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Intervalley scattering by atomic defects in monolayer transition metal dichalcogenides (TMDs;
MX2) presents a serious obstacle for applications exploiting their unique valley-contrasting prop-
erties. Here, we show that the symmetry of the atomic defects can give rise to an unconventional
protection mechanism against intervalley scattering in monolayer TMDs. The predicted defect-
dependent selection rules for intervalley scattering can be verified via Fourier transform scanning
tunneling spectroscopy (FT-STS), and provide a unique identification of, e.g., atomic vacancy de-
fects (M vs X). Our findings put the absence of the intervalley FT-STS peak in recent experiments
in a new perspective.

Introduction.—Two-dimensional (2D) monolayers of
transition metal dichalcogenides (TMDs; MX2) are
promissing candidates for spin- and valleytronics ap-
plications [1]. Their hallmarks include unique valley-
contrasting properties and strong spin-valley coupling [1,
2] exemplified by, e.g., valley-selective optical pump-
ing [3–5], valley-dependent Zeeman effect [6–9] and the
valley Hall effect [10]. Such means to control the val-
ley degree of freedom are instrumental for valleytronics
applications.
Another prerequisite for a successful realization of val-

leytronics is a sufficiently long valley lifetime [11, 12];
atomic defects are a common limiting factor which can
provide the required momentum for intervalley scattering
due to their short-range nature. However, as illustrated
in Fig. 1(a), the spin-orbit (SO) induced spin-valley cou-
pling in the K,K ′ valleys of 2D TMDs partially protects
the valley degree of freedom against relaxation via in-
tervalley scattering by nonmagnetic defects [2]. Due to
the small spin-orbit splitting in the conduction band val-
leys [13, 14], only the valence-band valleys fully benefit
from this protection. Identification of additional protec-
tion mechanisms in the conduction band would hence be
advantageous for valleytronics in 2D TMDs.
In this work, we demonstrate that besides the spin-

valley coupling, the symmetry and position of atomic
defects give rise to unconventional selection rules for in-
tervalley quasiparticle scattering in 2D TMDs. As illus-
trated in Fig. 1(b), we find that for defects with threefold
rotational symmetry (C3), e.g., atomic vacancies, inter-
valley K ↔ K ′ scattering in the conduction band is for-
bidden for defects centered on the X site while allowed
for M centered defects. In the valence band, intervalley
scattering is forbidden in both cases. Analogous selection
rules for the intervalley coupling due to confinement po-
tentials in 2D TMD based quantum dots have previously
been noted [15].
Our findings can be readily verified with scanning tun-

neling spectroscopy (STS) which has provided valuable

insight to the electronic properties of 2D TMDs [16–
20]. In particular, Fourier transform STS (FT-STS) is
a powerful method for investigating atomic defects and
their scattering properties in 2D materials [21, 22]. The
measured STS map is a probe of the local density of
states (LDOS) whose real-space modulation, resembling
Friedel oscillations, originates from quasiparticle interfer-
ence (QPI) between electronic waves scattered by defects.
Hence, the Fourier transform of the STS map provides di-
rect access to the available scattering channels in q space,
and has shed important light on defect scattering in, e.g.,
graphene [23–30], monolayer TMDs [18, 19], and black
phosphorus [31].

In the above-mentioned STS experiments on TMDs,
the strong spin-valley coupling in the valence band of
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FIG. 1. Symmetry-dependent defect scattering in monolayer
TMDs. (a) Sketch of the band structure near the K,K′

points. The strong spin-valley coupling in the valence band
suppresses intervalley scattering (×). In the conduction band,
the small spin-orbit splitting, in principle, allows for interval-
ley scattering (∗). However, for defects with threefold rota-
tional symmetry (C3), additional selection rules arise which
protect against intervalley scattering. (b) Atomic sulfur va-
cancy in 2D MoS2 showing the C3 symmetry of the vacancy
site. The vacancy dependent selection rules for K ↔ K′ in-
tervalley scattering in the conduction band are illustrated in
the bottom part, showing that only M vacancies produce in-
tervalley scattering (green arrow). This allows for a unique
identification of the vacancy type with FT-STS.
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WSe2 was confirmed by the missing K ↔ K ′ intervalley
peak in the FT-STS spectrum [18, 19]. Surprisingly, the
intervalley peak was also missing in the conduction band
where intervalley scattering should be allowed [18, 19]
[see Fig. 1(a)].
Here, we demonstrate the effect of symmetry on quasi-

particle scattering by atomic vacancies which are among
the most common types of defects in 2D TMDs [32–38].
For this purpose, we perform atomistic density-functional
(DFT) based T -matrix calculations [39] of FT-STS and
QPI spectra for vacancies in two archetypal TMDs: the
direct gap [44], small SO split MoS2, and the indirect
gap [17], large SO split [13, 14] WSe2. As we show,
the K ↔ K ′ conduction-band intervalley FT-STS peak
is strongly suppressed for X vacancies while it appears
clearly forM vacancies, thus offering an appealing expla-
nation for its conspicuous absence in experiments [18, 19].
Our findings furthermore show that FT-STS allows for
a unique identification of the vacancy type, and indicate
that the valley dynamics of carriers and excitons in 2D
TMDs are not affected by disorder if M -type defects can
be avoided.
Symmetry-dependent intervalley scattering.—

We consider first the effect of symmetry on intervalley
scattering by defects in 2D TMDs. The selection rules
can be deduced within the framework of the low-energy
Hamiltonian [2],

H(k) = at (τkxσ̂x + ky σ̂y) +
∆

2
σ̂z + τλ

1̂ − σ̂z
2

ŝz, (1)

describing the band structure in the K,K ′ valleys
sketched in Fig. 1(a). Here, a is the lattice constant, t is
a hopping parameter, τ = ±1 is the K,K ′ valley index,
∆ is the band gap, 2λ is the SO splitting at the top of the
valence band, and σ̂, τ̂ and ŝ are Pauli matrices in the
symmetry-adapted spinor basis, valley and spin space,
respectively. The symmetry-adapted basis is spanned by
the M d-orbitals |φvτ 〉 = 1/

√
2
(

|dx2−y2〉+ iτ |dxy〉
)

and
|φcτ 〉 = |dz2〉 which dominate the states in the valence
(v) and conduction (c) bands, respectively [45, 46].
In 2D TMDs, defects like atomic vacancies have C3

symmetry, i.e. V̂i = C3V̂iC
†
3 where V̂i is the scatter-

ing potential for defect type i and C3 is the operator
for threefold rotations by ±2π/3 around the defect cen-
ter. The intervalley matrix element (τ 6= τ ′) between the
high-symmetry K,K ′ points can thus be written

〈nτ |V̂i|nτ ′〉 = 〈nτ |C†
3C3V̂iC

†
3C3|nτ ′〉

= 〈nτ |C†
3 V̂iC3|nτ ′〉 ≡ γττ

′

i,n 〈nτ |V̂i|nτ ′〉, (2)

where n is the band index (including spin) and Î = C†
3C3

is the identity operator. As C3 belongs to the group of the
wave vector at the K,K ′ points (C3h), the Bloch func-
tions transform according to the irreducible representa-
tion of C3h, C3|nτ〉 = wi,nτ |nτ〉 where wi,nτ denotes the

eigenvalues of C3. The matrix element can thus be ex-
pressed in terms of the complex scalar γττ

′

i,n = w∗
i,nτwi,nτ ′

as indicated in the last equality of (2). Our analysis
shows that γττ

′

i,n = 1 only if the defect is centered on an

M site and n = c [39]. In all other cases γττ
′

i,n 6= 1, and the
intervalley matrix element vanishes identically by virtue
of Eq. (2).
The symmetry argument is completely general, and

thus applies to all types of M ,X-centered defects in 2D
TMDs with C3 symmetry, e.g., complex defect struc-
tures [32, 36], adatoms and substitutional atoms [37]. As
Eq. (1) is diagonal in spin space, it furthermore holds for
intervalley spin-flip scattering by magnetic defects.
FT-STS theory.—Next, we outline a general T -

matrix based Green’s function approach for the calcula-
tion of the FT-STS spectra. In STS, the measured real-
space QPI pattern is related to the differential conduc-
tance dI/dV ∝ ρ(r, ε) [47], and hence the LDOS ρ(r, ε) =
−1/πIm[G(r, r; ε)] where G(r, r′; ε) = 〈r|Ĝ(ε)|r′〉 is the
Green’s function (GF) in real-space in the presence of
a defect. Expressing the GF in a basis of Bloch states
ψnk(r), G(r, r

′; ε) =
∑

mn

∑

kk′ ψ∗
nk′ (r)ψmk(r

′)Gmn
kk′(ε),

where k is the wave vector and m,n band indices, the
FT-STS spectrum given by the 2D Fourier transform of
ρ(r, ε) can be obtained as [39]

ρ(q+G, ε) =

∫

dr e−i(q+G)·r‖ρ(r, ε)

=
1

2πi

∑

mn,k

nmn
k,q(G)

[

Gmn
k,k+q(ε)

∗ −Gnm
k+q,k(ε)

]

, (3)

where r = (r‖, z), k,q ∈ 1st BZ, G is a reciprocal

lattice vector, and Gmn
kk′(ε) = 〈ψmk|Ĝ(ε)|ψnk′〉 is the

Bloch function representation of the GF. The matrix el-
ement nmn

k,q(G) = 〈ψmk|e−i(q+G)·r̂‖ |ψnk+q〉 is important
in many aspects. For example, it describes the FT-STS
Bragg peaks (G 6= 0), and hence the atomic modulation
of the LDOS inside the unit cell. It also plays a central
role in systems with (pseudo) spin texture, e.g., graphene
and spin-orbit materials, as it contains the spinor over-
lap [48]. This is less important in 2D TMDs where the
eigenstates of Eq. (1) are characterized by predominantly
polarized spinor states [49] with trivial pseudospin, σ̂,
and spin, ŝ, textures.
For a single defect, the exact GF taking into account

multiple scattering off the defect is given by the T matrix
as

Gkk′(ε) = δk,k′G0
k(ε) +G0

k(ε)Tkk′(ε)G0
k′(ε), (4)

where the boldface symbols denote matrices in band and
spin indices, and the diagonal bare GF is given by the
band energies, G0

nk(ε) = (ε− εnk + iη)−1. The last term
in Eq. (4) comprises the nondiagonal, defect-induced cor-
rection δGk,k+q to the GF. To isolate the FT-STS fea-
tures related to the defect, we substitute G → δG in
Eq. (3) in our FT-STS calculations.
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The T matrix obeys the integral equation

Tkk′(ε) = Vi
kk′ +

∑

k′′

Vi
kk′′G

0
k′′(ε)Tk′′k′(ε), (5)

where V mn
i,kk′ are matrix elements of the defect potential

and the second term describes virtual transitions to in-
termediate states with wave vector k′′.
For nonmagnetic defects, we take V̂i = Vi(r̂)⊗ ŝ0 where

ŝ0 is the identity operator in spin space. With the spin
indices written out explicitly, the defect matrix elements
can be expressed as

V mn
i,kk′(s, s′) = 〈mks|V̂i|nk′s′〉

=
∑

sz

〈mks; sz|Vi(r̂)|nk′s′; sz〉, (6)

with |·; sz〉 denoting the sz = ±1 spinor component of
the wave function. Here, we use a DFT method based on
an atomic supercell model for the defect site illustrated
in Fig. 1(b) to calculate the defect matrix elements [39].
As an example, Fig. 2 shows the spin-diagonal

conduction-band matrix elements for Mo and S vacan-
cies in 2D MoS2. While the Mo vacancy gives rise to
intra- (short arrow) and intervalley (long arrow) cou-
plings, the intervalley matrix element for the S vacancy
vanishes, thus confirming the symmetry-based predic-
tions in Eq. (2). Furthermore, we note that the matrix
element in the K,K ′ valleys is an order of magnitude
larger for Mo than for S vacancies. In a simple picture
where only K,K ′ intra- and intervalley scattering with
a constant matrix element V0 is considered, the T ma-
trix becomes T (ε) = V0/[1 − gV0Ḡ0(ε)] where Ḡ0(ε) =
∫

dk
(2π)2 G

0
ck(ε) ∝ ρc, ρc ≈ 0.01 eV−1 Å−2 is the density of

states, and the valley multiplication factor g = 2 (= 1)
for M (X ; only intravalley scattering) vacancies. To-
gether with the values for V0 extracted from Fig. 2, this
allows us to identify M (gρcV0 > 1) and X (gρcV0 < 1)
vacancies as strong (unitary), T (ε) ≈ −1/gḠ0(ε), and
weak, T (ε) ≈ V0, defects, respectively.
The FT-STS calculations presented below are based

on full BZ k,q-point samplings of the band structures,
defect matrix elements, and nmn

k,q(G) matrix elements, all
obtained with DFT-LDA including SO interaction [39].
Our approach naturally goes beyond the low-energy de-
scription in Eq. (1), which is essential as both the K
and Q valleys are relevant for quasiparticle scattering in
2D TMDs. As intervalley scattering in the valence band
is suppressed by (i) the large spin-valley coupling, and
(ii) the C3 symmetry of the vacancies, the valence-band
FT-STS spectra are rather simple [18, 19], and we here
limit the discussion to the conduction band. We further-
more focus on features related to the symmetry-forbidden
intervalley scattering defering a complete analysis to a
forthcoming paper.
FT-STS and QPI spectra.—The calculated band

structures and FT-STS spectra for atomic vacancies in
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FIG. 2. Defect matrix elements for the conduction band in
2D MoS2 calculated with our DFT-based supercell method.
The plots show |V cc

i,kk′ (s, s)| for (a) a Mo, and (b) a S vacancy

as a function of k′ with the initial state fixed to k = K. Note
the different disorder strengths (colorbar scales) for the two
types of vacancies as well as the vanishing intervalley matrix
element [long arrow in (a)] for S vacancies.

MoS2 and WSe2 are summarized in Fig. 3. The differ-
ent conduction-band structures in the two materials (K
vs Q valley alignment and magnitude of the SO split-
ting) shown in the insets in Fig. 3(a) and the vacancy-
dependent intervalley matrix element, result in markedly
different spectra between the materials as well as the va-
cancy type.

In general, the FT-STS spectra close to the band edge
(ε ≈ 0; see Ref. [39]) are characterized by featureless
spots at the points in q-space corresponding to intra-
(q = 0) and intervalley scattering [q1–5 in Fig. 3(b)]. The
spot intensities are governed by the T -matrix scattering
amplitude and valley degeneracy. For the Bragg peaks,
the intensity is reduced compared to those in the first BZ
due to the phase-factor matrix element nmn

k,q(G).

In MoS2 the SO splitting in the conduction band is
small, ∼ 3 meV, thereby allowing for spin-conserving
K ↔ K ′ intervalley scattering (q1,2) near the band edge.
Hence, intervalley peaks at q = K,K′ are to be expected.
In WSe2 the Q valley is lower than the K valley and the
SO splitting is much larger (∼ 250 meV in the Q valley
and ∼ 50 meV the K valley), hence a q ≈ M peak due
to Q↔ Q′ intervalley processes (q3) will appear instead.

The above is indeed the case in the FT-STS spec-
tra for M vacancies shown in Fig. 3(c) for an energy
ε = 75 meV above the band edge [dashed lines in the
insets in Fig. 3(a)]. At this energy, the spots have devel-
oped into features [see zoomed insets] which are dom-
inated by processes involving nesting vectors between
parallel segments of the constant energy contour being
probed. In MoS2 with almost isotropic energy contours,
ε(k) = ε, intravalley backscattering with q = 2k therefore
produces circular features. Trigonal warping of the con-
stant energy surfaces gives rise to additional approximate
nesting vectors which produce star-like patterns with
hexagonal symmetry around the Γ point and triangu-
lar symmetry near the K,K ′ points like in graphene [30].
The intervalley features are weaker than the intravalley
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FIG. 3. Band structures and FT-STS spectra for atomic vacancies in MoS2 (top) and WSe2 (bottom). (a) Band structures
including SO interaction. The insets show a zoom of the SO split conduction-band K,Q valleys with the energy ε = E − Ec

measured relative to the band edge Ec. The dashed lines indicate the energy of the constant-energy surfaces in (b) and the
FT-STS spectra in (c),(d). (b) Constant-energy surfaces in k space for ε = 75 meV, together with high-symmetry k points
in the Brillouin zone (top) and representative intervalley q vectors (bottom). (c), (d) FT-STS spectra at ε = 75 meV for (c)
M = Mo,W and (d) X = S,Se vacancies. The boxes show zooms of the marked regions.

feature because intravalley processes in the K and K ′

valleys add up, while the two K ↔ K ′ intervalley pro-
cesses have distinct wave vectors, q ≈ ±K. In WSe2,
both the Q and K valleys are accessible at ε = 75 meV,
and therefore intervalley features around q ≈ M, q ≈ K

as well as q ≈ Q are observed. They are associated with
Q ↔ Q/K ↔ Q (q3/4), K ↔ K ′ (q1,2), and K ↔ Q
(q5) processes, respectively. The central intravalley fea-
ture in WSe2 has more structure than in MoS2 as it has
contributions from both K and Q intravalley processes.

At even higher energies (not shown), the K and Q
valleys are available in both MoS2 and WSe2, and the
FT-STS spectra become highly complex.

FIG. 4. Real-space QPI maps for 2D MoS2 showing the
defect-induced change in the LDOS δρ(r‖, ε) around (a) a
Mo, and (b) a S vacancy. The lines show the unit cells of
the lattice with lattice constant a, and the atomic positions
inside the unit cell and the position of the vacancy are indi-
cated by the symbols (filled circle: Mo, empty circle: S, cross:
vacancy).

In contrast to the FT-STS spectra forM vacancies, the
spectra for X vacancies in Fig. 3(d) show that the antic-
ipated intervalley feature at q ≈ K (q1,2) is strongly
suppressed for both MoS2 and WSe2. This is a direct
consequence of the symmetry-forbidden K ↔ K ′ inter-
valley matrix element which suppresses intervalley scat-
tering also in the vicinity of the high-symmetry K,K ′

points [see Fig. 2(b)]. In WSe2, also the Q ↔ Q′ (q3)
and Q ↔ K (q4,5) intervalley features are much weaker
forX vacancies, which can be traced back to overall small
intervalley matrix elements.

The suppression of K ↔ K ′ intervalley scattering
for X vacancies, leaves a clear fingerprint in the real-
space LDOS as demonstrated by the QPI maps in Fig. 4
for Mo and S vacancies in MoS2. They have been ob-
tained by Fourier transforming the FT-STS spectra in
Fig. 3(c)+(d), ρ(r‖, ε) =

∑

G

∫

dq
(2π)2 e

i(q+G)·r‖ρ(q+G, ε).

For both vacancies, the LDOS modulation has a three-
fold symmetry and decays away the vacancy site (marked
by crosses). The observed atomic resolution can be at-
tributed to the FT-STS Bragg peaks, and shows that
the LDOS modulation is concentrated on the Mo sites
of the lattice in accordance with the Mo d-orbital char-
acter of the conduction-band states in the K,K ′ valleys
[cf. Eq. (1)]. Noticably, the QPI map for the S vacancy
stands out by the absence of an intervalley-scattering in-
duced cell-to-cell modulation of the LDOS in the vicinity
of the vacancy, which is clearly visible for the Mo vacancy.
At larger distances from the vacancy site, a slower mod-
ulation with wave length 2π/q (≈ 10 a at ε = 75 meV)
due to intravalley backscattering, q = 2k, emerges.
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Conclusions and outlook.—In conclusion, we have
demonstrated (i) an unconventional symmetry-induced
protection against intervalley scattering by atomic de-
fects in 2D TMDs, and (ii) its finterprint in conduction-
band FT-STS spectra which allows for a unique iden-
tification of, e.g., the vacancy type. Our findings may
offer an explanation why the K ↔ K ′ intervalley FT-
STS peak has not been observed in experiments [18, 19],
and are also relevant for FT-STS on metallic TMDs [50].

We are convinced that our work in conjunction with
further experimental FT-STS studies can provide a com-
plete understanding of defect scattering in 2D TMDs.
In addition, FT-STS may shed important light on band-
structure issues in 2D TMDs, such as the magnitude of
SO splittings [18], theK,Q-valley ordering in the conduc-
tion band which is sensitive to the SO strength [13, 14],
and the subband structure and valley ordering in few-
layer TMDs [51, 52]. Besides our reported FT-STS signa-
tures, the suppression of intervalley scattering is expected
to have implications for a wide range of effects in disor-
dered 2D TMDs, e.g., the optical conductivity [53], mag-
netotransport [54–58], the valley Hall effect [59], Elliot-
Yafet spin relaxation [60], and disorder-induced valley
pumping [61].

Acknowledgements.—We would like to thank an
anonymous reviewer on a related work [62] for sug-
gesting us to investigate observable implications of our
symmetry finding for intervalley scattering. K.K. ac-
knowledges support from the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement no. 713683
(COFUNDfellowsDTU). T.L acknowledges support from
the National Science Foundation under grant number
NSF/EFRI-1741660. The Center for Nanostructured
Graphene (CNG) is sponsored by the Danish National
Research Foundation, Project DNRF103.

∗ kkaa@nanotech.dtu.dk
[1] X. Xu W. Yao, D. Xiao, and T. F. Heinz, “Spin and

pseudospins in layered transition metal dichalcogenides,”
Nature Phys. 10, 343 (2014).

[2] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, “Cou-
pled spin and valley physics in monolayers of MoS2 and
other group-VI dichalcogenides,” Phys. Rev. Lett. 108,
196802 (2012).

[3] K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Con-
trol of valley polarization in monolayer MoS2 by optical
helicity,” Nature Nano. 7, 494 (2012).

[4] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley
polarization in MoS2 monolayers by optical pumping,”
Nature Nano. 7, 490 (2012).

[5] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi,
Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-
selective circular dichroism of monolayer molybdenum
disulphide,” Nature Commun. 3, 887 (2012).

[6] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke,
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