γy = 0, each
of the green sites in the bulk has an electronic charge
of −e/2 coming from the two square-localized orbitals,
each contributing 1/4 of an electron. Similarly, each of
the green sites on the edge SSH chains has an electronic
charge of −e/2. Finally, there are two red and two white
circles at the corners. Each of these degrees of freedom
are decoupled from the rest in this limit, and therefore
have exactly zero energy. These are the corner modes
associated with the fractional corner charge in the topo-
logical quadrupole phase. Out of the four mid-gap corner
modes, two should be filled at half-filling. A small value
of δ � λx,y in (VI.41) breaks this degeneracy in a man-
ner where C2 symmetry is preserved, and unambiguously
specifies which modes are to be filled. When δ > 0, each
of the red circles are occupied since they are at lower
energy than the white circles. Thus each red circle con-
tributes −e to the charge at its corner unit cell. The
white circles, on the other hand, remain unoccupied and
do not contribute to the electronic corner charge. No-
tice that in the bulk and the edges, the positive atomic
charge cancels the electronic charge. In the corner unit
cells, however, there is a total charge of ±e/2. Just as
in the case of the edge polarization, the corner charge
persists as long as |γx,y/λx,y| < 1, and drops to zero
otherwise. An example of the distribution of electronic
charge density for γx,y 6= 0 is shown in Fig. 24b.

The Hamiltonian (VI.31) in the limit γx,y = 0, shown
in Fig. 24a, illustrates two important characteristics of
the quadrupole: (i) the fractionalization of the corner
charge does not come from the edge polarizations alone,
i.e., the contributions due to the non-trivial polarizations
give an overall integer contribution to the corner charge.
The fractionalization of the corner charge comes from the

bulk charge density, and in this simple limit it comes from
the corners of the plaquette orbitals that are closest to the
corners (circles marked with a ∗ in Fig. 24a). (ii) Despite
the existence of two topological edge dipole moments in
the non-trivial phase, there is one zero-energy mode per
corner. This is contrary to the conventional notion that
a domain between two SSH chains, both of which are
in the topological phase, should not trap a stable mid-
gap mode. The apparent paradox is resolved because
the protected topological corner mode is a simultaneous
eigenstate of both edge Hamiltonians along the x and y-
edges. This is evident in the pictorial representation of
Fig. 24a, but can be confirmed in a more general setting
by an explicit calculation of the corner mode eigenstate,
as shown in Appendix J. Indeed, the corner states are not
traditional 1D domain wall states, and represent a new
mechanism to generate such modes on the boundary of a
2D system.

In order to understand how the boundary polarization
arises in the topological quadrupole phase, it is useful to
study the topology of the Wannier bands, and how this
topological structure manifests at boundaries. We focus
on this in the following three Sections.

3. Topological classes of the Wannier bands

Under Mx, My and C2, the Wannier-sector polar-
izations obey the relations in Eq. (VI.19). In the
quadrupole insulator hq(k), these relations imply that:

(i) all the Wannier-sector polarizations, p
ν±y
x and p

ν±x
y , are

quantized (see Eq. VI.20), and (ii) out of these four polar-
izations two are redundant due to C2 symmetry. Specif-
ically, we can re-write the third expression in (VI.19) as

p
ν+
y
x + p

ν−y
x

C2= 0 mod 1

p
ν+
x
y + p

ν−x
y

C2= 0 mod 1, (VI.42)

which is the statement that the total dipole moment van-
ishes, as is needed for a well defined quadrupole moment
(see Section II B),

p = (px, py) = 0, (VI.43)

where px = p
ν+
y
x + p

ν−y
x and py = p

ν+
x
y + p

ν−x
y .

Due to the relations (VI.42), only two independent
Wannier-sector polarizations are necessary to specify the
topological class of the Wannier bands, and we can define
the index

pν ≡ (p
ν−y
x , p

ν−x
y ). (VI.44)

Under Mx, My and C2, the classification of the Wannier
band topology in hq(k) is Z2 × Z2. A diagram of these
classes is shown in Fig. 25 as a function of the ratios
γx/|λx| and γy/|λy|. The central square of the diagram
in the ranges γx/|λx| ∈ [−1, 1] and γy/|λy| ∈ [−1, 1] is
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FIG. 25. (Color online) Diagram of topological classes for the
Wannier bands of the insulator hq(k) with Bloch Hamiltonian
Eq. VI.31. The indices pν are defined in Eq. VI.44. The
trivial class has pν = (0, 0).

the region in parameter space having pν = (1/2, 1/2).
Additionally, there are two regions in parameter space
with pν = (0, 1/2), and two more with pν = (1/2, 0), as
well as four regions in the trivial topological class pν =
(0, 0).

In the presence of reflection symmetries, pν can be de-
termined by the reflection representation of the Wannier
bands at the high-symmetry lines

M̂y

∣∣∣w±x,(kx,k∗y)

〉
= α±My

(kx, k∗y)
∣∣∣w±x,(kx,k∗y)

〉
M̂x

∣∣∣w±y,(k∗x,ky)

〉
= α±Mx

(k∗x, ky)
∣∣∣w±y,(k∗x,ky)

〉
, (VI.45)

for k∗x,y = 0, π (see Section VI B). In the pν = (1/2, 1/2)
class, the values of α±Mx

(k∗x, ky) and α±My
(kx, k∗y) are as

shown in Fig. 26. For each of the topological classes of
the Wannier bands shown in Fig. 25, the corresponding
α values are shown in Table V. Using these values we
can evaluate the Wannier-sector polarizations according
to Eq. VI.22. In hq(k), these lead to the Wannier-sector
polarization (for the lower Wannier bands) shown in the
phase diagram in Fig. 25.

Since calculating the α values requires finding the

Wannier basis
∣∣∣w±x,k〉 or

∣∣∣w±y,k〉, and finding these bases

requires calculating non-Abelian Wilson loops, it would
be more convenient to have an easier alternative for de-
termining the α values. Eq. D.35 in Appendix D implies
that the Wilson loop Wx,k, under My, obeys

[BMy,(kx,k∗y),Wx,(kx,k∗y)] = 0 (VI.46)

at k∗y = 0, π. Thus, both the Wilson loop and the
sewing matrix BMy,(kx,k∗y), which encodes the reflection
representation at the reflection invariant lines (kx, k∗y)
for kx ∈ [−π, π), can be simultaneously diagonalized and
hence they have common eigenstates. Thus, at the reflec-

pν = (1/2, 1/2) pν = (1/2, 0) pν = (0, 1/2)

α−Mx
(0, ky) − − ±

α−Mx
(π, ky) + + ±

α−My
(kx, 0) + ± +

α−My
(kx, π) − ± −

TABLE V. Reflection eigenvalues of lower Wannier bands in
the different topological classes of the Wannier bands of the
Hamiltonian in Eq. VI.31. The upper (lower) values in the
pν = (1/2, 0) phase correspond to the upper (lower) blocks
in the phase diagram. The upper (lower) values in the pν =
(0, 1/2) phase correspond to the blocks to the left (right) in
the phase diagram in Fig. 25.

FIG. 26. (Color online) Reflection eigenvalues α±My (kx, k∗y)

(red signs) and α±Mx(k∗x, ky) (blue signs) of the Wannier
bands of the occupied energy bands in the topological
quadrupole phase. Here k∗x,y = 0, π. For the unoccupied
bands, all signs are inverted.

tion invariant lines in momentum space shown in Fig. 11,
it is possible to label the subspace of occupied bands
by their respective reflection eigenvalues. The subspaces
along each of these lines can be divided into two sectors:
one labeled by reflection eigenvalue +i, and another one
labeled by a reflection eigenvalue −i. We can then cal-
culate Abelian Wilson loops in each of these sectors sep-
arately. This will directly tell us the Wannier values as-
sociated with each reflection representation. A detailed
calculation of this is shown in Appendix I in the limit
γx = γy = 0. Upon obtaining the values of α and their
corresponding reflection eigenvalues, the Wannier-sector
polarization can be calculated using Eq. VI.22. In some
cases this method, which relies on resolving states ac-
cording to their symmetry eigenvalues, will be easier to
apply than the full non-Abelian formulation.



35

FIG. 27. (Color online) Diagram of Wannier band transitions
in model (VI.31). At transitions there is Wannier gap closing
at either νx(ky = 0, π) = 0 or νy(kx = 0, π) = 0 (dashed lines)
or at either νx(ky = 0, π) = 1/2 or νy(kx = 0, π) = 1/2 (solid
thick lines).

4. Transitions between the topological classes of Wannier
bands

At the transitions between topological classes indicated
in Fig. 25, the Wannier gap closes. This is analogous to
the closing of the energy gap in phase transitions between
distinct symmetry-protected topological phases. Fig. 27
shows the momentum and Wannier value locations at
which the Wannier gap closes at all the topological class
transitions in Fig. 25. With reflection symmetries Mx

and My, the Wannier gap can close at two Wannier val-
ues, ν = 0 or 1/2. Consider, for example, the path in pa-
rameter space shown by the red line in Fig. 27 that starts
in the pν = (1/2, 1/2) class and ends in the trivial class
pν = (0, 0) via the intermediate class pν = (1/2, 0). In
Fig. 28 we plot the two Wannier bands for each of the five
Hamiltonians corresponding to the red dots in Fig. 27.
In the pν = (1/2, 1/2) class, both Wannier bands are
gapped and non-trivial. At the first transition point, the
Wannier bands νx(ky) become gapless at ky = π as they
become twofold degenerate at νx(ky = π) = 1/2. The
bands νy(kx), on the other hand, remain gapped at all
kx ∈ (−π, π]. On the other side of this transition, in the
pν = (1/2, 0) class, the Wannier bands νx(ky) become
gapped again, but this time they have trivial topology

(i.e., p
ν−x
y = 0).

As the pν = (1/2, 0) class approaches the transition
into the trivial class pν = (0, 0), another Wannier gap
closing event occurs. This time, however, it is the νy(kx)
bands that close the gap at the kx = π point. They ac-
quire the twofold degenerate value of νy(kx = π) = 0.

FIG. 28. (Color online) Wannier bands νx(ky) (first line)
and νy(kx) (second line). The parameters used are, from
left to right (γx/λx, γy/λy) = (0.75, 0.75) → (0.75, 1) →
(0.75, 1.25) → (1, 1.25) → (1.25, 1.25), as in the red lines of
Fig. 27.

On the other side of the transition, in the trivial class,
both Wannier bands are gapped and have trivial topol-
ogy. At transitions from the pν = (1/2, 1/2) class to the
trivial class pν = (0, 0) other than the one indicated by
the red line in Fig. 28, transitions can occur by closing
the Wannier gaps of νy (νx) at kx = 0 or π (ky = 0 or π),
as indicated in Fig. 27. In all cases, however, the Wan-
nier gap always closes at the value ν = 1/2 as it leaves
the pν = (1/2, 1/2) class to either the pν = (0, 1/2) or
pν = (1/2, 0) classes, and then at the value ν = 0 from
these classes to the trivial pν = (0, 0) class. This is not
accidental.

5. Bulk-boundary correspondence for Wannier bands and
edge polarization

We saw that transitions between different topological
classes of Wannier bands close the Wannier gap. There-
fore, at a physical boundary between insulators having
different Wannier classes, the Wannier gap is also ex-
pected to close. We denote this property as a bulk-
boundary correspondence for Wannier bands. Consider,
for example, the quadrupole insulator (VI.30) with closed
boundaries along x and open along y. By redefining the
unit cell of this 2D crystal to get an effective 1D crystal
with a unit cell of Norb×Ny sites, we can obtain a Bloch
Hamiltonian hq(kx), with only one crystal momentum
kx. We write hq(kx) to differentiate it from the Bloch
Hamiltonian hq(k) = hq(kx, ky), which has full periodic
boundaries. While hq(k) has Wilson loops Wx,k with
Wannier bands ν±x (ky), hq(kx) has Wilson loops Wx,kx

with Wannier values νjx, for j ∈ 1 . . . 2Ny (at half filling),
as defined in Section V.
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FIG. 29. (Color online) Representative tight-binding Hamiltonians, Wannier values {νjx}, for j ∈ 1 . . . 2Ny, and polarization
px(Ry) for all topological classes pν of hq(k). The tight-binding Hamiltonians have closed boundaries along x and open along
y, and are drawn with γx,y, λx,y = 0 whenever possible to ease the visualization of the edge states and tangential polarizations.
The Wannier values {νjx} and polarizations px(Ry) are calculated in the same topological class as the Hamiltonians on their
left, but with parameters λx = λy = 1 in all four cases and (γx, γy) = (1.25, 0.25) in (a), (γx, γy) = (0.25, 0.25) in (b),
(γx, γy) = (1.25, 1.25) in (c), and (γx, γy) = (0.25, 1.25) in (d). (a) and (b) have pairs of Wannier edge states (red thick circles)
with degenerate values νx = 0 and νx = 1/2, respectively. (c) and (d) do not have Wannier edge states. Only (b) has a
non-trivial edge polarization and quantized quadrupole moment. A value of δ = 10−3 was set in the calculation of px(Ry) for
all cases to choose the sign of the quadrupole.

The bulk-boundary correspondence for Wannier bands
then implies that, if the Wannier bands ν±x (ky) of hq(k)

have non-trivial topology, i.e., if p
ν±x
y = 1/2, there will be

y-edge-localized eigenstates of the Wilson loop Wx,kx of
hq(kx) with eigenvalue νx = 0 or 1/2 (as protected by
Mx). We denote these as Wannier edge states. Hence,
the Wannier values of the insulator with open boundaries
along y are gapless, and the gapless states are localized at

the edges. If, on the other hand, p
ν±x
y = 0, then there are

no edge-localized eigenstates of Wx,kx ; i.e., no Wannier

edge states. For the former case in which p
ν±x
y = 1/2, the

topological modes, localized at Ry = 0 and Ry = Ny, are
extended along x. Their Wannier value, which is either
νx = 0 or 1/2, indicates their dipole moment along x.
These modes are thus responsible for the edge-localized
tangential polarization. Whether the topological Wan-
nier edge modes have νx = 0 or 1/2 (the only two allowed

values under Mx) is determined by the value of p
ν±y
x .

The connection between the bulk property p
ν±x
y = 1/2

and the existence of Wannier edge states can be seen as
follows. The bulk Wannier bands ν±x (ky), being gapped,
allow us two define two maximally-localized Wannier cen-
ters along x: one arising from the ν+

x Wannier sector,
which is localized to the right (horizontally) of the center
of the unit cell, and another arising from the ν−x Wannier
sector, which is localized to the left (horizontally) of the

center of the unit cell. p
ν±x
y = 1/2 tells us that each of

these Wannier centers is displaced by half of a unit cell
along y, hence giving rise to Wannier edge states when

the system’s boundaries are opened. When p
ν±x
y is ex-

actly quantized, which Wannier center of the ν±x Wannier
Bands is displaced up or down is ambiguous in the bulk
of the insulator. However, when the boundaries are open,
C2 symmetry guarantees that there will be one Wannier
edge mode on each of the lower and upper surfaces (as
opposed to, say, two edge modes on the upper surface
and none on the lower).

The properties described above can be visualized in
Fig. 29, which shows the simplest tight-binding Hamil-
tonians (by setting γx,y, λx,y = 0 whenever possible) in
all of the four Wannier classes of hq(k). Next to each
of the tight-binding lattices we show the Wannier values
{νjx}, for j ∈ 1 . . . 2Ny (i.e., the eigenvalues of Wx,kx)
for hq(kx) in the same Wannier-band topological class,
as well as their resulting polarizations px(Ry).

In the cases in which p
ν±x
y = 1/2 (Fig. 29a,b), 2Ny − 2

states are spread over the bulk, while two–the topologi-
cal Wannier edge states–are localized on the edges; one
at Ry = 0 and the other one at Ry = Ny. These two
Wannier edge states have dipole moments along x equal

to the value of p
ν±y
x . For p

ν±y
x = 0 (Fig. 29a) the edge

states have zero dipole moment; note by inspection of
the tight-binding lattice that the edge states are each an
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SSH chain in the trivial phase. For p
ν±y
x = 1/2 (Fig. 29b)

the edge states have non-trivial, half integer dipole mo-
ment; note by inspection of the tight-binding lattice that
these edge states are each an SSH chain in the non-trivial
phase.

When p
ν±x
y = 0, on the other hand, there are no Wan-

nier edge states in the Wx,kx spectrum of hq(kx). This

is independent of the value of p
ν±y
x (Fig. 29c,d). Thus,

whether the Wanner bands ν±y (kx) are trivial or topo-
logical (Fig. 29c,d, respectively), the absence of Wannier
edge states automatically leads to a vanishing dipole mo-
ment along x at both y-edges.

From the analysis above it follows that, of all the
four classes in hq(k), only the class pν = (1/2, 1/2)
exhibits non-trivial edge polarization. Correspondingly,
only this class has corner-localized charges of 1/2 when
the boundaries along both x and y are open. Hence,
only the pν = (1/2, 1/2) class has non-trivial quan-
tized quadrupole moment qxy = 1/2, while all the other
three classes have trivial quantized quadrupole moment
qxy = 0.

6. Topological phases in the quadrupole insulator

Now that we have identified which Wannier topo-
logical classes (in the presence of Mx and My) have
non-trivial quadrupole moments, we look into the
symmetry-protected topological quadrupole phases. The
quadrupole insulator has a quantized phase protected not
only by Mx and My, but also by C4 symmetry. That is,
we could choose either the combination of Mx and My or
C4 to protect the quadrupole moment. We analyze these
two types of protection separately.

a. Reflection symmetric phases
A diagram of the topological quadrupole phases of the

insulator hq(k) is shown in Fig. 30 as a function of the
ratios γx/|λx| and γy/|λy|. The central square of the
diagram in the ranges γx/|λx| ∈ (−1, 1) and γy/|λy| ∈
(−1, 1) has a quantized quadrupole moment qxy = 1/2,
as it has the boundary signatures of Eq. VI.1. Outside of
this region, there is a trivial quantized quadrupole qxy =
0.

Following the paradigm for the topological charac-
terization of crystalline symmetry-protected topological
phases18,19,29,31,32,34,35,48, we look at the symmetry group
representations that the subspace of occupied bands take
at the high-symmetry points of the BZ. The point group
of the quadrupole insulator hq(k) is the quaternion group
(VI.36), which has the character table shown in Appendix
K. This group has 4 one-dimensional representations and
1 two-dimensional representation. The points of the BZ
invariant under this group are k∗ = Γ,X,Y,M. At
all of these points, there is a twofold degeneracy in the
spectrum protected by the non-commutation of the M̂x

and M̂y operators (see Appendix G). Symmetry-allowed
perturbations can be added to lift most of the twofold

FIG. 30. (Color online) Phase diagram of the quadrupole in-
sulator hq(k) with Hamiltonian (VI.31). Transitions close the
bulk energy gap when C4 symmetry is preserved at the indi-
cated points of the BZ. Transitions close the edge energy gap
when Mx and My reflections are preserved at the indicated
edges.

degeneracy of the bulk energy bands of hq(k) (given in
Eq. VI.32), however the degeneracy will persist at all k∗
points of the BZ (Fig. 31a).

Since the occupied bands at each of the k∗ points lies in
a two-dimensional representation of the point group, it is
expected, from this point of view, that the energy bands
are twofold degenerate in energy at the k∗ points. How-
ever, since the group admits only one two-dimensional
representation, one cannot construct the typical bulk
crystalline topological invariants (the representations are
the same at each k∗), and hence the topological struc-
ture is ‘hidden’ from the point of view of the energy
bands. Instead, the topology in the presence of Mx and
My is captured by the topological classes of the Wannier
bands. From the character table in Appendix K it follows
that the reflection and C2 eigenvalues of the occupied en-
ergy bands at each k∗ all come in (+i,−i) pairs. Indeed,
these values are necessary to have gapped Wannier bands,
ν±x (ky) and ν±y (kx), as shown in Fig. 19 (pairs of reflec-
tion or C2 eigenvalues other than (+i,−i), inevitably lead
to at least one pair of Wannier bands being gapless, see
Section VI C). The Wannier bands can belong to different
topological classes, as discussed in Section VI D 3, and
are identified by a pair of Wannier-sector polarizations
as in Eq. (VI.44). Since the qxy = 1/2 phase coincides
with the Wannier band topology having pν = (1/2, 1/2),
we can construct the index for the reflection symmetry-
protected quadrupole phase as

qxy
Mx,My

= p
ν−x
y p

ν−y
x + p

ν+
x
y p

ν+
y
x (VI.47)

which takes values

qxy
Mx,My

=

{
0 if trivial

1/2 if non-trivial
. (VI.48)
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FIG. 31. (Color online) Energy spectrum for quadrupole mod-
els that preserve (a) only Mx and My symmetries (Hamilto-
nian described in Appendix H), and (b) only C4 symmetry
(Hamiltonian described in Appendix L). Notice that in both
cases, C2 is also preserved.

The expression (VI.47) resembles the classical expression
for a quadrupole; it is the multiplication of two ‘coordi-
nates’ (one measures the displacement along x and the
other one along y) added over the charges (two electrons
in this case). Due to the constraint (VI.42), the index
simplifies to

qxy
Mx,My

= 2p
ν−x
y p

ν−y
x . (VI.49)

Accordingly, both the edge polarizations and the cor-
ner charges of the insulator in this non-trivial SPT phase
are quantized. Appendix H shows simulations that break
all symmetries except the quantizing reflection symme-
tries Mx and My to verify the quantization of the corner
charge and edge polarization, as long as the symmetry-
breaking perturbations do not close the Wannier gaps.
The protection due to Wannier band topology–instead
of bulk energy band topology–is a new mechanism of
topological protection. This protection implies that, at
symmetry-preserving boundaries between a topological
phase and the vacuum, edges are not required to be gap-
less, i.e., it allows for the possibility of gapped edges.
These edges, however, are topological themselves. The
Wannier band protection mechanism then leads to the
existence of gapped, symmetry-preserving edges which
are topological. This idea can be extended far beyond
this example so that we can generate bulk topological
phases with many types of gapped, surface SPTs. In
some sense these phases represent a simpler version of
the gapped, symmetry preserving surfaces of 3D strong
topological phases which must instead be topologically
ordered72–76.

b. C4 symmetric phases
In the presence of C4 symmetry, the quadrupole min-

imal model hq(k), with Hamiltonian (VI.31), is in ei-
ther the trivial phase, qxy = 0, or the topological phase,
qxy = 1/2. Unlike the case in which symmetries Mx and
My protect the quadrupole moment, under C4 symme-
try the quadrupole moment is protected by the topology
of the bulk energy bands. Accordingly, a topological in-
dex can be built by comparing the rotation representa-
tions of the subspace of occupied energy bands at the C4-

FIG. 32. (Color online) Rotation representations for the occu-
pied bands of the quadrupole model (VI.31) in the presence of
C4 symmetry (VI.38). (a) BZ and its C4-invariant momenta
k∗ = Γ,M (b-d) Let λx = λy = 1, γx = γy = γ. C4 rotation
eigenvalues at k∗ for (b) quadrupole phase, |γ| < 1, (c) trivial
phase with γ > 1, and (d) trivial phase with γ < −1.

symmetric points of the BZ, k? = Γ and M34,35, shown
in Fig 32a. Since C4 symmetry only has one-dimensional
representations, it does not protect degeneracies in the
energy bands of hq(k). An example of this lack of pro-
tection is shown in Fig. 31b, where we show the energy
bands for a Hamiltonian based on hq(k) that has flux
other than π at each plaquette. This modification in the
Hamiltonian breaks Mx and My but preserves C4, as de-
tailed in Appendix L.

In order to define the topological index, consider
hq(k?), with γx = γy = γ and λx = λy = λ, which
obeys

[r̂4, h
q(k?)] = 0. (VI.50)

From this it follows that the eigenstates of hq(k?) are also
eigenstates of the rotation operator. Thus, the occupied
states at k∗ obey

r̂4

∣∣unk?〉 = rn4 (k?)
∣∣unk?〉 , (VI.51)

where n = 1, 2 labels the occupied states, and rn4 (k∗) is
the rotation eigenvalue of the nth occupied state at the
C4-invariant momentum k?.

To build the index, we first recall that the eigenvalues
of the C2 operator, r̂2 = r̂2

4, for the occupied bands at
the k? are ±i (due to the π-flux per unit cell, the C2

operator squares to −1 even for spinless systems). Thus,
the C4 eigenvalues in the occupied energy bands come in
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pairs r+
4 (k?), r

−
4 (k?), such that,(

r+
4 (k?)

)2
= +i(

r−4 (k?)
)2

= −i. (VI.52)

We can then take either the r+
4 (k?) values or the r−4 (k?)

values to construct the index

ei2πqxy
C4= r+

4 (M)r+∗
4 (Γ) = r−4 (M)r−∗4 (Γ), (VI.53)

which takes the values of ei2πqxy = ±1 in the trivial or
topological quadrupole phases, respectively. This corre-
sponds to quantized values of the quadrupole of

qxy
C4=

{
0 if trivial

1/2 if non-trivial
. (VI.54)

This index is independent of the choice of C4 rotation op-
erator, provided that the same operator is used at both
Γ and M. For example, for the choice of r̂4 of (VI.38),
which obeys r̂4

4 = −τ0 ⊗ τ0, its eigenvalues are e±iπ/4,
e±i3π/4, and the rotation eigenvalues in the trivial and
topological quadrupole phases of (VI.31) under C4 sym-
metry are schematically shown in Fig. 32.

The bulk energy gap of hq(k) closes at the C4-
preserving transitions. In such transitions, the bulk en-
ergy gap closes at Γ, X, Y, or M, as indicated by the dots
in Fig. 30. At these transitions, the rotation eigenvalues
of the occupied energy bands change from the configura-
tion in Fig. 32b to those in either (c) or (d).

We finally point out that, since C4 symmetry does
not protect the Wannier-sector polarizations, the quan-
tization of the edge polarizations is not guaranteed in
the presence of C4 symmetry. For example, if C4-
symmetric perturbations having hopping terms between
nearest neighbor unit cells are added, the observables of
the Hamiltonian can be modified as schematically shown
in Fig. 33 (we note that if only fluxes other than π are
put on each plaquette to break the reflection symmetries
of hq(k) then the edge polarizations remain quantized).
Even though the edge polarizations are not quantized, (i)
the corner charge remains quantized, and (ii) the relation
between edge polarizations and corner charge still implies
the existence of a quantized quadrupole moment, on top
of which edge dipoles of magnitude ∆ are overlapped in
a C4 symmetric pattern (see Section II D).

7. Phase transitions in the quadrupole insulator

The closing of either the energy gap or the Wannier gap
is a property dictated by the bulk band parameters (for
the latter we note that calculations of both sets of hybrid
Wannier bands requires the bulk wavefunctions). In this
section, we describe how the phase transitions in hq(k)
manifest at the boundaries. In the following description,
we set λx = λy = 1 for simplicity.

FIG. 33. (Color online) Schematic of a C4-symmetric insu-
lator that breaks Mx and My in the topological phase. It
has quantized corner charges ±e/2 but not quantized edge
polarizations e/2 + ∆, in a C4 symmetric pattern.

We start with the C4, Mx, and My-symmetric transi-
tion with full open boundaries. The energy bands for this
system as a function of the parameter γ = γx = γy are
shown in Fig. 34a. In the topological phase, the red lines
denote the corner-localized, four-fold degenerate modes,
which are characteristic of the topological quadrupole
phase, as seen in Fig. 34b. During the transition, the
bulk energy gap closes and the corner localized states hy-
bridize and fuse into the bulk and are no longer present
in the trivial phase.

If we now drive the transition by varying γy while keep-
ing |γx| < 1, as in Fig 34c, only the energy gap of the
edge parallel to y closes. Consequently, as the transition
is approached, the four corner modes hybridize in pairs
along the edge parallel to y, as seen in Fig. 34d. Recall
that this phase transition is associated with a closing of
the Wannier gap at νx(ky = π) = 1/2 when the system
has periodic boundary conditions (second column, first
row, of Fig. 28). Hence, we conclude that a gap closing
of the Wannier bands results in an energy gap closing
in the 1D x-edge Hamiltonian77. This relation between
the bulk property of Wannier gap closing and the energy
gap closing of the edge can be inferred from the adiabatic
mapping connecting the Wannier bands to the Hamilto-
nian of the edge as detailed in Section IV B 2.

Indeed, one can verify that the energy gap closing oc-
curs along the x-edge by repeating the calculation in (c),
but for a quadrupole insulator with periodic boundaries
along x. This is shown in Fig. 35a. In contrast to what
happens in Fig 34c, the energy bands in Fig. 35a do not
close the gap. In this setup, in which boundaries along
x (y) are closed (open), this transition can be visual-
ized by plotting the Wannier bands νjx, for j ∈ 1 . . . 2Ny,
as a function of the parameter γy. This is shown in
Fig. 35b. The red line in this figure indicates the twofold
Wannier-degenerate states that are localized at the two
opposite y-edges, having Wannier value of 1/2. These
states are characteristic of the quadrupole phase, and
are responsible for the quantized edge polarizations (see
Section VI D 5). Analogous to the corner-localized modes
in the energy plots, the edge-localized modes in the Wan-
nier plots hybridize as the Wannier gap closes, and fuse
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FIG. 34. (Color online) Two types of quadrupole phase tran-
sitions for Hamiltonian (VI.31) with full open boundaries.
For (a,b) we have a C4, Mx, and My symmetric Hamilto-
nian. (a) Energy bands as a function of γ = γx = γy. (b)
Probability density function of the zero-energy modes as the
system approaches the transition with C4, Mx, My symmet-
ric Hamiltonian, having (γx, γy) = (0.75, 0.75). (c,d) have
Mx, and My but not C4 (c) energy bands as a function of
γy while fixing γx = 0.5. (d) Probability density function of
the zero-energy modes as the system approaches the transi-
tion for a Hamiltonian having (γx, γy) = (0.5, 0.75). In the
simulations, there are 40 × 40 unit cells. For the purpose of
illustration, unit cells in the range Nx,y ∈ [5, 34] are in the
topological quadrupole phase with (γx, γy) as indicated. Unit
cells outside of Nx,y ∈ [5, 34] are in the trivial phase with
(γx, γy)=(2,2). All unit cells have λx = λy = 1.

into the bulk outside of the quadrupole phase. Physi-
cally, this plot illustrates that (even in the absence of
corners) the edge polarizations are clear signatures that
persist only as long as the bulk is in the quadrupole topo-
logical phase. The mapping described in Section IV B 2
that adiabatically maps the Wannier bands of Fig. 35b
to the edge energies in Fig. 34c is consistent with this
phenomenology.

In the phase diagram in Fig. 30 for the quadrupole
topological phases of hq(k), the blue and red lines indi-
cate the edges at which the energy bands close for Mx,
My-preserving phase transitions, and the black dots indi-
cate the points of the BZ at which the bulk energy bands
close for C4-preserving phase transitions.

Let us make some final notes about the multi-critical
nature of the bulk phase transition. We see that we only
find a bulk phase transition in our phase diagram when
C4 symmetry is preserved. However, our phase diagram
is implicitly assuming that both mirror symmetries are
preserved since every point in the phase diagram has mir-
ror symmetry by design. Hence, if we have both mirror
symmetries and C4 symmetry we naturally have a bulk
critical point where a transition occurs via a double Dirac

FIG. 35. (Color online) (a) Energy bands and (b) Wannier
bands νjx, for j ∈ 1 . . . 2Ny, with closed boundaries along x
and open along y as a function of γy while fixing γx = 0.5. In
all plots λx = λy = 1. Red lines indicate the 2-fold degenerate
states with polarization 1/2 localized at the open edges.

point in momentum space. If we remove C4 symmetry
but preserve mirror, then we have already seen in detail
that we will not generically have a bulk critical point sep-
arating the quadrupole phase from the completely trivial
phase. Additionally, there is one more option we have
not discussed which is to preserve C4, but break both
mirrors. We need to break both mirrors because their
product is proportional to the C2 rotation operator, and
hence must be preserved. This implies that both mir-
rors are either preserved or both broken. In this scenario
there will still generically be a bulk gap closing when
transitioning out of the quadrupole phase. However, the
direct transition to a trivial insulator will be replaced by
a two-step process with an intermediate phase separat-
ing the quadrupole insulator from the trivial insulator.
As one tunes a single parameter, the quadrupole phase
will first transition to a Chern insulator with a bulk gap
closing at a single Dirac point. Then as the parameter
is further tuned, the Chern insulator will transition to
the trivial phase through a second single Dirac point.
Thus, breaking mirrors will split the direct quadrupole-
to-trivial transition into two single Dirac cone transitions
with an intermediate Chern insulator phase. The Chern
insulator phase is not compatible with mirror symmetry,
and hence does not appear in the phase diagram if mirror
symmetry is preserved.

E. Dipole pumping

We now break the symmetries that protect the topo-
logical quadrupole phase by adding perturbations to the
Hamiltonian (VI.31). As a result, the quadrupole observ-
ables lose their quantization. We will see in particular
that a new type of electronic pumping occurs, that of a
dipole current.

Breaking the symmetries that quantize the quadrupole
can occur in the following scenarios:

• Perturbation breaks Mi and C2 symmetries but
keeps Mj . This quantizes p±νij and the bulk dipole
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moment pj but does not quantize p
±νj
i nor the bulk

dipole moment pi. Here i, j = x, y and i 6= j.

• Perturbation breaks Mx and My symmetries but

keeps C2 symmetries. This does not quantize p
±νy
x

nor p±νxy , but keeps the total bulk dipole moment
quantized, e.g., p = 0.

We concentrate on the second scenario, because we are
interested in pumping arising exclusively from the bulk
quadrupole moment and not from dipole moment con-
tributions. A perturbation that breaks both reflection
symmetries while preserving C2 is the one we have used
in Eq. VI.41 to choose the ‘sign’ of the quadrupole. The
simplest and most illustrative pumping process consists
of the adiabatic evolution of the insulator in Eq. VI.41
parametrized by t according to

(δ, λ, γ) =

{
(cos(t), sin(t), 0) 0 < t ≤ π
(cos(t), 0, | sin(t)|) π < t ≤ 2π

, (VI.55)

where for simplicity we have chosen λx = λy = λ and
γx = γy = γ. During this process, the twofold degen-
erate energies in the bulk remain gapped for all times t:

ε(k, t) = ±
√

1 + sin2(t). Similarly, the energy gaps of

the edges also remain gapped, which is crucial for adi-
abaticity. Fig. 36a,b shows the transport corresponding
to the adiabatic evolution (VI.55) during the first half of
the cycle. In Fig. 36a (Fig. 36b) boundaries are closed
along x (y) and open along y (x), as schematically in-
dicated by the cylinders. The plots track the Wannier
values during the first half of the cycle during which all
the inter-unit cell transport takes place. The dark blue
lines correspond to Wannier eigenstates that extend over
the bulk of the material. Each of the red, cyan, orange,
and purple lines, on the other hand, correspond to one
Wannier center whose wave function localizes at an edge
of the material, as indicated by the corresponding lines
on the cylinders. At t = 0 the system is in the triv-
ial Hamiltonian Γ0. This is a momentum-independent
Hamiltonian which represents an insulator in the atomic
limit, and therefore all its Wannier values are zero. As
the system is adiabatically deformed, the on-site pertur-
bation becomes smaller and the hopping amplitudes in-
crease. Two Wannier sectors appear, as well as Wannier
eigenstates localized at the edges. At t = π/2 the re-
flection symmetries are restored, and we encounter the
topological quadrupole phase of model (VI.31), which

has Wannier-sector polarization p
ν±i
j = 1/2 and conse-

quent edge-localized polarizations of 1/2. The evolution
continues, with hopping terms fading and on-site terms
increasing magnitude, but with the opposite sign as in
the range t ∈ [0, π/2). As we approach the end of the
first half of the cycle, t → π, the system approaches the

trivial phase, and p
ν±i
j → 1 = 0 mod 1. While the bulk

Wannier states show no net transport after the half cycle,
the edge-localized Wannier states show net transport of

FIG. 36. (Color online) Adiabatic pumping (VI.55) for the
first part of the cycle 0 < t ≤ π. (a,b) Wannier bands as
function of adiabatic parameter t when boundaries along y
(a) or x (b) are open. Wannier bands crossing the gap have
eigenstates localized at the edges indicated in their respective
cylinders. (c) Overall pattern of the edge-localized charge
pumping. (d) Wannier-sector polarization as a function of
adiabatic parameter t.

one electron from right to left by one unit cell on the up-
per boundary, and one from left to right by one unit cell
on the lower boundary in Fig. 36a. Fig. 36b shows a sim-
ilar pattern. The combined overall pattern of transport,
however, is not that of a circulating current. Instead, it is
consistent with the a quadrupole pattern where the bulk
dipole remains fixed to zero, as shown in Fig. 36c. During
the second half of the cycle, π < t ≤ 2π, the Hamiltonian
remains in the the trivial atomic limit phase, and thus
causes no electronic transport.

This adiabatic evolution is associated with a Berry flux
and Chern number of the Wannier bands as calculated
via

∆qxy =

∫ 2π

0

dτ∂τp
ν±i
j (τ) = 1 (VI.56)

for i, j = x, y and i 6= j. In essence, this pumping process
results in an edge-localized Thouless pumping process, as-
sociated with the changing edge polarizations due to the
adiabatic change of the bulk quadrupole moment. During
a full cycle there is quantized transport captured by the
winding of the Wannier-sector polarizations (VI.56), as
shown numerically in Fig. 36d (the Wannier-sector polar-
ization winds completely in the range t ∈ [0, π) because
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FIG. 37. (Color online) Corner charge (blue solid dots) and
edge polarization as function of pumping parameter t for the
parametrization of (VI.55) during the first part of the cycle
0 < t ≤ π.

the Berry flux for t ∈ [π, 2π) is zero, since the Hamilto-
nian remains in the atomic-limit phase during this second
half of the cycle).

The pumping process detailed above provides us with a
family of Hamiltonians which, we claim, have quadrupole
moments that range from 0 to 1. To confirm this, we
track the corner charge and the edge polarizations dur-
ing the entire cycle. The prescription for the calculation
of the edge polarization is shown in Section V. Fig. 37
shows a plot of the instantaneous corner charge as well
as the instantaneous edge polarization (we find that the
magnitudes of the edge polarizations along all edges are
equal). The edge polarizations are calculated by integrat-
ing the contributions to tangential polarization up to the
middle of the crystal, i.e., as

pedge −y =

Ny
2∑

Ry=1

px(Ry)

pedge +y =

Ny∑
Ry=

Ny
2 +1

px(Ry) (VI.57)

where px(Ry) is given by Eq. V.9, and similarly for
pedge ±x. The corner charges are calculated by integrat-
ing the charge density over a quadrant of the crystal, i.e.,
as

Qcorner −x, −y =

Nx
2∑

Rx=1

Ny
2∑

Ry=1

ρ(R), (VI.58)

where ρ(R) is is the charge density over occupied states.
A similar calculation follows for the other three corner
charges in Qcorner ±x, ±y. The edge polarizations and the
corner charges are the same, in agreement with (VI.1),
over the entire range of the pumping process. The bulk
polarization remains zero during this process since C2

FIG. 38. (Color online) Contributions to the edge polarization
during the adiabatic pumping (VI.55) during the first part of
the cycle 0 < t ≤ π. (a) Total edge polarization (purple
circles), topological contribution (blue solid dots), and non-
topological contribution (orange + signs). (b) Topological
contribution to the edge polarization (solid blue dots) and
Wannier-sector polarization (red circles).

symmetry is always preserved.

When calculating the overall edge polarization, follow-
ing the prescription of Section V, there is a subtlety. We
find that there are two contributions that can be differen-
tiated: one contribution is captured by the edge-localized
eigenstates of the Wilson loop with open boundaries in
one direction, which we call ‘topological’; the other, ‘non-
topological’ contribution, comes from eigenstates of the
Wilson loop distributed over the bulk. These separate
contributions are shown in Fig. 38a. Numerically, the
topological contribution is easily discriminated because
its Wannier value is situated within the Wannier gap for
t ∈ (0, π) (see Fig. 36a,b). At t = 0, π, on the other hand,
all Wannier values vanish. We find that the Wannier-
sector polarization (VI.16) reflects the values of the topo-
logical term, as shown in Fig. 38b, but does not capture
the non-topological contribution. Hence, the Wannier-
sector polarizations, i.e., the polarizations of the effec-
tive edge Hamiltonian should be treated as a symme-
try protected topological invariant and not as a quanti-
tative measure of the exact edge polarization when the
symmetries are relaxed. We conjecture that this is be-
cause the effective edge Hamiltonian is only adiabatically
connected to the physical edge Hamiltonian51, thus only
topological properties are necessarily preserved. Impor-
tantly, the total edge polarizations and corner charges
are all quantized to 0 or 1/2 in the trivial or topologi-
cal symmetry-protected quadrupole phases, respectively,
and the non-topological contribution to edge polariza-
tion vanishes in the presence of the quantizing symme-
tries. Hence, although the Wannier-sector polarization
does not describe the precise value of the edge polariza-
tion and corner charge when there is a bulk contribution
to the edge polarization, it does correctly describe the
topological properties of the quadrupole. Besides pro-
viding the correct quantized values of corner charge and
edge polarization in the SPT phases, the quantization of
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FIG. 39. (Color online) Adiabatic pumping (VI.59) with open
boundaries in both directions. t is the pumping adiabatic pa-
rameter. (a) Energy spectrum. Green (red) lines are twofold
degenerate and have corresponding modes that localize at op-
posite corners. (b) Corner charge during pumping. Open blue
(solid red) circles represent a corner charge of +e/2 (−e/2) at
the beginning and end points of the pumping process. Charge
inversion amounts to pumping a quantum of dipole moment.

dipole pumping is also correctly given by Eq. VI.56.

Opening the boundaries: Let us now elaborate on the
pumping process from the point of view of the corner
charges. The pattern of electronic current shown in
Fig. 36c suggests that charge flows from one pair of oppo-
site corners to the other pair. A direct calculation of the
energy bands for this type of adiabatic pumping when
boundaries along both x and y are open should reflect
this pattern. Since it will become useful, let us do this by
using an alternative parametrization of the pumping pro-
cess which varies continuously over the entire adiabatic
cycle (as opposed to pumping (VI.55), which is continu-
ous piecewise). It is given by

hqpump(k, t) = (−m cos(t) + 1)(Γ4 + Γ2)−m sin(t)Γ0

+ cos(kx)Γ4 + sin(kx)Γ3

+ cos(ky)Γ2 + sin(ky)Γ1. (VI.59)

The pumping process (VI.59) maintains C2 symmetry,
with r̂2 = −iτ0 ⊗ τ2, at all values of the adiabatic pa-
rameter t ∈ [0, 2π), which locks the polarization to zero.
For 0 < m < 2 (−2 < m < 0) the insulator is in the
quadrupole (trivial) phase at t = 0 and in the trivial
(quadrupole) phase at t = π, while for |m| > 2 there
is no dipole pumping, as the insulator is in the trivial
phase at both t = 0, π. Fig. 39 shows the adiabatic evo-
lution of this Hamiltonian with m = 1 and open bound-
aries along both directions. In Fig. 39a the bulk energies
(marked in dark blue) are gapped. The energies that
cross the bulk energy gap (marked in red and green) are
each twofold degenerate (i.e., there are a total of four gap-
crossing states), and correspond to the corner-localized
states. Each pair of twofold degenerate states localize at
opposite corners. At half filling, the result of pumping
is to change the values of the charges at the corners by
e, as seen in Fig. 39b, so that the final quadrupole is
equivalent to the original one upon a rotation by 90◦. In

Fig. 39b, we start at a time −π + ε and finish at π − ε,
for ε� 1, so that we clearly define the initial sign of the
quadrupole by slightly deviating away from the perfectly
symmetric SPT quadrupole phase.

Although the pumping (VI.55) also reflects the char-
acteristics we just described, the convenience of the
parametrization (VI.59) will become evident when we
make a connection between dipole pumping processes
and a new type of topological insulator in one higher
spatial dimension in the next subsection VI F.

F. Topological Insulator with hinge-localized chiral
modes

In Section III F we saw that adiabatic charge pumping
in 1D insulators by means of a changing dipole moment is
characterized by the winding of the Wannier eigenvalues
as a function of the adiabatic parameter. This winding is
equivalent to a Chern number in the mixed momentum-
adiabatic parameter space. If we rename the adiabatic
parameter t in the model with a torus parameterization
to a new momentum variable, e.g., t→ ky, the resulting
2D model is a Chern insulator characterized by the usual
2D Chern number over the BZ. An analogous connection
exists in the case of the quantization of adiabatic dipole
pumping by means of a changing quadrupole moment.

If we substitute t → kz in Eq. (VI.59) the resulting
model is the Hamiltonian of a 3D insulator with a wind-
ing quadrupole invariant along kz. Fig. 40a shows the dis-
persion of this insulator when boundaries are open along
both x and y, but closed along z. Notice that this is in
essence the same plot as that in Fig. 39a. The interpre-
tation, however, is different. The corner-localized modes
during the adiabatic pumping now map to edge localized
modes that are chiral and carry current in a quadrupo-
lar fashion when an electric field along z is applied. A
schematic of this insulator is shown in Fig. VI.59b. These
hinge-localized modes are protected by the Wannier-band
Chern number

nνxyz =
1

(2π)2

∫
BZ

Tr
[
F̃νxyz,k

]
d3k, (VI.60)

where

F̃νijk,k = ∂jÃνik,k − ∂kÃ
νi
j,k + i[Ãνij,k, Ã

νi
k,k], (VI.61)

for i, j, k = x, y, z and i 6= j 6= k, is the Berry curvature
over the Wannier bands νi, and Ãνij,k is the Berry connec-

tion of the νi Wannier sector, defined in (VI.17). A plot
of these Wannier bands is shown in Fig. 40c. They are
gapped and each of them carry a Chern number (instead
of just a Berry phase like the 2D quadrupole model).
Notice that we always have

n
ν−i
jk = −nν

+
i

jk . (VI.62)

From this analysis we conclude that 3D insulators have
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FIG. 40. (Color online) A crystalline insulator with chiral,
edge-localized modes that disperse in equal directions at op-
posed corners and opposite directions in adjacent ones. This
insulator is in the same topological class as the pumping
(VI.59). Both can be identified via the map t → kz. (a) En-
ergy dispersion for a system with open boundaries along x and
y but closed boundaries along z. (b) Hinge localized modes.
Arrows indicate direction of dispersion in the presence of an
electric field along z. (c) Wannier bands, each having a non-
zero Chern number defined in (VI.60). (d) Illustration of the
compatibility relationship between Chern invariants (VI.63).
Circles indicate direction of chiral currents compatible with
the hinge currents of (b).

additional anisotropic topological indices that signal the
presence of chiral, hinge-localized states parallel to x, y
or z. For example, in the insulator of Fig. 40, we have

n
ν+
x
yz = −nν

+
y
zx = 1

n
ν+
z
xy = 0. (VI.63)

In general, this type of cyclic relationship is kept. Thus,
unlike the weak indices for polarization (IV.26), which
are each independent of each other, the Chern numbers
nνijk defined in (VI.60) are related by similar constraints

to (VI.63), as otherwise the hinge-localized modes would
give incompatible hinge current flows. See Fig. 40d for
an illustration of the compatibility conditions. While the
lateral surfaces have chiral currents described by the first
Eq. in VI.63, the upper and lower surfaces have currents
in a quadrupole pattern.

VII. Bulk octupole moment in 3D crystals

The natural extension of the quadrupole moment in
2D is the octupole moment in 3D. In this section we dis-
cuss in detail the calculation of the quantized octupole
moment and describe a simple model that realizes it. We
discuss both the SPT phase with quantized boundary
signatures, and an adiabatic pumping process. In partic-
ular, for the latter we will see that an adiabatic cycle can
pump a quantum of quadrupole moment.

A. Simple model with quantized octupole moment
in 3D

In order to have a well-defined octupole moment in
the bulk of a 3D insulator, the bulk quadrupole and bulk
dipole moments must vanish. Additionally, we require
that no Wannier flow exists for Wannier centers along any
direction, so as to avoid strong Z2 insulators and weak
topological insulators with layered Chern or Z2 QSH in-
variants that would result in metallic boundaries. Using
these constraints, we can find a simple model for an oc-
tupole insulator as shown in Fig. 41. It has Bloch Hamil-
tonian

hoδ(k) = λy sin(ky)Γ′1 + [γy + λy cos(ky)]Γ′2

+ λx sin(kx)Γ′3 + [γx + λx cos(kx)]Γ′4

+ λz sin(kz)Γ
′5 + [γz + λz cos(kz)]Γ

′6

+ δΓ′0, (VII.1)

where Γ′i = σ3 ⊗ Γi for i = 0, 1, 2, 3, Γ′4 = σ1 ⊗ I4×4,
Γ′5 = σ2 ⊗ I4×4, and Γ′6 = iΓ′0Γ′1Γ′2Γ′3Γ′4Γ′5. Here,
the internal degrees of freedom follow the numbering in
Fig. 41. When |λi| > |γi| for all i = x, y, z this system is
an insulator at half filling with four occupied bands and
a quantized octupole moment oxyz = e/2. For δ = 0, this
Hamiltonian has reflection symmetries Mx,y,z (up to a
gauge transformation, see Section E), with operators

M̂x = τ0 ⊗ τ1 ⊗ τ3
M̂x = τ0 ⊗ τ1 ⊗ τ1
M̂x = τ1 ⊗ τ3 ⊗ τ0 (VII.2)

which obey {M̂i, M̂j} = 0 for i, j = x, y, z and i 6= j.
The octupole moment oxyz is odd under each of these
symmetries. In the continuum theory, this admits only
the solution oxyz = 0, but the ambiguity in the position
of the electrons due to the introduction of the lattice (see
Section III A) also allows the solution oxyz = 1/2 mod 1.
In addition, these symmetries quantize px, py, pz, qxy, qxz,
and qyz, all of which must vanish for oxyz to be well-
defined.

One signature of the topological octupole moment is
the existence of fractional half charges localized on the
corners of a cubic sample. Indeed, the non-trivial quan-
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FIG. 41. (Color online) Lattice model of an octupole insulator
with Bloch Hamiltonian (VII.1). (a) Degrees of freedom and
couplings within the unit cell. (b) Hopping terms in a lattice
with eight unit cells. In both (a) and (b) the dashed lines
represent a coupling with negative phase factor. As a result
of these phase factors a flux of π threads each facet.

FIG. 42. (Color online) Electronic charge density of the oc-
tupole insulator with open boundaries. Corners have a charge
of ±e/2 relative to the background charge.

tized octupole phase of this model has corner-localized
mid-gap modes. We add an infinitesimal δ in the Hamil-
tonian that breaks the cubic symmetry of the crystal
down to tetrahedral symmetry. This splits the degen-
eracy of the zero modes, hence fixing the sign of the oc-
tupole moment. A plot of the charge density for this
crystal is shown in Fig. 42.

The 4-dimensional subspace of occupied energy bands
in the Hamiltonian (VII.1) has reflection eigenvalues
{−1,−1,+1,+1} at all high-symmetry points. Conse-
quently, the Wannier centers of the Wilson loop Wz,k

come in pairs {±ν1
z (k⊥),±ν2

z (k⊥)}, where k⊥ = (kx, ky)
(see Table III). In the 3D BZ of Hamiltonian (VII.1), the
spectrum of the Wilson loop Wz,k yields two, twofold
degenerate Wannier bands separated by a Wannier gap,
i.e., ν1

z (k⊥) = ν2
z (k⊥), as seen in Fig. 43. Since an oc-

tupole is made from two quadrupoles we want to show
that each of these two-band Wannier sectors has a topo-
logical quadrupole moment. We now show how to deter-

FIG. 43. (Color online) Schematic of the procedure to de-
termine the topology of an octupole moment. A Wilson loop
along z over the 3D BZ (purple cube) divides it in two sectors,
according to its Wannier value ν±z (red and light blue plots
over the cube). Each sector has two bands (represented by
the red and blue squares) and has quadrupole topology. This
can be verified by calculating Wilson loops along y over each
sector, which renders two Wannier sectors η±y (red or blue
pair of symmetric lines), each of them having a Berry phase
of 0 or π in its Wilson loop along x in the |λi| < |γi| (for all
i) or |λi| > |γi| (for all i) regime, respectively.

mine this quadrupole moment.

B. Hierarchical topological structure of the
Wannier bands

Microscopically, a bulk octupole can be thought of as
arising from two spatially separated quadrupoles with op-
posite sign. Thus, since a quadrupole insulator requires
two occupied bands, an octupole insulator requires a min-
imum of four occupied bands. Our model (VII.1) is then
a minimum model with octupole moment. To reveal its
topological structure, we begin the analysis by perform-
ing a Wilson loop along the z-direction,

Wz,k

∣∣∣νjz,k〉 = ei2πν
j
z(k⊥)

∣∣∣νjz,k〉 , (VII.3)

where k⊥ = (kx, ky). The Wilson loop along z is repre-

sented by a 4×4 matrix, which has eigenstates
∣∣∣νjz,k〉 for

j = 1, 2, 3, 4. In an octupole phase, the Wilson loop splits
the four occupied energy bands into two Wannier sectors
ν±z (k⊥), separated by a Wannier gap. The existence of
the Wannier gap is protected by the non-commutation of
reflections operators (VII.2). Each of the two sectors, ν±z ,
has opposite topological quadrupole moment. The Wan-
nier bands ν±z for the minimal octupole insulator with
Hamiltonian in Eq. VII.1 are shown in red and light
blue in Fig. 43.

In order to determine the quadrupole moment of each
of the sectors ν±z , we proceed similarly to Section VI for
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either ν+
z or ν−z . Concretely, let us first re-write Eq. VII.3

as

Wz,k

∣∣∣ν±,jz,k

〉
= ei2πν

±
z (k⊥)

∣∣∣ν±,jz,k

〉
, (VII.4)

for j = 1, 2. Without loss of generality, we choose the
sector ν+

z and construct the Wannier states

∣∣∣w+z,j
z,k

〉
=

Nocc∑
n=1

|unk〉 [ν
+,j
z,k ]n, (VII.5)

for j = 1, 2. Here, the superscript +z is short for the
Wannier sector ν+

z . We use this basis to calculate the
nested Wilson loop along y,

[W̃+z
y,k]j,j

′
=
〈
w+z,j
z,k+Ny∆ky

∣∣∣ w+z,r
z,k+(Ny−1)∆ky

〉
. . .〈

w+z,r
z,k+(Ny−1)∆ky

∣∣∣ . . . ∣∣∣w+z,s
z,k+∆ky

〉
〈
w+z,s
z,k+∆ky

∣∣∣ w+z,j
′

z,k

〉
, (VII.6)

where ∆ky = (0, 2π/Ny, 0). Notice that, since
j, r, . . . , s, j′ = 1, 2, this nested Wilson loop is non-
Abelian. (This Wilson loop was defined in in Eq. VI.11
for 2D crystals, but we reproduce it here in its obvious
extension to 3D). We then diagonalize the nested Wilson
loop (VII.6),

W̃+z
y,k

∣∣∣η+z,±
y,k

〉
= ei2πη

±
y (kx)

∣∣∣η+z,±
y,k

〉
, (VII.7)

which resolves the Wannier sector ν+
z into single Wannier

bands η±y (kx) separated by a Wannier gap (red lines on
axes ηy in Fig. 43). This Wannier gap is also protected by
the non-commutation of (VII.2). The quadrupole topol-
ogy of the Wannier sector ν+

z manifests in that each of
the sectors η±y has a quantized dipole moment, indicated
by a Berry phase of 0 or 1/2. For example, let us choose
the sector η+

y , to define the Wannier basis

∣∣∣w+z,+y
y,k

〉
=

Nocc∑
n=1

|unk〉 [η
+z,+
y,k ]n (VII.8)

to then calculate a third Wilson loop

W̃+z,+y
x,k =

〈
w

+z,+y
y,k+Nx∆kx

∣∣∣ w+z,+y
y,k+(Nx−1)∆kx

〉
×〈

w
+z,+y
y,k+(Nx−1)∆kx

∣∣∣ . . . ∣∣∣w+z,+y
y,k+∆kx

〉
×〈

w
+z,+y
y,k+∆kx

∣∣∣ w+
y,k

〉
. (VII.9)

This Wilson loop is associated with the Wannier-sector
polarization

p+z,+y
x = − i

2π

1

NyNz

∑
ky,kz

Log
[
W̃+z,+y
x,k

]
(VII.10)

and which for our model takes the values

p+z,+y
x =

{
1/2 |γi| > |λi|
0 |γi| < |λi|

, (VII.11)

for all i. From this, it follows that the topology of each
original Wannier sector ν±z is that of a quadrupole, and
the topology of the entire Hamiltonian is that of an oc-
tupole.

In this calculation, the order of the nested Wilson loops
Wz → Wy → Wx was arbitrary. The same results as in
(VII.11) are obtained for any order of Wilson loop nesting
in a quantized octupole insulator, provided that the non-
commuting quantizing symmetries are present.

C. Boundary signatures

Classically, the octupole moment manifests at the
faces of a 3D material by the existence of surface-bound
quadrupole moments (see Section II). In this formulation,
the connection between the bulk topology and the bound-
ary topology is given by the adiabatic map between the
Wilson loops spectrum and the spectrum of the physical
boundary Hamiltonians (see Section IV B 2). Thus, in
the formulation derived in Section VII B to characterize
the bulk topology of an octupole insulator, we can make
the identification

Wz,k = e−iHsurface(k) (VII.12)

where Wz,k is the Wilson loop along z of Eq. VII.3, and
Hsurface(k) has the same topology of the Hamiltonian
at the surface of the insulator in the xy plane (we can
similarly assign Wilson loops along x (y) to Hamiltoni-
ans on the surface yz (zx)). Similarly, we can make the
identification

W̃+z
y,k = e−iHhinge(k) (VII.13)

where W̃+z
y,k is the nested Wilson loop defined in (VII.6),

and Hhinge(k) has the same topological properties as the
Hamiltonian at the one-dimensional boundaries of the 2D
surface xy of the material (i.e., we are now looking into
the boundary of the boundary). Notice that in all lev-
els of nesting of the Wilson loops, their Wannier bands
remain gapped, which was a condition imposed to avoid
boundary metallic modes. Since the Wannier Hamiltoni-
ans and edge Hamiltonians are adiabatically connected
this should imply that when the Wannier Hamiltonians
are gapped the corresponding boundary Hamiltonians
are energy-gapped.

D. Quadrupole pumping

Just as a varying dipole generates charge pumping, and
a varying quadrupole generates dipole pumping (pump-
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FIG. 44. (Color online) Adiabatic pumping by the Hamilto-
nian (VII.14).

ing of charge on the boundary), an adiabatic evolution
of the octupole insulator which interpolates between the
topological octupole phase and the trivial octupole phase
pumps a quantum of quadrupole. This can be achieved
by the Hamiltonian

hopump(k, t) = (−m cos(t) + 1)(Γ′2 + Γ′4 + Γ′6)

−m sin(t)Γ′0

+ (sin(ky)Γ′1 + cos(ky)Γ′2)

+ (sin(kx)Γ′3 + cos(kx)Γ′4)

+ (sin(kz)Γ
′5 + cos(kz)]Γ

′6), (VII.14)

for t ∈ [0, 2π), where t is the adiabatic parameter. The
adiabatic cycle can be characterized by a topological in-
variant that captures the change in octupole moment:

∆oxyz =

∫ 2π

0

dτ∂τp
±i±j
k (τ) = 1 (VII.15)

for i, j, k = x, y, z and i 6= j 6= k, and where p
±i±j
k (τ)

is defined as in Eq. VII.10 for the instantaneous Hamil-
tonian (VII.14). This particular pumping process pre-
serves the in-plane C2 symmetries (x, y, z)→ (x,−y,−z),
(−x, y,−z) → (x, y,−z), and (x, y, z) → (−x,−y, z)
at all times t ∈ [0, 2π), but breaks the reflection sym-
metries and the overall inversion symmetry (x, y, z) →
(−x,−y,−z), except at the SPT phase points at t = 0, π.
Breaking the reflection symmetries while preserving the
in-plane symmetries allows transport only through the
hinges, via surface dipole pumping processes. This oc-
curs at all hinges, so that the octupole configuration
is inverted as illustrated in Fig. 44. The overall ef-
fect amounts to a pumping of a quantum of quadrupole
through the 3D bulk.

VIII. Discussion and Conclusion

In this paper we have systematically addressed the
question of whether insulators can give rise to quantized
higher electric multipole moments. Starting from the
derivation of observables in a classical, continuum elec-
tromagnetic setting, we established the physical signa-

FIG. 45. (Color online) Bound states/charges in the
quadrupole and octupole SPT phases. (a) Two 1D dipole
SPT phases meeting at a corner do not have a corner bound
state. (b) A quadrupole SPT phase has edge dipole SPT
phases meeting at corners and corner bound state. (c) Three
quadrupole and three dipole SPT phases that meet at at a
corner do not generate a bound state. (d) An octupole SPT
phase, which has three surface quadrupoles and three hinge
dipoles as in (c) does harbor a corner bound state.

tures of these moments and discussed how the definitions
could be generalized for an extended quantum mechani-
cal system in a lattice.

The identification of the higher multipole moments–
even in the classical continuum theory–is a subtle mat-
ter, especially when a lattice is involved. For example,
one signature of a 2D bulk quadrupole moment is a corner
charge. However, such a corner charge can arise purely as
a surface effect where either free charge is attached to the
corner or two edge/surface dipoles converge at a corner.
The bulk quadrupole moment exactly captures the failure
of the surface dipoles and free charge to account for the
corner charge where surfaces intersect (see Fig. 45). The
octupole moment has similar subtleties connected to the
possibility of surface quadrupole moments and hinge po-
larizations. If free surface quadrupoles and hinge dipoles
were attached to the boundaries in an effort to repro-
duce the same spatial configuration generated by a bulk
octupole moment, they would not produce the correct
value of corner charge associated with a bulk octupole
moment (see Fig. 45c,d). Thus, while the quadrupole and
octupole moments are bulk properties, their extraction
from the associated observable properties, which natu-
rally arise at surfaces and defects, requires care.

In the crystalline, quantum-mechanical theory, we
found that the same macroscopic relations as in the clas-
sical continuum theory are maintained. The subtlety that
enters at this stage is an inherent ambiguity in the value
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of the electric moments, where the moments are only
well-defined up to a “quantum.” In 1D, 2D, and 3D re-
spectively the dipole, quadrupole, and octupole densities
all have units of charge, and each moment is only well-
defined up to integer multiples of the electron charge.
This ambiguity is countered by the realization that all of
the unambiguous observable properties of these moments
depend on their changes in time and/or space, and always
result in measurements of charges and currents.

One of the most exciting results of our work is that
in the presence of symmetries multipole moments can
take quantized values. The conventional paradigm to
quantize such properties is to enforce a symmetry un-
der which a multipole moment transforms non-trivially.
In certain scenarios, the aforementioned ambiguity in the
definition of these moments in a lattice system allows for
the moment to take a non-zero, quantized value. Insu-
lating phases realizing the quantized value are recognized
to have a topological character protected by the enforced
symmetries. However, the properties of the quadrupole
and octupole topological phases are remarkable in the
sense that, instead of exhibiting gapless states on the
boundary, these phases have gapped boundaries, which
are themselves non-trivial SPT phases of lower spatial
dimension. This defies the conventional idea of topologi-
cal phases of matter as phases with a gapped, featureless
bulk that, because of their topological nature, require
the existence of gapless states on the boundary. Instead,
the picture here is similar to the concept in 3D topolog-
ical phases that a gapped, symmetry-preserving surface
cannot be trivial and must have topological order72–76.
A similar structure follows in the case of the octupole
moment; a bulk octupole SPT insulator in 3D gener-
ates corner-localized mid-gap bound states, as well as six
quadrupole SPT phases on its 2D surfaces, and twelve
dipole SPT phases on its 1D hinges, all of which converge
at the 3D corners. Hence, the quadrupole and octupole
phases represent a new mechanism for the realization of
SPT phases, i.e., surface SPTs. Following this line of
reasoning, our work can naturally be extended to the
characterization of other 2D or 3D systems exhibiting
edges/surfaces that are gapped fermionic/bosonic SPTs
or Zn parafermion chains, with, e.g., corners that har-
bor the corresponding topological bound states such as
Majorana fermions.

In this paper, we have also shown that the topolog-
ical structure of these SPT phases is hierarchical in a
way that reflects the relationship between a bulk mul-
tipole moment and the lower moments realized on the
boundary. For example, the subspace of occupied bands
in a quadrupole has two sectors, each having non-trivial
dipole topology, while the subspace of occupied bands of
an octupole moment has two sectors, each having non-
trivial quadrupole topology. Through this hierarchical
topological classification, we were able to construct topo-
logical invariants that characterize the bulk SPT phases.
One can also break the protecting symmetries to gen-
erate non-quantized multipole moments, and in such a

scenario one can develop protocols where the system is
driven in an adiabatic cycle where the multipole moment
changes by a quantized amount and topological pumping
occurs.

Such topological pumping processes can also be used to
construct topological insulators in one dimension higher
where the adiabatic pumping parameter is interpreted as
an additional momentum parameter. We provided an ex-
ample of this in an adiabatic pumping process where the
quadrupole moment changes by an integer and gives rise
to an associated 3D insulator with chiral states on the
hinges of the material. We believe these developments
will lead to the discovery of previously unknown topo-
logical crystalline phases of matter.

Note: We have recently become aware of concomitant
work on related topics by the groups Refs. 78–80.
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A. Details on the definitions of the multipole
moments

In this section we provide some intermediate steps used
in Section II A to define the multipole moment densities.
Consider the potential (II.1). To simplify the notation,
let us define the vector

~d = ~r − ~R (A.1)

which spans from a point in the material ~R to the obser-
vation point ~r. The potential is

φ(~r) =
1

4πε

∑
~R

∫
v(~R)

d3~r′
ρ(~r′ + ~R)

|~d− ~r′|
. (A.2)
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Now, let us expand the potential (A.2) in powers of 1/|~d|,

φ(~r) =

∞∑
l=0

φl(~r), (A.3)

where

φl(~r) =
1

4πε

∑
~R

∫
v(~R)

d3~r′ρ(~r′ + ~R)
|~r′|l

|~d|l+1
Pl

(
~d

|~d|
·
~r′

|~r′|

)
,

(A.4)

and Pl(x) are the Legendre polynomials. Here the con-
tributions to the total potential are, up to octupole mo-
ment,

φ0(~r) =
1

4πε

∑
~R

Q(~R)
1

|~d|

φ1(~r) =
1

4πε

∑
~R

Pi(~R)
di

|~d|3

φ2(~r) =
1

4πε

∑
~R

Qij(~R)
3didj − |~d|2δij

2|~d|5

φ3(~r) =
1

4πε

∑
~R

Oijk(~R)
5didjdk − 3|~d|2δijdk

2|~d|7
, (A.5)

where

Q(~R) =

∫
v(~R)

d3~r′ρ(~r′ + ~R)

Pi(~R) =

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′i

Qij(~R) =

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
j

Oijk(~R) =

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
jr
′
k. (A.6)

are the charge, dipole, quadrupole and octupole moments

at the voxel centered at ~R.

If the voxels are very small compared to the material

as a whole, we treat ~R as a continuum variable. Now we
can define the multipole moment densities

ρ(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)

pi(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′i

qij(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
j

oijk(~R) =
1

v(~R)

∫
v(~R)

d3~r′ρ(~r′ + ~R)r′ir
′
jr
′
k (A.7)

to write the potentials as

φ0(~r) =
1

4πε

∫
V

d3 ~R

(
ρ(~R)

1

|~d|

)

φ1(~r) =
1

4πε

∫
V

d3 ~R

(
pi(~R)

di

|~d|3

)

φ2(~r) =
1

4πε

∫
V

d3 ~R

(
qij(~R)

3didj − |~d|2δij
2|~d|5

)

φ3(~r) =
1

4πε

∫
V

d3 ~R

(
oijk(~R)

5didjdk − 3|~d|2dkδij
2|~d|7

)
,

(A.8)

where V is the total volume of the macroscopic material.

B. Boundary properties of insulators with
multipole moment densities

In this Appendix we derive the boundary properties
due to the existence of uniform electric multipole mo-
ments. We do this for each multipole moment separately,
always assuming that all lower moments vanish.

1. Dipole moment

The potential due to a dipole moment density pi(~R) is

φ1(~r) =
1

4πε

∫
V

d3 ~R

(
pi(~R)

di
d3

)
(B.1)

(see Eq. II.4 or A.8). Here ~d = ~r − ~R, as defined in
the previous section. For convenience, in what follows
we refer to the multipole moment densities without their

arguments, i.e., we will simply write pi for pi(~R), etc.
Now, we use

∂

∂Ri

1

d
≡ ∂i

1

d
=
di
d3

(B.2)

to write the potential due to a dipole moment per unit
volume pi as

φ1(~r) =
1

4πε

∫
V

d3 ~R

(
pi∂i

1

d

)
. (B.3)

The expression in parentheses can be decomposed as

pi

(
∂i

1

d

)
= ∂i

(
pi

1

d

)
− (∂ipi)

1

d
, (B.4)

where ∂i in ∂ipi acts on the arguments of pi(~R); fur-
thermore, since summation is implied, ∂ipi is just the

divergence of ~p(~R): ~∇ · ~p(~R). We use this expression to
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write the potential as

φ1(~r) =
1

4πε

∫
V

d3 ~R

[
∂i

(
pi

1

d

)
− (∂ipi)

1

d

]
. (B.5)

Using the divergence theorem on the first term we have

φ1(~r) =
1

4πε

∮
∂V

d2 ~R

(
nipi

1

d

)
+

1

4πε

∫
V

d3 ~R

(
−∂ipi

1

d

)
.

(B.6)

where ∂V is the boundary of the material. To aid our
understanding, we rewrite this expression in terms of the
original variables

φ1(~r) =
1

4πε

∮
∂V

d2 ~R

(
nipi

1

|~r − ~R|

)

+
1

4πε

∫
V

d3 ~R

(
−∂ipi

1

|~r − ~R|

)
. (B.7)

Since both terms scale as 1/|~r − ~R|, where |~r − ~R| is the

distance from a point in the material ~R to the observation
point ~r, we can define the charge densities

ρ = −∂ipi
σ = nipi. (B.8)

The first term is the volume charge density due to a di-
vergence in the polarization, and the second is the areal
charge density on the boundary of a polarized material.
The consequence of the bulk dipole moment is thus the
existence of charge at the boundary, as shown in Fig. 3.

2. Quadrupole moment

The potential due to a quadrupole moment per unit
volume qij (see Eq. II.4 or or A.8) is

φ2(~r) =
1

4πε

∫
V

d3 ~R

(
qij

3didj − d2δij
2d5

)
, (B.9)

where ~d = ~r − ~R, as defined in the previous section. We
make use of

∂j∂i
1

d
=

3didj − d2δij
d5

(B.10)

to write the potential as

φ2(~r) =
1

4πε

∫
V

d3 ~R

(
1

2
qij∂i∂j

1

d

)
. (B.11)

Let us rearrange this expression. We use

qij∂i∂j
1

d
= ∂i

(
qij∂j

1

d

)
− (∂iqij) ∂i

1

d

= ∂i∂j

(
qij

1

d

)
− 2∂i

[
(∂jqij)

1

d

]
+ (∂i∂jqij)

1

d
(B.12)

in the previous expression to find

φ2(~r) =
1

4πε

∫
V

d3 ~R

[
1

2
∂i∂j

(
qij

1

d

)
− ∂i

[
(∂jqij)

1

d

]
+

(
1

2
∂i∂jqij

)
1

d

]
. (B.13)

Applying the divergence theorem on the first two terms
we have

φ2(~r) =
1

4πε

∮
∂V

d2 ~R

[
1

2
ni∂j

(
qij

1

d

)]
+

1

4πε

∮
∂V

d2 ~R (−ni∂jqij)
1

d

+
1

4πε

∫
V

d3 ~R

(
1

2
∂j∂iqij

)
1

d
. (B.14)

Now let us specialize to a simple geometry. Consider a
cube-shaped material where the boundary consists of flat
faces. At the (sharp) intersection of different faces, the
normal vector is discontinuous. To avoid this complica-
tion we can break the integral over the entire boundary
up into a sum over the faces that compose it, as seen in
Fig. 46a:∮
∂V

d2 ~R

[
1

2
ni∂j

(
qji

1

d

)]
=
∑
a

∫
Sa

d2 ~R

[
1

2
n

(a)
i ∂j

(
qji

1

d

)]
.

(B.15)

For the sake of clarity, we have explicitly written the sum
over the flat faces Sa with normal vector n̂(a). Notice

that, in this construction, n̂(a) has components n
(a)
i =

saδ
|a|
i , where sa=± = ±1 encodes the direction. Now, we

apply the divergence theorem over the open surfaces Sa.
We thus have∮
∂V

d2 ~R

[
1

2
ni∂j

(
qji

1

d

)]
=
∑
a,b

∫
Lab

d~R

(
1

2
n

(a)
j n

(b)
i qji

)
1

d
,

(B.16)

where Lab is the one-dimensional boundary of Sa when it
meets Sb (see Fig. 46b). Joining the pieces together, the
contributions to the potential from a quadrupole moment
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FIG. 46. (Color online) Boundary segmentation for the
calculation of quadrupole signatures. (a) Separation of 2-
dimensional boundary into its flat faces. (b) Separation of a
1D boundary into its straight lines.

are

φ2(~r) =
1

4πε

∑
a,b

∫
Lab

d~R

(
1

2
n

(a)
i n

(b)
j qij

)
1

d

+
1

4πε

∑
a

∫
Sa

d2 ~R
(
−∂jn(a)

i qij

) 1

d

+
1

4πε

∫
V

d3 ~R

(
1

2
∂j∂iqij

)
1

d
, (B.17)

Since all the potentials scale as 1/d, where ~d = ~r − ~R is
the distance from the point in the material to the obser-
vation point, all the expressions in parentheses can each
be interpreted as charge densities, thus, we define the
charge densities

ρ =
1

2
∂j∂iqij

σface a = −∂j
(
n

(a)
i qij

)
λhinge a,b =

1

2
n

(a)
i n

(b)
j qij . (B.18)

The first term is the direct contribution of the quadrupole
moment density to the volume charge density in the bulk
of the material. The second term is the areal charge
density at the boundary surfaces of the material due to a

divergence in the quantity n
(a)
i qij . Finally, the third term

is the charge density per length at the hinges of the ma-
terial. For a cube or square with a constant quadrupole
moment qxy the charges indicated by the expression for
λhinge a,b are shown in Fig. 4. In addition, the expression
for the surface charge density σface a can be rewritten as

σface a = −∂jpface aj , (B.19)

where pface aj = n
(a)
i qij . This expression resembles the

one for the volume charge density ρ in Eq. B.8. Thus,

written this way, we can interpret pface aj as a dipole mo-

ment density (per unit area). This polarization exists on

the surface of the boundary perpendicular to n
(a)
i and is

parallel to the surface. An illustration of this for a cube
with constant quadrupole moment is shown in Fig. 4.

3. Octupole moment

Making the change of variables ~d = ~r − ~R, as in the
previous sections, the potential due to a octupole moment
per unit volume oijk from Eq. II.4 or (A.8) is

φ3(~r) =
1

4πε

∫
V

d3 ~R

(
oijk

5didjdk − 3d2δijdk
2d7

)
. (B.20)

Using the expression

∂k∂j∂i
1

d
= 3

5didjdk − 3d2δijdk
d7

(B.21)

we write the potential as

φ3(~r) =
1

4πε

∫
V

d3 ~R

(
1

6
oijk∂i∂j∂k

1

d

)
. (B.22)

To find the potential exclusively as arising from charge
distributions, we can proceed as before by partial inter-
gation. The result is

φ3(~r) =
1

4πε

∫
V

d3 ~R

(
−1

6
∂i∂j∂koijk

)
1

d

+
1

4πε

∑
a

∫
Sa

d2 ~R

(
1

2
n

(a)
i ∂j∂koijk

)
1

d

+
1

4πε

∑
a,b

∫
Lab

d~R

(
−1

2
n

(a)
i n

(b)
j ∂koijk

)
1

d

+
1

4πε

∑
a,b,c

1

6
n

(a)
i n

(b)
j n

(c)
k oijk

1

r
, (B.23)

from which we read off the charge densities

ρ = −1

6
∂i∂j∂koijk

σface a =
1

2
n

(a)
i ∂j∂koijk

λhinge a,b = −1

2
n

(a)
i n

(b)
j ∂koijk

δcorner a,b,c =
1

6
n

(a)
i n

(b)
j n

(c)
k oijk (B.24)

where the new quantity δcorner a,b,c is the corner charge
accumulated where three surfaces of the cube intersect.

Comparing with the expressions for dipole and
quadrupole moments we find we can recast them as

ρ = −1

6
∂i∂j∂koijk

σface a =
1

2
∂j∂kq

face a
jk

λhinge a,b = −∂kphinge a,bk

δcorner a,b,c =
1

6
n

(a)
i n

(b)
j n

(c)
k oijk, (B.25)
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where qface ajk = n
(a)
i oijk, and phinge a,bk = 1

2n
(a)
i n

(b)
j oijk

are, respectively, the quadrupole moment per unit area
on faces perpendicular to n̂(a), and the dipole moment
per unit length on hinges perpendicular to both n̂(a) and
n̂(b). These boundary properties are illustrated in Fig. 5
for a cube with uniform octupole moment.

C. Wilson line in the thermodynamic limit

Consider the Wilson line element [Gk]mn =〈
umk+∆k

∣∣ unk〉, where ∆k = (kf − ki)/N . For large val-

ues of N , we expand
〈
umk+∆k

∣∣ = 〈umk |+ ∆k∂k 〈umk |+ . . .,
and write the Wilson line element as

[Gk]mn = 〈umk | unk 〉+ ∆k 〈∂kumk | unk 〉+ . . . (C.1)

Now, since 〈umk | unk 〉 = δmn, we have that 〈∂kumk | unk 〉 =
−〈umk | ∂kunk 〉. Using this in our expansion while keeping
only terms linear in ∆k we have

[Gk]mn = δmn −∆k 〈umk | ∂kunk 〉
= δmn − i∆k[Ak]mn, (C.2)

where we have defined the Berry connection

[Ak]mn = −i 〈umk |∂k|unk 〉 (C.3)

which is a purely real quantity. Now, suppose that we
evolve the Wilson loop from ki to kf in the thermody-
namic limit N → ∞. This is achieved by the (path or-
dered) matrix multiplication

Wkf←ki = lim
N→∞

N∏
n=1

[I − i∆kAk+n∆k
]

= exp

[
−i
∫ kf

ki

Akdk

]
. (C.4)

D. Symmetry constraints on Wilson loops

In this section we derive the relations between Wil-
son loops in the presence of reflection, inversion and C4

symmetries. An initial study that determined relations
between Wilson loops can be found in Ref. 52. In this ap-
pendix we expand on that analysis. We will see that some
of these relations lead to a quantization of the Wannier
centers, the bulk polarization, or the Wannier-sector po-
larizations. Additionally, we also provide relations that
impose constraints on these observables in the presence of
time-reversal, charge conjugation and chiral symmetries.
Insulators with a lattice symmetry obey

gkhkg
†
k = hDgk, (D.1)

where gk is the unitary operator

gk = e−i(Dgk)·δUg. (D.2)

Ug is an Norb × Norb matrix that acts on the internal
degrees of freedom of the unit cell, and Dg is an operator
in momentum space sending k→ Dgk. In real space, on
the other hand, we have r → Dgr + δ, where δ = 0 in
the case of symmorphic symmetries, or takes a fractional
value (in unit-cell units) in the case of non-symmorphic
symmetries. The state gk |unk〉 is an eigenstate of hDgk
with energy εn,k, as can be seen as follows:

hDgkgk |unk〉 = gkhk |unk〉
= εn,kgk |unk〉 . (D.3)

Therefore, one can expand gk |unk〉 in terms of the basis
of hDgk:

gk |unk〉 =
∣∣∣umDgk〉〈umDgk ∣∣∣gk∣∣∣unk〉

=
∣∣∣umDgk〉Bmng,k , (D.4)

where, from now on, summation is implied for repeated
band indices only over occupied bands.

Bmng,k =
〈
umDgk

∣∣∣gk∣∣∣unk〉 (D.5)

is the unitary sewing matrix that connects states at k
with those at Dgk which have the same energy. This
matrix obeys

Bmng,k+G = Bmng,k (D.6)

as can be shown as follows:

Bmng,k+G =
〈
umDgk

∣∣∣V (DgG)gk+GV (−G)
∣∣∣unk〉

=
〈
umDgk

∣∣∣V (DgG)V (−DgG)ei(DgG).δgk+G

∣∣∣unk〉
=
〈
umDgk

∣∣∣ei(DgG).δgk+G

∣∣∣unk〉
=
〈
umDgk

∣∣∣gk∣∣∣unk〉
= Bmng,k ,

where V (k) is defined in Eq. III.10, and we have used
Eq. III.12 as well as the relation

gkV (G) = e−i(Dgk).δV (DgG)gk.

Using the expansion in Eq. D.4, we can write

|unk〉 = g†k

∣∣∣umDgk〉Bmng,k (D.7)
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So, an element of a Wilson line from k1 to k2 is equal to

Wmn
k2←k1

=
〈
umk2

∣∣ unk1

〉
= B†mrg,k2

〈
urDgk2

∣∣∣gkg†k∣∣∣usDgk1

〉
Bsng,k1

= B†mrg,k2
Wrs
Dgk2←Dgk1

Bsng,k1
. (D.8)

Reordering this we have

Bg,k2Wk2←k1B
†
g,k1

=WDgk2←Dgk1 . (D.9)

In particular, for a Wilson loop at base point k we have

Bg,kWC,kB†g,k =WDgC,Dgk (D.10)

where, in the Wilson loop WC,k, the first subindex, C,
is the contour along which the Wilson loop is performed,
and the second subindex, k, is the starting point, or ‘base’
point, of the Wilson loop. To simplify notation, from
now on we will refer to Wilson loops along the contour
C = (kx, ky) → (kx + 2π, ky) along increasing (decreas-
ing) values of kx as Wx,k (W−x,k), where k = (kx, ky)
is the base point of the loop. Similarly, for the path
C = (kx, ky) → (kx, ky + 2π) along increasing (decreas-
ing) values of ky, we will denote the Wilson loops as
Wy,k (W−y,k). Fig. 47 shows how these Wilson loops
transform under the four spatial symmetries we will con-
sider here: reflection in x, reflection in y, inversion, and
C4. In what follows, we study the constraints placed by
these symmetries on the Wilson loops over the occupied
energy bands, as well as on the Wilson loops over the
Wannier sectors.

1. Constraints due to reflection symmetry along x

We consider the constraints that reflection symmetry
Mx : x→ −x imposes on the Wilson loops Wx,k, as well

as on the nested Wilson loops W̃νx
y,k.

a. On the Wilson loop of the occupied energy bands

Under reflection symmetry along x, the eigenvalues of
Wilson loops along x are constrained to be +1, −1, or to
come in complex-conjugate pairs e±i2πν , as we will see in
this section. Consider a system with reflection symmetry
along x

M̂xhkM̂
†
x = hMxk, (D.11)

where Mxk = Mx(kx, ky) = (−kx, ky). This symmetry
allows us to write the expansion

M̂x |unk〉 =
∣∣umMxk

〉
BmnMx,k, (D.12)

FIG. 47. (Color online) Relation between Wilson loops along
x at base point k after (a) reflection along x, (b) reflection
along y, (c) inversion, or (d) π/2 rotation.

where

BmnMx,k =
〈
umMxk

∣∣∣M̂x

∣∣∣unk〉 (D.13)

is the unitary sewing matrix (B†B = BB† = 1), which
connects states at k with states at Mxk having the same
energy. In particular, BmnMx,k

6= 0 only if εm,Mxk = εn,k.

The relation between Wilson loops in Eq. D.10 for this
symmetry is

BMx,kWx,kB
†
Mx,k

=W−x,Mxk =W†x,Mxk. (D.14)

An illustration of this relation is shown in Fig. 47A. Thus,
the Wilson loop at k is equivalent (up to a unitary trans-
formation) to the Hermitian conjugate of the Wilson loop
at Mxk. Since the eigenvalues of the Wilson loop along
x are kx independent, this directly imposes a restriction
on the allowed Wannier centers at each ky, namely, the
set of Wilson-loop eigenvalues must obey{

ei2πν
i
x(ky)

}
Mx=
{
e−i2πν

i
x(ky)

}
, (D.15)

or {
νix(ky)

} Mx=
{
−νix(ky)

}
mod 1. (D.16)

Thus, at each value of ky the Wannier centers νx(ky) are
forced to be 0 (centered at unit cell), 1/2 (centered in
between unit cells), or to come in pairs (−ν, ν) (pairs
which are equally displaced from the unit cell but at op-
posite sides of it). From this it follows that, in order to
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have a gapped Wannier spectrum, we must have an even
number Nocc of occupied bands, for if we have an odd
Nocc, at least one of the Wannier centers must have the
value ν = 0 or ν = 1/2, equivalent to having at least one
mid-gap state in the Wannier spectrum. Eq. D.16 also
implies that, under reflection symmetry Mx along x, the
polarization

px(ky) =

Nocc∑
j=1

νj(ky) mod 1

obeys

px(ky)
Mx= −px(ky) mod 1. (D.17)

i.e.,

px(ky)
Mx= 0 or 1/2 (D.18)

for ky ∈ [−π, π). For gapped systems, the Wannier spec-
trum is not discontinuous. In this case, the above restric-
tion on px(ky) implies that the total polarization along
x,

px =
1

Ny

∑
ky

px(ky)

obeys

px
Mx= −px (D.19)

i.e., the total polarization is also quantized,

px
Mx= 0 or 1/2. (D.20)

b. On the nested Wilson loop over Wannier sectors

In Section VI we saw that the topological quadrupole
is represented by the topology of the Wannier-sector po-
larizations (VI.16). These are subspaces within the sub-
space of occupied bands that belong to the same subset
of Wannier bands. In this section we impose reflection
symmetry on the Hamiltonian to see how the Wannier-
sector polarizations are affected. For that purpose, we
first focus on the Wilson loop eigenfunctions

Wx,k

∣∣νix,k〉 = ei2πν
i
x(ky)

∣∣νix,k〉 . (D.21)

Using Eq. D.14, we have that

W†x,MxkBMx,k

∣∣νix,k〉 = BMx,kWx,k

∣∣νix,k〉
= ei2πν

i
x(ky)BMx,k

∣∣νix,k〉 . (D.22)

BMx,k

∣∣∣νix,k〉 is hence an eigenfunction of Wx,Mxk with

eigenvalue e−i2πν
i
x(ky). We now expand this function as

BMx,k

∣∣νix,k〉 =
∣∣∣νjx,Mxk

〉
αjiMx,k

, (D.23)

where

αjiMx,k
=
〈
νjx,Mxk

∣∣∣BMx,k

∣∣∣ νix,k〉 (D.24)

is a unitary sewing matrix that connects Wilson-loop
eigenstates at base points k and Mxk having opposite
Wilson-loop eigenvalues. If αjiMx,k

6= 0, we require that

−νjx(ky) = νix(ky). This implies that αMx,k is restricted
to be block diagonal in the ν = 0 and ν = 1/2 sectors
and off diagonal between the sectors ν,−ν.

Now, let us act with the reflection operator on
∣∣∣wjx,k〉,

i.e., the states representing the Wannier basis as defined
in Eq. VI.5,

M̂x

∣∣∣wjx,k〉 = M̂x |unk〉 [ν
j
x,k]n

=
∣∣umMxk

〉 〈
umMxk

∣∣∣M̂x

∣∣∣unk〉 [νjx,k]n

=
∣∣umMxk

〉
BmnMx,k[νjx,k]n

=
∣∣umMxk

〉
[νix,Mxk]mαijMx,k

=
∣∣wix,Mxk

〉
αijMx,k

. (D.25)

From this relation we can write∣∣∣wjx,k〉 = M†x
∣∣wix,Mxk

〉
αijMx,k〈

wjx,k

∣∣∣ = [α†Mx,k
]ji
〈
wix,Mxk

∣∣Mx, (D.26)

where νix(ky) = −νjx(ky) for nonzero αjiMx,k
. The Wilson

line elements for the
∣∣∣wjx,k〉 holonomy are related by

[
W̃νx

k2←k1

]ij
=
〈
wix,k2

∣∣∣ wjx,k1

〉
= [α†Mx,k2

]ii
′
〈
wi
′

x,Mxk2

∣∣∣ wj′x,Mxk1

〉
αj
′j
Mx,k1

= [α†Mx,k2
]ii
′
[
W̃ν′x
Mxk2←Mxk1

]i′j′
αj
′j
Mx,k1

.

(D.27)

In particular, for the nested Wilson loops along y in the
basis

∣∣wjx〉 we have[
W̃νx
y,k

]ij
=
[
α†Mx,k

]ii′ [
W̃ν′x
y,Mxk

]i′j′ [
αMx,k

]j′j
. (D.28)

Eq. D.28 implies two things: first, since νjx(ky) =

−νix(ky) for nonzero αjiMx,k
, this expression tells us that

Wilson loops along y at base point k, over Wannier sec-
tors νx = 0 or 1/2, are equivalent (up to unitary transfor-
mations) to Wilson loops along y over the same Wannier
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sector at base point Mxk. Second, suppose that we have
gapped Wannier bands {νx(ky),−νx(ky)} across the en-
tire range ky ∈ (−π, π]. Then Eq. D.28 tells us that if
we calculate the Wilson loop along y over the Wannier
sector νx(ky) at base point k, this Wilson loop is equiva-
lent (up to a unitary transformation) to the Wilson loop
along y at base point Mxk over the sector −νx(ky). Thus,
for the eigenvalues exp[i2πννx,jy (kx)] of the Wilson loop

W̃νx
y,k over the Wannier sector νx, Mx implies that{

ei2πν
νx,j
y (kx)

}
Mx=
{
ei2πν

−νx,j
y (−kx)

}
(D.29)

or

{ννx,jy (kx)} Mx= {ν−νx,jy (−kx)} mod 1, (D.30)

where j ∈ 1 . . . Nνx labels the eigenvalue, and Nνx is the
number of Wannier bands in the sector νx. The Wannier-
sector polarization can be written as

pνxy =
1

Nx

∑
kx

Nνx∑
j=1

ννx,jy (kx) mod 1.

Hence, since kx is a dummy variable, Mx symmetry im-
plies that

pνxy
Mx= p−νxy mod 1, (D.31)

which is the first expression in (VI.19).

2. Constraints due to reflection symmetry along y

We now derive the constraints that reflection symme-
try My : y → −y imposes on the Wilson loops along
x, Wx,k, and on the nested Wilson loops along y over

Wannier sector νx, W̃νx
y,k.

a. On the Wilson loop over energy bands

Consider a system with reflection symmetry along y

M̂yhkM̂
†
y = hMyk, (D.32)

where Myk = My(kx, ky) = (kx,−ky). This symmetry
allows us to write the expansion

M̂y |unk〉 =
∣∣∣umMyk

〉
BmnMy,k, (D.33)

where

BmnMy,k =
〈
umMyk

∣∣∣M̂y

∣∣∣unk〉 (D.34)

is the unitary sewing matrix, which connects states at
k with states at Myk. In particular, BmnMy,k

6= 0 only if
εm,Myk = εn,k.

Under this symmetry, the Wilson loop along x starting
at base point k obeys

BMy,kWx,kB
†
My,k

=Wx,Myk. (D.35)

A schematic of this relation is shown in Fig. 47b. The
Wilson loops based at k and Myk are equivalent up to
a unitary transformation. Hence, the sets of their eigen-
values are the same, namely,{

ei2πν
i
x(ky)

}
My
=
{
ei2πν

i
x(−ky)

}
(D.36)

or {
νix(ky)

} My
=
{
νix(−ky)

}
mod 1 (D.37)

which leads to

px(ky)
My
= px(−ky) mod 1. (D.38)

Notice that the overall polarization along x, Eq. IV.9, is
not constrained by reflection symmetry along y.

b. On the nested Wilson loop over Wannier sectors

Now, we focus on the Wilson loop eigenfunctions

Wx,k

∣∣νix,k〉 = ei2πν
i
x(ky)

∣∣νix,k〉 . (D.39)

Rewriting Eq. D.35 as BMy,kWx,k = Wx,MykBMy,k, we
have that

Wx,MykBMy,k

∣∣νix,k〉 = BMy,kWx,k

∣∣νix,k〉
= ei2πν

i
x(ky)BMy,k

∣∣νix,k〉 . (D.40)

BMy,k

∣∣∣νix,k〉 is an eigenfunction of Wx,Myk with eigen-

value ei2πν
i
x(ky). We now expand this function as

BMy,k

∣∣νix,k〉 =
∣∣∣νjx,Myk

〉
αjiMy,k

, (D.41)

where

αjiMy,k
=
〈
νjx,Myk

∣∣∣BMy,k

∣∣∣ νix,k〉 (D.42)

is a sewing matrix that connects Wilson-loop eigenstates
at base point k = (kx, ky) and base point Myk =
(kx,−ky) having the same Wilson-loop eigenvalues; if

αjiMy,k
6= 0, we require that νjx(−ky) = νix(ky). Following

the same procedure as in (D.25) for the Wannier sectors∣∣∣wjx,k〉, we have

M̂y

∣∣∣wjx,k〉 =
∣∣∣wix,Myk

〉
αijMy,k

, (D.43)
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from which it follows that∣∣∣wjx,k〉 = M̂†y

∣∣∣wix,Myk

〉
αijMy,k

. (D.44)

Using these expressions, there is the following relation for
a Wilson line element[
W̃νx

k2←k1

]ij
=
[
α†My,k2

]ii′ [
W̃ν′x
Myk2←Myk1

]i′j′ [
αMy,k1

]j′j
.

(D.45)

In particular, the nested Wilson loop along y in the basis∣∣wjx〉 obeys[
W̃νx
y,k

]ij
=
[
α†My,k

]ii′ [
W̃ν′x
−y,Myk

]i′j′ [
αMy,k

]j′j
,

(D.46)

which looks similar to the one in Section D 1, but with
the important difference in the structure of αjiMy,k

, which

connects Wilson-loop eigenstates such that νjx(ky) =
νix(−ky). Another important difference is the fact that

M̂y reverses the loop contour along y and preserves it
along x. This expression tells us that the Wilson-loop
eigenvalues are related by{

ei2πν
νx,j
y (kx)

}
My
=
{
e−i2πν

νx,j
y (kx)

}
(D.47)

or {
ννx,jy (kx)

} My
=
{
−ννx,jy (kx)

}
mod 1, (D.48)

from which it follows that ννxy (kx) is either 0, 1/2, or
comes in pairs ν,−ν. My thus implies that the polariza-
tion (D.31) over the Wannier sector νx obeys

pνxy
My
= −pνxy mod 1, (D.49)

from which it follows that

pνxy
My
= 0 or 1/2, (D.50)

which is the second expression in (VI.19). In particu-
lar, values of ννxy (kx) that come in pairs ν,−ν do not
contribute to pνxy .

The results in this subsection, and in the previous one,
provide the constraints due to both reflection symmetries
on the Wilson loopsWy,k and W̃νy

x,k. The constraints due

to these reflection symmetries on Wx,k and W̃νx
y,k can be

obtained simply by replacing the labels x ↔ y in the
results of these two subsections.

3. Constraints due to inversion symmetry

We now derive the constraints that inversion symmetry
imposes on the Wilson loops Wx,k and on W̃νx

y,k.

a. On the Wilson loop over energy bands

Consider the constrains imposed by inversion symme-
try,

ÎhkÎ† = h−k, (D.51)

under which the Wilson loop obeys (see Eq. D.10)

BI,kWx,kB
†
I,k =W−x,−k =W†x,−k, (D.52)

where

BmnI,k =
〈
um−k

∣∣∣Î∣∣∣unk〉 (D.53)

connects energy eigenstates at k and −k having the same
energy. A schematic of this relation is shown in Fig. 47c.
Eq. D.14 implies that the set of eigenvalues obey{

ei2πν
i
x(ky)

}
I
=
{
e−i2πν

i
x(−ky)

}
, (D.54)

or

{νix(ky)} I= {−νix(−ky)} mod 1. (D.55)

In particular, for values k∗y = 0, π of the y coordinate
of the Wilson-loop base point, we recover the identical
condition as for reflection symmetry along x. Thus, at
these points the Wilson-loop eigenvalues are either 0, 1/2
or come in pairs ν,−ν. We also have

px(ky)
I
= −px(−ky) mod 1, (D.56)

so that the polarization obeys

px
I
= −px mod 1, (D.57)

i.e., it is quantized,

px
I
= 0 or 1/2. (D.58)

which is the relation given in Eq. IV.20.

b. On the nested Wilson loop over Wannier sectors

For the Wilson-loop eigenstates

Wx,k

∣∣νix,k〉 = ei2πν
i
x(ky)

∣∣νix,k〉 (D.59)

one can use Eq. D.52, to show that BI,k

∣∣∣νix,k〉 is an

eigenstate of Wx,−k with eigenvalue e−i2πν
i
x(ky). Thus,

in the expansion

BI,k
∣∣νix,k〉 =

∣∣∣νjx,−k

〉
αjiI,k, (D.60)
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the sewing matrix

αjiI,k =
〈
νjx,−k

∣∣∣BI,k∣∣∣ νix,k〉 (D.61)

connects Wilson-loop eigenstates at base points k and
−k having opposite Wannier centers; i.e., αjik 6= 0 only if

νix(ky) = −νjx(−ky). For the Wannier sectors
∣∣∣wjx,k〉, we

have

Î
∣∣∣wjx,k〉 =

∣∣wix,−k

〉
αijI,k, (D.62)

from which it follows that∣∣∣wjx,k〉 = Î†
∣∣wix,−k

〉
αijI,k. (D.63)

Using these expressions, there is the following relation
for a Wilson line element[
W̃νx

k2←k1

]ij
=
[
α†I,k2

]ii′ [
W̃ν′x
−k2←−k1

]i′j′ [
αI,k1

]j′j
.

(D.64)

In particular the Wilson loop along y obeys[
W̃νx
y,k

]ij
=
[
α†I,k

]ii′ [
W̃ν′x
−y,−k

]i′j′ [
αI,k

]j′j
. (D.65)

Thus, the Wilson-loop eigenvalues are related by{
ei2πν

νx,j
y (kx)

}
I
=
{
e−i2πν

−νx,j
y (−kx)

}
(D.66)

or {
ννx,jy (kx)

} I
=
{
−ν−νx,jy (−kx)

}
mod 1. (D.67)

Thus, we have that

pνxy (kx)
I
= −p−νxy (−kx) mod 1, (D.68)

and the Wannier-sector polarization (D.31) under inver-
sion symmetry obeys

pνxy
I
= −p−νxy mod 1. (D.69)

which is the third expression in (VI.19).

4. Constraints due to C4 symmetry

We now derive the constraints that C4 symmetry im-
poses on the Wilson loops Wx,k and on W̃νx

y,k.

a. On the Wilson loop over energy bands

Now, we consider C4 symmetry

r̂4hkr̂
†
4 = hR4k (D.70)

under which the Wilson loop obeys

BC4,kWx,kB
†
C4,k

=Wy,R4k

BC4,kWy,kB
†
C4,k

=W−x,R4k (D.71)

where

BmnC4,k =
〈
umR4k

∣∣r̂4

∣∣unk〉 (D.72)

is the sewing matrix with elements BmnC4,k
6= 0 only if

εm,R4k = εn,k. The Wannier values are then related by{
νix(ky)

} C4=
{
νiy(kx = −ky)

}
mod 1{

νiy(kx)
} C4=

{
−νix(ky = kx)

}
mod 1. (D.73)

These in turn lead to

px(ky)
C4= py(kx = −ky) mod 1

py(kx)
C4= −px(ky = kx) mod 1. (D.74)

Notice that the successive application of one of these rela-
tions after the other one leads to (D.56), which is nothing
but the constraint due to C2 symmetry (in the absence
of spin). The constraint over the polarization is then

px
C4= py

C4= 0 or 1/2. (D.75)

b. On the nested Wilson loop over Wannier sectors

The two relations in (D.71) allow us to write the ex-
pansions

BC4,k

∣∣νix,k〉 =
∣∣∣νjy,R4k

〉
αjiC4,k

BC4,k

∣∣νiy,k〉 =
∣∣∣νjx,R4k

〉
βjiC4,k

(D.76)

where αC4,k and βC4,k are the sewing matrices

αjiC4,k
=
〈
νjy,R4k

∣∣∣BC4,k

∣∣∣ νix,k〉 (D.77)

with αjiC4,k
6= 0 only if νix(ky) = νjy(kx = −ky), and

βjiC4,k
=
〈
νjx,R4k

∣∣∣BC4,k

∣∣∣ νiy,k〉 (D.78)

with βjiC4,k
6= 0 only if νiy(kx) = −νjx(ky = kx).

The Wannier sectors
∣∣∣wjx,k〉 and

∣∣∣wjy,k〉 transform as

r̂4

∣∣∣wjx,k〉 =
∣∣wiy,R4k

〉
αijC4,k

r̂4

∣∣∣wjy,k〉 =
∣∣wix,R4k

〉
βijC4,k

. (D.79)

Using these expressions and their hermitian conjugates,
we find the following relations for the Wilson line ele-
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ments[
W̃νx

k2←k1

]ij
=
[
α†C4,k2

]ii′ [
W̃νy
R4k2←R4k1

]i′j′ [
αC4,k1

]j′j
[
W̃νy

k2←k1

]ij
=
[
β†C4,k2

]ii′ [
W̃νx
R4k2←R4k1

]i′j′ [
βC4,k1

]j′j
.

(D.80)

In particular, the nested Wilson loops along x and y obey[
W̃νx
y,k

]ij
=
[
α†C4,k

]ii′ [
W̃νy
−x,R4k

]i′j′ [
αC4,k

]j′j
[
W̃νy
x,k

]ij
=
[
β†C4,k

]ii′ [
W̃νx
y,R4k

]i′j′ [
βC4,k

]j′j
. (D.81)

These expressions tell us that the Wilson-loop eigenval-
ues are related by{

ei2πν
νx
y (kx)

}
C4=
{
e−i2πν

νy
x (kx)

}
{
ei2πν

νy
x (ky)

}
C4=
{
ei2πν

−νx
y (−ky)

}
(D.82)

or {
ννxy (kx)

} C4= {−ννyx (kx)} mod 1

{ννyx (ky)} C4=
{
ν−νxy (−ky)

}
mod 1 (D.83)

or, for the Wannier-sector polarizations:

p
ν±x
y

C4= −pν
±
y
x mod 1

p
ν±y
x

C4= p
ν∓x
y mod 1. (D.84)

Notice that the sequential application of these two equa-
tions, which amounts to a C2 rotation (or inversion), re-
sults in (D.69).

5. Constraints due to time-reversal symmetry

In this section we derive the constraints that time re-
versal symmetry TR : t → −t imposes on the Wilson
loops Wx,k and on the nested Wilson loops W̃νx

y,k.

a. On the Wilson loop over energy bands

The time reversal operator is T̂ = QK, where K is
complex-conjugation and Q is a unitary operator, so that
Q−1 = Q†. For spinless systems, T̂ 2 = 1. For spinfull
systems, T̂ 2 = −1. Time reversal symmetry (TRS) is
stated as

T̂ hkT̂
† = h−k. (D.85)

As before, it is possible to expand

T̂ |unk〉 =
∣∣um−k

〉 〈
um−k

∣∣T ∣∣unk〉
=
∣∣um−k

〉
V mnk , (D.86)

where

V mnk =
〈
um−k

∣∣T ∣∣unk〉 =
〈
um−k

∣∣Q∣∣un∗k 〉 (D.87)

is the sewing matrix, which is unitary. Here, the asterix
represents complex-conjugation. The sewing matrix has
nonzero elements V mnk 6= 0 only if εn(k) = εm(−k).

For spinfull systems, T̂ 2 = −1 leads to QT = −Q,
which can be seen from joining the two expressions:

T 2 = QKQK = QQ∗ = −1

QQ† = 1→ Q∗QT = 1,

so that Q∗QT = −Q∗Q, or Q∗(QT +Q) = 0, from which
QT = −Q. This implies that V Tk = −V−k, as can be seen
as follows:

V mnk =
〈
um−k

∣∣Q∣∣un∗k 〉
V †mnk = [V T∗k ]mn =

〈
um∗k

∣∣QT∗∣∣un−k

〉
[V Tk ]mn =

〈
umk
∣∣QT ∣∣un∗−k

〉
[V Tk ]mn = −

〈
umk
∣∣Q∣∣un∗−k

〉
V Tk = −V−k. (D.88)

At time reversal invariant momenta, k∗ = −k∗, this rela-
tion reduces to V Tk∗ = −Vk∗ , which is not possible if Vk∗ is
one-dimensional. Since V mnk 6= 0 only if εm(−k) = εn(k),
this means that at the time-reversal invariant momenta
the energy spectrum is at least twofold degenerate. Re-
ordering terms in the expansion of T |unk〉 = Q |un∗k 〉
above we have: ∣∣un−k

〉
= Q |um∗k 〉V

†mn
k〈

un−k

∣∣ = V nmk 〈um∗k |Q†. (D.89)

Now, consider two momenta k1, k2, which are very close
to each other. There is the following relation between
Wilson lines:

Wmn
−k2←−k1

=
〈
um−k2

∣∣ un−k1

〉
= V mrk2

〈
ur∗k2

∣∣Q†Q∣∣us∗k1

〉
V †snk1

= V mrk2
Wrs∗

k2←k1
V †snk1

, (D.90)

or, more compactly,

W−k2←−k1
= Vk2

W∗k2←k1
V †k1

. (D.91)

For Wilson loops starting at a base point k we have

W−x,−k =W†x,−k = VkW∗x,kV
†
k (D.92)

Thus, as before, there is an equivalence up to a unitary



59

transformation. Thus, the set of eigenvalues must obey{
e−i2πν

i
x(−ky)

}
TR
=
{
e−i2πν

i
x(ky)

}
(D.93)

or {
νix(−ky)

} TR
=
{
νix(ky)

}
, (D.94)

which implies that

px(ky)
TR
= px(−ky). (D.95)

This does not impose a constraint on the values of polar-
ization.

b. On the nested Wilson loop over Wannier sectors

Let us calculate how the Wilson loop eigenstates trans-

form under TR. Acting with the Wilson loop W†x,−k on

Vk

∣∣∣νi∗x,k〉 , and making use of (D.92), we have

W†x,−kVk

∣∣νi∗x,k〉 = VkW∗x,k
∣∣νi∗x,k〉

= e−i2πν
i
x(ky)Vk

∣∣νi∗x,k〉 (D.96)

So, Vk

∣∣∣νi∗x,k〉 is an eigenstate of W†x,−k with eigenvalue

e−i2πν
i
x(ky). Thus, we can write the expansion

Vk

∣∣νi∗x,k〉 =
∣∣∣νjx,−k

〉
αjiT,k (D.97)

where

αjiT,k =
〈
νjx,−k

∣∣∣Vk

∣∣∣ νi∗x,k〉 (D.98)

is the sewing matrix connecting
∣∣∣νi∗x,k〉 with

∣∣∣νjx,−k

〉
. In

particular, αjiT,k 6= 0 only if νix(ky) = νjx(−ky).

Now, we act with the TR operator on the Wannier
basis:

T̂
∣∣∣wjx,k〉 = T̂ |unk〉 [ν

j∗
x,k]n

=
∣∣um−k

〉
V mnk [νjx,k]n

=
∣∣um−k

〉
[νix,−k]mαijT,k

=
∣∣wix,−k

〉
αijT,k. (D.99)

At the time reversal invariant momenta we have

T̂
∣∣∣wjx,k∗〉 =

∣∣wix,k∗〉αijT,k∗ , (D.100)

which implies that, when T̂ 2 = −1, there has to be
Kramers degeneracy in the Wannier centers at these in-
variant momenta. To see this, one can act with the TR

operator twice:

T̂
(
T̂
∣∣wix,k∗〉) = T

(∣∣∣wjx,k∗〉αjiT,k∗) ,
=
(
T
∣∣∣wjx,k∗〉)α∗jiT,k∗ ,

=
∣∣wkx,k∗〉αkjT,k∗α∗jiT,k∗

(D.101)

while, on the other hand,

T̂
(
T̂
∣∣wix,k∗〉) = T 2

∣∣wix,k∗〉
= −

∣∣wix,k∗〉 . (D.102)

Thus, the sewing matrix needs to obey

−δki = αkjT,k∗α
∗ji
T,k∗

, (D.103)

a restriction that is impossible to meet if αT,k∗ is a single

number, i.e., if there are no degeneracies. Since αjiT,k∗ 6= 0

only if νix(k∗y) = νjx(k∗y), this means that at the TRIM
points of the BZ, the Wannier centers are at least twofold
degenerate. When T̂ 2 = 1, on the other hand, the Wan-
nier centers are not required to be degenerate.

From (D.99) we have the transformation

W̃νx∗
y,k

TR
= α†T,kW̃

νx
−y,−kαT,k

TR
= α†T,kW̃

νx†
y,−kαT,k (D.104)

from which it follows that

{ννx,jy (kx)} TR= {ννx,jy (−kx)} mod 1, (D.105)

where j ∈ 1 . . . Nνx labels the eigenvalue, and Nνx is the
number of Wannier bands in the sector νx. This implies
that

pνxy (kx) = pνxy (−kx), (D.106)

which does not impose further constraints on the
Wannier-sector polarization.

6. Constraints due to chiral symmetry

In this section we derive the constraints that chiral
symmetry imposes on the Wilson loops Wx,k and on the

nested Wilson loops W̃νx
y,k.

a. On the Wilson loop over energy bands

Under chiral symmetry, the Bloch Hamiltonian obeys

Π̂hkΠ̂† = −hk. (D.107)
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where Π is the chiral operator, which is unitary. Chiral
symmetry relates the Wilson loops on opposite sides of
the energy gap,

BΠ,kWocc
x,kB

†
Π,k =Wunocc

x,k (D.108)

where occ (unocc) stands for Wilson loops over occu-
pied (unoccupied) bands. The sewing matrix Bmnk =〈
umk

∣∣∣Π̂∣∣∣unk〉 connects states at k on opposite sides of

the energy gap, i.e., such that εn(k) = −εm(k) when the
Fermi level is at ε = 0. Thus, for a non-zero Bmnk , if
m labels a state in the occupied band, n labels a state
in the unoccupied band, or vice versa. Let us denote
|ν〉 as the eigenstates for Wocc and |η〉 as the eigenstates
for Wunocc. Likewise, we denote the eigenvalues of Wocc

(Wunocc) as ei2πν (ei2πη). From (D.108), it follows that
chiral symmetry relates the Wannier values of occupied
and unoccupied bands according to{

νix(ky)
} Π

=
{
ηix(ky)

}
mod 1. (D.109)

This in turn leads to

poccx (ky)
Π
= punoccx (ky) mod 1. (D.110)

Since the Hilbert space of the Hamiltonian (occupied and
unoccupied energy bands included) at each ky is com-
plete, and thus always has trivial topology, we have that

poccx (ky) + punoccx (ky) = 0 mod 1, (D.111)

or

poccx (ky) = −punoccx (ky) mod 1. (D.112)

Using (D.110) and (D.112) we conclude that

poccx (ky)
Π
= punoccx (ky)

Π
= 0 or 1/2, (D.113)

i.e., under chiral symmetry the polarization at each ky is
quantized. This implies that the overall polarization is
also quantized.

poccx
Π
= punoccx

Π
= 0 or 1/2. (D.114)

b. On the Wilson loop over Wannier sectors

From (D.108) it follows that BΠ,k

∣∣∣νix,k〉 is an eigen-

state of Wunocc
x,k with eigenvalue ei2πν

i
x(ky). Thus, in the

expansion

BΠ,k

∣∣νix,k〉 =
∣∣∣ηjx,k〉αjiΠ,k (D.115)

the sewing matrix

αjiΠ,k =
〈
ηjx,k

∣∣∣BΠ,k

∣∣∣ νix,k〉 (D.116)

connects eigenstates of Wilson-loop over occupied and
unoccupied energy bands at base points k and having the
same Wannier centers [αjik 6= 0 only if νix(ky) = ηjx(ky)].
Let us consider the Wannier sectors∣∣∣wocc,jx,k

〉
=

Nocc∑
n=1

|unk〉 [ν
j
x,k]n

∣∣∣wunocc,jx,k

〉
=

N∑
n=Nocc+1

|unk〉 [η
j
x,k]n (D.117)

where in the first (second) equation n runs over occu-
pied (unoccupied) bands. Under chiral symmetry, the
Wannier sectors obey

Π̂
∣∣∣wocc,jx,k

〉
=
∣∣∣wunocc,ix,k

〉
αijΠ,k. (D.118)

Using this expression one arrives to the following relation
for a Wilson line element[
W̃νx

k2←k1

]ij
=
[
α†Π,k2

]ii′ [
W̃ηx

k2←k1

]i′j′ [
αI,k1

]j′j
,

(D.119)

where the sewing matrices αΠ,k only Wilson connect lines
eigenstates such that νx = ηx. In particular the nested
Wilson loop along y obeys[

W̃νx
y,k

]ij
=
[
α†Π,k

]ii′ [
W̃ηx
y,k

]i′j′ [
αΠ,k

]j′j
. (D.120)

Thus, the Wilson-loop eigenvalues are related by{
ei2πν

νx,j
y (kx)

}
=
{
ei2πν

ηx,j
y (kx)

}
(D.121)

or {
ννx,jy (kx)

}
=
{
νηx,jy (kx)

}
mod 1, (D.122)

which implies that

pνxy (kx)
Π
= pηxy (kx) mod 1. (D.123)

Hence, the Wannier-sector polarization (D.31), under
chiral symmetry obeys

pνxy
Π
= pηxy . (D.124)

Since the Hilbert space of the Hamiltonian at each kx is
complete, and thus it has trivial topology, we also have

pνxy (kx) + p−νxy (kx) + pηxy (kx) + p−ηxy (kx) = 0 mod 1.

(D.125)
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which results in the relation for the Wannier-sector po-
larizations

pνxy + p−νxy + pηxy + p−ηxy = 0 mod 1. (D.126)

Notice that (D.125), along with (D.123), is insufficient
to quantize the Wannier-sector polarization. At most,
we have

pνxy (kx) + p−νxy (kx)
Π
= pηxy (kx) + p−ηxy (kx)

Π
= 0 or 1/2.

(D.127)

which is compatible with (D.113), since poccy (kx) =

pνxy (kx) + p−νxy (kx) and punoccy (kx) = pηxy (kx) + p−ηxy (kx).

7. Constraints due to charge conjugation symmetry

Finally, we derive the constraints that charge conjuga-
tion symmetry imposes on the Wilson loopsWx,k and on

the nested Wilson loops W̃νx
y,k.

a. On the Wilson loop over energy bands

Under charge conjugation symmetry the Bloch Hamil-
tonian obeys

ĈhkĈ
−1 = −h−k. (D.128)

Here we will treat Ĉ as being anti unitary such that
Ĉ = Q̂K is the charge conjugation operator, composed
of a unitary matrix Q̂ and complex-conjugation K. The
Wilson loop transforms as

BC,kWocc∗
x,k B†C,k =Wunocc

−x,−k =Wunocc†
x,−k . (D.129)

The sewing matrix Bmnk =
〈
um−k

∣∣∣Ĉ∣∣∣unk〉 =〈
um−k

∣∣∣Q̂∣∣∣un∗k 〉 connects states at k with states at −k

such that εn(k) = −εm(−k). Thus, for a non-zero Bmnk ,
if m labels a state in the occupied band, n labels a state
in the unoccupied band, or vice versa. Let us denote |ν〉
as the eigenstates for Wocc and |η〉 as the eigenstates for
Wunocc. Likewise, let us denote the eigenvalues of Wocc

(Wunocc) as ei2πν (ei2πη). Eq. D.129 implies that the
Wannier centers obey{

νix(ky)
} CC

=
{
ηix(−ky)

}
mod 1, (D.130)

which implies that

poccx (ky)
CC
= punoccx (−ky) (D.131)

and

poccx
CC
= punoccx . (D.132)

Hence, charge-conjugation symmetry relates the polar-
ization of occupied bands with the polarization of unoc-
cupied bands. Using (D.132) and (D.112) we conclude
that

poccx
CC
= punoccx

CC
= 0 or 1/2, (D.133)

i.e., under charge-conjugation symmetry the polarization
is quantized.

b. On the Wilson loop over Wannier sectors

From Eq. D.129 it follows that BC,k

∣∣∣νi∗x,k〉 is an eigen-

state ofWunocc†
x,−k with eigenvalue e−i2πν

i
x(ky). Thus, in the

expansion

BC,k
∣∣νi∗x,k〉 =

∣∣∣ηjx,−k

〉
αjiC,k (D.134)

the sewing matrix

αjiC,k =
〈
ηjx,−k

∣∣∣BC,k∣∣∣ νi∗x,k〉 (D.135)

has αjiC,k 6= 0 only if νix(ky) = ηjx(−ky). Let us consider
the Wannier sectors∣∣∣wocc,jx,k

〉
=

Nocc∑
n=1

|unk〉 [ν
j
x,k]n

∣∣∣wunocc,jx,k

〉
=

N∑
n=Nocc+1

|unk〉 [η
j
x,k]n (D.136)

where in the first (second) equation n runs over occupied
(unoccupied) bands. Under charge conjugation symme-
try, the Wannier sectors obey

Ĉ
∣∣∣wocc,ix,k

〉
=
∣∣∣wunocc,jx,−k

〉
αjiC,k. (D.137)

Using this expression one arrives to the following relation
for the nested Wilson loop along y:[
W̃νx∗
y,k

]ij
=
[
α†C,k

]ii′ [
W̃ηx
−y,−k

]i′j′ [
αC,k

]j′j
. (D.138)

Thus, the Wilson-loop eigenvalues are related by{
ei2πν

νx,j
y (kx)

}
CC
=
{
ei2πν

ηx,j
y (−kx)

}
(D.139)

or {
ννx,jy (kx)

}
=
{
νηx,jy (−kx)

}
mod 1. (D.140)

This implies that

pνxy (kx)
CC
= pηxy (−kx) mod 1. (D.141)
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Hence, the Wannier-sector polarization (D.31), under
charge conjugation symmetry obeys

pνxy
CC
= pηxy . (D.142)

Using this expression along with (D.126), we also have
the relations

pνxy + p−νxy
CC
= pηxy + p−ηxy

CC
= 0 or 1/2. (D.143)

E. Plaquette flux and its relation to the
commutation of reflection operators

In this section we study the conditions under which
reflection symmetry is compatible with non-zero flux on
a plaquette. The existence of reflection symmetry (up to
a gauge transformation), and the commutation relations
of the x and y reflections depend on the value of the flux.
This is important in the model for a quadrupole insula-
tor (VI.31) due to the requirement that reflection oper-
ators must not commute in order to have gapped Wan-
nier bands (see Section VI C). Furthermore, the cases in
which plaquettes have 0 or 2π fluxes are gapless at half-
filling, and therefore are not useful in the construction of
a 2D quadrupole Hamiltonian. On the other hand, pla-
quettes with π flux are gapped at half-filling and obey
[M̂x, M̂y] 6= 0. Thus, they can be used in the construc-
tion of a non-trivial quadrupole model built from arrays
of such plaquettes. Indeed, the quadrupole insulator
(VI.31) is built exactly this way using plaquettes with
π flux.

Let us start with the simple square configuration in
Fig. 48a, which has no flux. Its Hamiltonian is

H0 =


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 , (E.1)

or, more compactly, H0 = I⊗σx+ τx⊗ I. This plaquette
has reflection symmetries that exchange left and right
M̂0
x = I ⊗ σx and up and down M̂0

y = τx ⊗ I. These
operators multiply to give the inversion operator I =
M̂0
xM̂

0
y = τx ⊗ σx. In this case we have [M̂0

x , M̂
0
y ] = 0.

Hence I2 = M̂0
xM̂

0
y M̂

0
xM̂

0
y = (M̂0

x)2(M̂0
y )2 = +1. This

system has energies {−2, 0, 0,+2} and therefore is gapless
at half filling.

Now let us consider configurations with π flux. When
the flipped bond is between sites 1 and 2 (see Fig. 48b)
we have

H12 = −τz ⊗ σx + τx ⊗ I. (E.2)

The energies of H12 are {−1,−1,+1,+1}, and hence this
system is gapped at half filling. This system has a re-
flection symmetry in the x-direction, but does not have
an exact reflection symmetry in the y-direction, it only

has a reflection symmetry times (up to) a gauge trans-
formation. This is because, although the magnetic field
is invariant under reflection, the vector potential is not,
and we must multiply a pair of the second-quantized
operators by a −1 in order to recover the symmetry.
This −1 is the gauge transformation. As such the re-
flection operator that sends x → −x does not change,
i.e., M̂12

x = I ⊗ σx. However, the reflection operator in
the y-direction now has additional signs and we have
M̂12
y = τx ⊗ σz = M̂0

y (I ⊗ σz) where G = (I ⊗ σz) is
one choice for the gauge transformation (another would
be G = −(I⊗σz)). This gauge transformation multiplies

either c†1 and c†3 or c†2 and c†4 by a minus sign depending
on our choice of G, and leaves the other operators un-
changed. In this case, the commutation relations have
now change to {M̂12

x , M̂12
y } = 0.

Let us consider another π flux configuration such that
the flipped bond is between sites 1 and 3, as in Fig. 48c.
The Hamiltonian is

H13 = I⊗ σx − τx ⊗ σz. (E.3)

This has reflection in y, but reflection only up to gauge
transformation in the x-direction. The gauge transforma-
tion in this case is G = τz ⊗ I. The reflection operators
are M̂13

x = τz ⊗ σx and M̂13
y = τx ⊗ I. These also have a

non-vanishing commutator.

Let us see what happens if we have 2π flux through
the plaquette. If the bonds are arranged as Fig. 48d,e,
the system has reflection symmetries in both the x and y
directions with reflection operators M̂0

x and M̂0
y as above,

which commute. However, there is another option where
the bonds are as in Fig. 48f. In this case both reflection
symmetries are only good up to a gauge transformation
and the operators are M̂2π

x = M̂13
x and M̂2π

y = M̂12
y .

However, the two operators commute. Hence, only gauge
transformations associated with odd numbers of π flux
lead to non-commuting operators in the spinless case.

General formulation: Let us now consider the general
case shown in Fig. 48g. Let us take the general Hamilto-
nian for a square with flux Φ :

HΦ =


0 eiϕ12 e−iϕ13 0

e−iϕ12 0 0 eiϕ24

eiϕ13 0 0 e−iϕ34

0 e−iϕ24 eiϕ34 0

 , (E.4)

where the total flux through a plaquette is Φ = ϕ12 +
ϕ24 + ϕ34 + ϕ13. Now let us consider the reflection oper-
ators M̂x = M̂0

xGx and M̂y = M̂0
yGy where M̂0

x,y are as
above, i.e., the reflection operators with vanishing flux
and

Gx,y = diag
[
eiϕ1x,y , eiϕ2x,y , eiϕ3x,y , eiϕ4x,y

]
(E.5)

are the gauge choices to account for the flux Φ. By brute
force evaluation we can check the conditions under which
[Hφ, M̂x,y] = 0. The condition, in both cases, reduces to
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the constraint 1 − e2iΦ = 0, which is solved by Φ = nπ
for some integer n. This makes physical sense since re-
flection Mx or My flips a magnetic field in the z direction
(i.e., the flux threading the plaquette), however, flipping
a magnetic flux of 0, π is equivalent to 0, −π through a
gauge transformation.

Finally, we consider the commutator between the re-
flection operators. By brute force evaluation of the com-
mutator one can show that if 1 − eiΦ = 0 the commu-
tator vanishes. Otherwise, if Φ is an odd multiple of π
we find [M̂x, M̂y] = 2Î where Î is the inversion opera-

tor. Furthermore, one can show that Î2 = eiαeiΦI where
α is a global phase that depends on the gauge choice,
and eiΦ is ±1 for Φ an even/odd multiple of π. We find
α = 3ϕ12 − ϕ13 + ϕ24 − ϕ34.

FIG. 48. (Color online) Hopping configurations on a plaquette
with four sites. Dotted lines indicate a flipped sign compared
to solid lines. (a)-(d) have either 0 or 2π flux, while (e),(f)
are different configurations with π flux. (g) is a generic con-
figuration with flux Φ.

F. Conditions for gapped Wannier bands and
subsequent quantized Wannier-sector
polarization beyond the Nocc = 2 case.

In Section VI C we established that a crystal with
Nocc = 2 occupied bands having reflection and inversion
symmetries has gapless Wannier bands if the reflection
operators commute. Here we generalize this study to the
cases in which Nocc = 4, Nocc = 4n, and Nocc = 4n + 2.
The cases with oddNocc do not need to be considered, be-
cause they automatically generate gapless Wannier spec-
tra.

1. Nocc = 4: Gapped Wannier bands with trivial
Wannier polarizations

Unlike the Nocc = 2 case, if four energy bands are
occupied, it is possible to meet the conditions of having
M̂x and M̂y obeying [M̂x, M̂y] = 0, as well as I = M̂xM̂y,
such that their eigenvalues over the occupied bands come
in pairs (+−) at any high-symmetry point. This occurs
only for the choice of states (|++〉 , |+−〉 , |−+〉 , |−−〉),
where mx and my in |mx,my〉 are the eigenvalues of the

reflection operators M̂x and M̂y, respectively. In that

case, the Wannier bands at the high-symmetry points
are gapped. Using this basis, the sewing matrices for
M̂x, M̂y, and Î at the high-symmetry points k∗ take the
forms

BMx,k∗ = τz ⊗ I
BMy,k∗ = I⊗ σz

BI,k∗ = BMx,k∗BMy,k∗ = τz ⊗ σz. (F.1)

These matrices are useful because they represent the
symmetries that the Wannier Hamiltonian must have at
the high-symmetry points (see Eq. IV.40). For example,
HWx

(k) must satisfy

[HWx(k∗), BMy,k∗ ] = {HWx(k∗), BMx,k∗}
= {HWx

(k∗), BI,k∗} = 0. (F.2)

Similarly, HWy (k) must satisfy

[HWy (k∗), BMx,k∗ ] = {HWy (k∗), BMy,k∗}
= {HWy (k∗), BI,k∗} = 0. (F.3)

Imposing these symmetries on all sixteen Hermitian ma-
trices τ i ⊗ σj , for i, j = 0, x, y, z (where τ , σ are Pauli
matrices and τ0 = σ0 = I), the most general form for the
Wannier Hamiltonians is

HWx
(k∗) = δ1τ

x ⊗ σz + δ2τ
x ⊗ I + δ3τ

y ⊗ σz + δ4τ
y ⊗ I

HWy
(k∗) = β1τ

z ⊗ σx + β2I⊗ σx + β3τ
z ⊗ σy + β4I⊗ σy,

(F.4)

where δi and βi for i = 1, 2, 3, 4, are coefficients which can
vary between the different high-symmetry points. The
Wannier energies of HWx

and HWy
are, respectively,

θx = 2πνx =

{
±
√

(δ1 − δ2)2 + (δ3 − δ4)2

±
√

(δ1 + δ2)2 + (δ3 + δ4)2
,

θy = 2πνy =

{
±
√

(β1 − β2)2 + (β3 − β4)2

±
√

(β1 + β2)2 + (β3 + β4)2
, (F.5)

mod 2π. By direct computation we find that the eigen-
states of the upper (or lower) bands νx of HWx

have
(+−) eigenvalues under BMy,k∗ , for any values of the
δ coefficients. Hence the αMy,k∗ sewing matrix at each
high-symmetry point has (+−) eigenvalues and thus, the
eigenvalues of the Wilson loop over Wannier band νx
come in pairs (ννxy (kx),−ννxy (kx)) at kx = 0, π. Now,
since it is not possible to continuously deform the bands
(ννxy (kx),−ννxy (kx)) at kx = 0, π to [0, 1/2] or [1/2, 0]
at any other point in kx without breaking reflection
symmetry along y, it follows that the eigenvalues of
the Wilson loop over Wannier band νx come in pairs
(ννxy (kx),−ννxy (kx)) at all kx ∈ (−π, π], which results in
a vanishing Wannier-sector polarization of Eq. VI.16. For
HWy

a similar statement is true. Hence, the quadrupole
moment vanishes when the reflection operators commute.
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2. Nocc = 4n: Generalizing the Nocc = 4 case

Now let us generalize the previous argument. Sup-
pose we have 4n occupied bands and the Mx, My, and I
eigenvalues all come in (+−) pairs at each high-symmetry
point. We can arrange the basis of occupied energy bands
such that

BMx,k∗ = τz ⊗ I2n
BMy,k∗ = I2n ⊗ σz

BI,k∗ = µz ⊗ In ⊗ σz. (F.6)

Crucially, each Wannier Hamiltonian at a high-symmetry
point has to commute with one reflection sewing ma-
trix, and anticommute with the other since one reflec-
tion preserves the contour and the other flips it. Con-
sider HWx

(k∗). It must satisfy [HWx
(k∗), BMy,k∗ ] =

{HWx
(k∗), BMx,k∗}. We can label an eigenstate of

HWx
(k∗) as

∣∣νjx, bmy〉, where νjx is its Wannier eigen-
value, and bmy is the eigenvalue under BMy,k∗ . For each∣∣νjx, bmy〉 we have another state BMx,k∗

∣∣νjx, bmy〉 which
has opposite Wannier eigenvalue, but the same bmy . This
is because Mx complex-conjugates the Wannier eigen-
value, but since the Wannier Hamiltonian commutes (by
assumption) with My, it leaves bmy invariant.

Now we can see from the form of our sewing matrices
in Eq. F.6 that there are an equal, and even number of
± eigenvalues (4n bands means 2n each of ±), which is a
necessary and direct result of our need for gapped Wan-
nier bands. This means that each of the gapped Wannier
sectors has an equal number of ± reflection sewing eigen-
values.

Hence, since the reflection-sewing eigenvalues of a
Wannier sector determine its polarization as indicated
in Table III, we find that the Wannier centers of the pro-
jected Wannier sector must come in complex conjugate
pairs, and hence its polarization is trivial. This result can
be applied mutatis mutandis for the other Wilson loop
Hamiltonian HWy

. Since the nested Wilson loops must
be trivial in both directions the quadrupole is trivial.

3. Nocc = 4n+ 2: Gapless Wannier bands

This case mirrors the Nocc = 2 case. In order to have
gapped Wannier bands for any set of 4n + 2 occupied
energy bands we must choose an array of occupied states
such that there are 2n+1 eigenvalues +1 and 2n+1 eigen-
values −1 of both Mx, and My. After making this choice
we can try to arrange them such that the products of
the eigenvalues, i.e., the inversion eigenvalues, also come
in ± pairs, so that the Wannier bands are gapped. To
achieve that, we also need 2n + 1 inversion eigenvalues
+1 and 2n+1 inversion eigenvalues −1. No matter what
arrangement we choose, the number of inversion eigen-
values +1 and the number of inversion eigenvalues −1 is
always an even number and cannot be 2n + 1. Hence,
we cannot ever find exactly matched pairs of ± inversion

eigenvalues. An alternative way of stating this is that
we can find exactly matched pairs for 4n bands, but the
remaining eigenvalues reduce to the 2 band problem that
we have already shown is gapless.

In conclusion we have shown that with commuting re-
flection operators the Wannier spectrum is either gapless
or has trivial topology.

G. Proof that non-commuting reflection operators
protect the energy degeneracy at the

high-symmetry points of the BZ

The Hamiltonian for the quadrupole insulator (VI.31)
is symmetric under reflections in x and y, where the
reflection operators obey [M̂x, M̂y] 6= 0. At the high-
symmetry points of the BZ, k∗ = Γ, X, Y, and M, the
Hamiltonian commutes with both reflection operators,

[M̂j , h
q(k∗)] = 0, (G.1)

for j = x, y. Thus, at these points of the BZ there are
two natural bases that satisfy

M̂x

∣∣uik∗〉 = mi
x

∣∣uik∗〉
M̂y

∣∣vik∗〉 = mi
y

∣∣vik∗〉 , (G.2)

where i = 1, 2 labels the energy states.

In the particular case of the reflection operators
(VI.33) of the quadrupole Hamiltonian (VI.31), which
obey

{M̂x, M̂y} = 0 (G.3)

we can consider labeling the energy bands at the k∗
points according to their M̂x reflection eigenvalues, so
that

hq(k∗)
∣∣unk∗〉 = εn(k∗)

∣∣unk∗〉
M̂x

∣∣unk∗〉 = mn
x(k∗)

∣∣unk∗〉 . (G.4)

Picking
∣∣unk∗〉 to be a simultaneous eigenstate of hq(k∗)

and M̂x is possible since [M̂x, h
q(k∗)] = 0. Then, we have

M̂xM̂y

∣∣unk∗〉 = −M̂yM̂x

∣∣unk∗〉
= −mn

x(k∗)M̂y

∣∣unk∗〉 , (G.5)

so, for every eigenstate
∣∣unk∗〉 with reflection eigenvalue

mn
x(k∗) there is another eigenstate M̂y

∣∣unk∗〉 with eigen-
value −mn

x(k∗). The energy of this eigenstate is

hq(k∗)M̂y

∣∣unk∗〉 = M̂yh
q(k∗)

∣∣unk∗〉
= εn(k∗)M̂y

∣∣unk∗〉 (G.6)

i.e., it is degenerate in energy to
∣∣unk∗〉.
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FIG. 49. (Color online) Energy bands of Hamiltonian (H.1),
which breaks all symmetries in (VI.31) except the reflection
symmetries Mx, My, which have anti-commuting reflection
operators. The energies are degenerate at the high symmetry
points k∗ = Γ,X,Y,M. In this simulation λx = λy = 1,
γx = γy = 0.5, W = 0.75.

H. Perturbations on the quadrupole Hamiltonian

In Section VI B, we mention that the Wannier-sector
polarizations (VI.16), and consequently the quadrupole
invariant (VI.49), are quantized in the presence of reflec-
tion symmetries. The analytic proofs of these assertions
are in Appendix D. In this section we show results of sim-
ulations in which all symmetries–other than the noted
reflection symmetries–are broken. In particular, we show
that breaking charge conjugation symmetry still leaves
the the corner charges and edge polarizations quantized.
The Hamiltonian we are considering is

h = hq(k)

+W [cos(kx)Re,e + sin(kx)Ro,e

+ cos(ky)Re,e + sin(ky)Re,o] (H.1)

where hq(k) is the quadrupole Hamiltonian defined in
(VI.31), which is in the topological phase for δ = 0, and
Re,e, Re,o, and Ro,e are random 4×4 matrices that obey

[Re,i, M̂x] = 0 {Ro,e, M̂x} = 0

[Ri,e, M̂y] = 0 {Re,o, M̂y} = 0. (H.2)

for i = e, o. Here M̂x and M̂y are the reflection oper-
ators (VI.33). These conditions ensure that reflection
symmetries along x and y are preserved while breaking
all other symmetries. In Fig. 50a we show the energies as
a function of the perturbation strength W for a system
with open boundaries. The lack of charge conjugation
symmetry is evident in the asymmetry in the spectrum
around zero energy. The in-gap modes, however, remain
at an energy close to zero because they are highly local-
ized at the corners, and the perturbation does not include
on-site energies, rather, it includes nearest neighbor hop-
ping terms. We also see in Fig. 50a that the energy gap
is maintained at least for values 0 < W < 1. Thus, we
expect no phase transitions in this range. In Fig. 50b we
show the value of the edge polarization as a function of

FIG. 50. (Color online) Quadrupole with Hamiltonian (H.1),
which breaks charge conjugation symmetry due to the term
proportional to W . (a) Lowest 100 energies for system with
open boundaries as a function of perturbation strength W .
The lattice has 20 sites per side. (b) Edge polarization as a
function of perturbation strength W . (c) Electron density of
a system with 24 × 24 unit cells, at W = 1.0. The corner
charge is ±0.498. (d) The same simulation as in (c) but with
no symmetry breaking perturbation W = 0.0. The corner
charge is ±0.499. In (b), (c), and (d) a value of δ = 10−3

was added to choose the sign of the quadrupole). In these
simulations, λ = 1, γ = 0.1.

W . The value is sharply quantized at 0.5. In Fig. 50c
we show an electron density plot for W = 1. The in-
tegrated electron density over each quadrant is ±0.498
relative to the background of 2. In Fig. 50d we show
the simulations when W = 0 for comparison. The inte-
grated electron density over each quadrant in this case is
±0.499 relative to the background. In (b), (c), and (d),
an additional perturbation of δ = 10−3 (see Eq. VI.41)
was added to choose the sign of the quadrupole. This,
in addition to finite size effects (Nx = Ny = 24), ex-
plains the (small) departure away from the ideal value
of 0.5 in the integrated electron density. Thus, quantiza-
tion in our system is maintained in the absence of charge
conjugation symmetry, or any other symmetry besides
the reflection symmetries Mx, My. In the ‘clean’ Hamil-
tonian of Eq. VI.31, the fact that the corner-localized
modes are at zero energy is an artifact of the fine-tuned
charge conjugation symmetry of our specific model.

I. Explicit calculation associating reflection
eigenvalues to Wannier centers in the

quadrupole Hamiltonian in the limit γx = γy = 0

The topological properties of Wannier bands can be
inferred by inspecting the reflection representation that
these bands take at the high-symmetry lines of the BZ
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shown in red and blue in Fig. 11. Since on these lines
the eigenstates of well defined position are also the eigen-
states of a reflection operator, we can reverse the ques-
tion: at these high-symmetry points, what is the Wannier
value that each mx = ±i or my = ±i sector take? In this
Appendix we show the explicit calculation that answers
this question for the quadrupole model (VI.31) in the
limit γx = γy = 0.

To begin, we divide the occupied bands on each of these
lines into two sectors according to their reflection repre-
sentation. We start with the Mx sectors along (0, ky) and
(π, ky) and then with the My sectors along (kx, 0) and
(kx, π). The eigenfunctions of the projected reflection op-

erator into the occupied bands P occ(0, ky)M̂xP
occ(0, ky)

along the line kx = 0 are

Ukx=0
mx=−i =

{
−
(
1 +
√

2
)
eiky , 1,

(
1 +
√

2
)
eiky , 1

}
2
√(

2 +
√

2
)

Ukx=0
mx=+i =

{
−
(√

2− 1
)
eiky ,−1,−

(√
2− 1

)
eiky , 1

}
2
√

2−
√

2
,

(I.1)

where mx labels the reflection eigenvalue. Using each of
these states the polarizations are

νkx=0
mx=−i =

1

2π

∮
Akx=0
mx=−idky =

1

2

(
1 +

1√
2

)
νkx=0
mx=+i =

1

2π

∮
Akx=0
mx=+idky =

1

2

(
1− 1√

2

)
. (I.2)

Similarly, at k∗x = π the states are

Ukx=π
mx=−i =

{
−
(√

2− 1
)
eiky , 1,

(√
2− 1

)
eiky , 1

}
2
√

2−
√

2

Ukx=π
mx=+i =

{
−
(
1 +
√

2
)
eiky ,−1,−

(
1 +
√

2
)
eiky , 1

}
2
√(

2 +
√

2
) ,

(I.3)

which give the polarizations

νkx=π
mx=−i =

1

2π

∮
Akx=π
mx=−idky =

1

2

(
1− 1√

2

)
νkx=π
mx=+i =

1

2π

∮
Akx=π
mx=+idky =

1

2

(
1 +

1√
2

)
. (I.4)

Thus, comparing (I.2) and (I.4), we conclude that the
polarizations along y of the reflection sectors mx = ±i
at kx = 0 and kx = π are opposite (recall 1/2 = −1/2
mod 1). Conversely, the reflection representation for each
Wannier band is opposite at the kx = 0 and kx = π
points, which signals a non-trivial topology in the Wan-
nier sectors.

If the projection into sectors is done along k∗y = 0, π for

the M̂y operator, similar results are found. The eigen-

functions of P occ(kx, 0)M̂yP
occ(kx, 0) are

U
ky=0
my=−i =

{
−1,−

(√
2− 1

)
eikx ,

(√
2− 1

)
eikx , 1

}
2
√

2−
√

2

U
ky=0
my=+i =

{
1,−

(
1 +
√

2
)
eikx ,−

(
1 +
√

2
)
eikx , 1

}
2
√(

2 +
√

2
)

(I.5)

which give the polarizations

ν
ky=0
my=−i =

1

2

(
1− 1√

2

)
ν
ky=0
my=+i =

1

2

(
1 +

1√
2

)
, (I.6)

and the eigenfunctions of P occ(kx, π)M̂yP
occ(kx, π) are

U
ky=π
my=−i =

{
−1,−

(
1 +
√

2
)
eikx ,

(
1 +
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2
)
eikx , 1

}
2
√(
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2
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U
ky=π
my=+i =

{
1,−

(√
2− 1
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eikx ,−

(√
2− 1

)
eikx , 1
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2
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2−
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2
,

(I.7)

which give the values

ν
ky=π
my=−i =

1

2

(
1 +

1√
2

)
ν
ky=π
my=+i =

1

2

(
1− 1√

2

)
. (I.8)

Comparing (I.6) and (I.8), we conclude that the polariza-
tions along x of the reflection sectors my = ±i at ky = 0
and ky = π switch. This implies, just as before, that each
Wannier sector has non-trivial topology, and this distinc-
tion survives even away from the limit γx = γy = 0. as
long as γx,y < λx,y.

By these sets of calculations of Abelian Wilson loops
(i.e. Berry phases) we have thus determined that both
Wannier-sector polarizations are non-trivial, and thus
there is a non-trivial quadrupole moment of 1/2 in this
phase, as per Eq. VI.49.

J. Derivation of corner zero mode from the
low-energy edge Hamiltonian

We claimed that the protected topological corner mode
in the quadrupole model is a simultaneous eigenstate of
both edge Hamiltonians along the x and y-edges. To
demonstrate this, let us begin with our lattice Hamil-
tonian (VI.31) with λ = 1 :

H = sin kxΓ3 + (γx + cos kx)Γ4

+ sin kyΓ1 + (γy + cos ky)Γ2. (J.1)
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FIG. 51. (Color online) Zero-energy corner-localized mode in
the quadrupole phase. (a) Two real space domain walls for
mx(x) and my(y) in Hamiltonian (J.2). The region where the
domains mx > 0 and my > 0 intersect is in the quadrupole
phase (purple region). The zero-energy corner state is local-
ized on the corner shown by the black dot. (b) Probability
density function of the zero-energy mode localized at the cor-
ner for the configuration of domains shown in (a) for an in-
sulator with 20 × 20 sites. The simulation uses Hamiltonian
(J.1) with parameters γx = −0.01 for x ∈ [0, 9], γx = −1.5
for x ∈ [10, 20] and γy = −0.01 for y ∈ [0, 9], γy = −1.5 for
y ∈ [10, 20].

To simplify the present discussion we will solve a con-
tinuum version of the Hamiltonian by assuming that
γx = −1+mx and γy = −1+my for mx,y small and posi-
tive (negative) for the topological (trivial) phase. We can
take a continuum limit, or equivalently a k · p expansion
about (kx, ky) = 0, to find the Hamiltonian

H = kxΓ3 +mxΓ4 + kyΓ1 +myΓ2. (J.2)

We now use this Hamiltonian to solve for the states lo-
calized on the x-edge, and then project the Hamiltonian
into these states to form the x-edge Hamiltonian, from
which we can then calculate the corner states. We will
treat the x-edge as a domain wall where mx steps from
positive (inside the topological phase) to negative (out-
side the topological phase), and the y-edge as a domain
wall where my steps from positive to negative, as shown
in Fig. 51. We use the ansatz Ψ(x, ky) = f(x)Φx(ky)
for the wave function localized at the x-edge in the ab-
sence of y-edges. In this ansatz, f(x) is a scalar function
of x and Φx(ky) is a spinor which depends on ky. By
inserting this ansatz into the Schrodinger equation with
Hamiltonian (J.2) and dividing by f(x) we have(
−i∂xf(x)

f(x)
Γ3 +mx(x)Γ4

)
Φx(ky)

+ (kyΓ1 +myΓ2) Φx(ky) = εΦx(ky), (J.3)

where we have replaced kx → −i∂x, and ε is the energy.
Since the first term in parentheses has all the dependence
on x, Eq. J.3 only has a solution if the first term is
a constant. In particular, we choose that constant to
be zero (a different value only redefines the zero-point

energy of the Hamiltonian),

(−i∂xΓ3 +mx(x)Γ4)f(x)Φx(ky) = 0. (J.4)

This has the solution f(x) = C exp(
∫ x

0
mx(x′)dx′), with

normalization constant C. The matrix equation that re-
sults from solving (J.4) can be simplified to (I − τz ⊗
σz)Φx = 0, from which follows that Φx is a positive eigen-
state of τz⊗σz, i.e., Φx1 = (1, 0, 0, 0) or Φx2 = (0, 0, 0, 1).
We now project the remaining part of the Hamiltonian
into the subspace spanned by these two states to find the
low-energy Hamiltonian of the x-edge

Hedge,x̂ = −kyµy +myµ
x, (J.5)

where µa are Pauli matrices in the basis (Φx1,Φx2).

Performing an analogous calculation for the y-edge we
find the matrix equation (I − I ⊗ σz)Φy = 0, which
has solutions that are positive eigenstates of I⊗ σz, i.e.,
Φy1 = (1, 0, 0, 0) or Φy2 = (0, 0, 1, 0). We then project
the remaining bulk terms into this basis to find the y-edge
Hamiltonian

Hedge,ŷ = −kxγy +mxγ
x (J.6)

where γa are Pauli matrices in the basis (Φy1,Φy2).

Both of these edge Hamiltonians take the form of mas-
sive 1+1d Dirac models, i.e., the natural minimal contin-
uum model for a 1+1d topological insulator (an alterna-
tive analysis arriving to this conclusion is found in Ref.
81). Now the key feature we mentioned earlier, i.e., the
simultaneous zero mode can be found by considering a
corner, i.e., either the x-edge with a y-domain wall or
the y-edge with a x-domain wall.

Let us first look for the zero-energy states localized at a
y-domain wall on the upper portion of a vertical 1D chain
with Hamiltonian (J.5). The ansatz in this case is of the
form Φx(y) = exp(

∫ y
0
my(y′)dy′)φx,y, which, from the

Schrodinger equation for Hamiltonian (J.5), and choosing
zero energy, leads to a matrix equation that simplifies to

(I− µz)φx,y = 0. (J.7)

Using similar calculations to those above we find the fol-
lowing matrix equation for the x-domain wall on the right
side of a horizontal 1D insulator with Hamiltonian (J.6):

(I− γz)φy,x = 0. (J.8)

Hence, the corner mode we find for an x-edge with a y
domain wall is the positive eigenstate of µz while that for
the y-edge with an x domain wall is the positive eigen-
state of γz. In both cases the solutions are identical, i.e.,
they are the first basis elements Φx1 = Φy1 = (1, 0, 0, 0).
Therefore, the corner zero mode is a simultaneous zero
mode of both domain wall Hamiltonians, given by

Ψcorner(x, y) = e
∫ x
0
mx(x′)dx′e

∫ y
0
my(y′)dy′(1, 0, 0, 0).

(J.9)
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Thus, although both edges are 1D topological insulators,
they only produce a single zero mode.

K. Character table of the Quaternion group

The quadrupole insulator with Bloch Hamiltonian
(VI.31) has the symmetry of the quaternion group
(VI.36). The character table for this group is shown
in Table VI. There are four one-dimensional represen-
tations of this group and one two-dimensional represen-
tation. The quadrupole insulator (VI.31) takes the two-
dimensional representation at all k∗ points of the BZ.

Rep. / class {1} {−1} {±M̂x} {±M̂y} {±Î}
χtriv 1 1 1 1 1

χMx 1 1 1 -1 -1

χMy 1 1 -1 1 -1

χI 1 1 -1 -1 1

χ2D 2 -2 0 0 0

TABLE VI. Character table of the quaternion group

L. C4-symmetric quadrupole insulator

A schematic representation of a quadrupole with C4

symmetry is shown in Fig. 52a. It is a variation of the
insulator shown in Fig. 21, but here we set γx = γy = γ
and λx = λy = λ, and allow the fluxes threading each
plaquette to be different than π. The ‘red’ plaquettes, de-
limited by the intra-cell γ couplings have flux ϕ0, while
the ‘blue’ plaquettes, delimited by the inter-cell λ hop-
pings have flux ϕ. To simplify the formulation, we take
the fluxes into account by replacing

γ → γeiϕ0/4, λ→ λeiϕ/4 (L.1)

in the directions of the arrows in Fig 52a, or their com-
plex conjugate in the opposite direction. This implies

that plaquettes sharing red couplings and blue hoppings
have a flux of −(ϕ+ϕ0)/2. When ϕ = ϕ0 = 0, π the insu-
lators have reflection symmetries Mx, My. If ϕ = ϕ0 = 0,

we have [M̂x, M̂y] = 0, and the spectrum is gapless. If
ϕ = ϕ0 = π, on the other hand, we recover the insu-
lator (VI.31), which has {M̂x, M̂y} = 0, and realizes a
quadrupole SPT phase. In Fig. 52b we show the energy
spectrum for the values ϕ0 = 0, ϕ = π. Since the anti-
commuting reflection symmetries are lost, so is the pro-
tection of the degeneracies at the high-symmetry points
of the BZ (cf. Fig. 49). The energy and Wannier bands
remain gapped during the deformation ϕ0 = π → ϕ0 = 0
that connects the quadrupole (VI.31) with the Hamilto-
nian with the energy spectrum in Fig. 52b. Thus, the
non-trivial topology persists, with the topological signa-
tures shown in Fig. 32 and a non-trivial index (VI.53).
Indeed, edge polarization and charge density simula-
tions on this model present the signatures of a quantized
quadrupole of Fig. 23b and Fig. 24b.

FIG. 52. (Color online) Quadrupole model that preserves C4

symmetry. (a) C4 symmetric lattice. Red (blue) plaquettes
have flux ϕ0 (ϕ). Plaquettes sharing red and blue couplings
have a flux of −(ϕ0+ϕ)/2. (b) Energy spectrum when ϕ0 = 0,
ϕ = π. Despite the fact that the degeneracy of the occupied
bands are lifted the quadrupole remains quantized and stable.
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