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We introduce a highly sensitive and relatively simple technique to observe magnetization motion
in single Ni nanoparticles, based on charge sensing by electron tunneling at millikelvin temperature.
Sequential electron tunneling via the nanoparticle drives nonequilibrium magnetization dynamics,
which induces an effective charge noise that we measure in real time. In the free spin diffusion
regime, where the electrons and magnetization are in detailed balance, we observe that magnetic
damping time exhibits a peak with the magnetic field, with a record long damping time of ≃ 10 ms.

Measuring magnetization motion in single magnetic
nanoparticles in real time has been a longstanding goal
in solid state physics. Magnetic nanoparticles are a
bridge between bulk ferromagnets and single electron
spins, and can have extraordinary magnetic character-
istics. Metallic ferromagnetic nanoparticles, for exam-
ple, exhibit competitions between superconductivity and
ferromagnetism, [1] entanglement between charge and
spin degrees of freedom, [2, 3] and geometric quantum
noises of spin. [4] We may also suggest that the damp-
ing characteristics of nanoparticles are extraordinary. It
has been widely believed, until recently, that the damp-
ing time in ferromagnets cannot be arbitrarily long. [5–
7] However, spins in semiconducting quantum dots prove
otherwise: exceptionally long relaxation times of single
electron spins have been observed, of up to ∼ 170 ms
in GaAs, [8] and ∼ 6 s on P-donors in Si. [9] Being
the bridge between bulk and single electron spins, mag-
netic nanoparticles may also have unusually long damp-
ing time. However, the damping time in single metallic
ferromagnetic nanoparticles has not yet been measured.

Among various techniques that determine the mag-
netization motion of individual ferromagnetic nanopar-
ticles, SQUIDs (superconducting-quantum-interference-
devices) have the highest sensitivity, of up to ∼
1µB/

√
Hz, [10] where µB is the Bohr magneton.

SQUIDs allow measurements of the magnetization rever-
sal process with unprecedented detail. [11, 12] Notable
examples include studies of FePt nanobeads [13], Co
nanoparticles, [14] and ferritin, [15] with magnetic mo-
ments of approximately 106 µB, 2200µB, and 300µB, re-
spectively. Due to the relatively large size of the SQUID
pickup loop, however, measuring nanoparticles becomes
progressively more difficult as the magnetic moments of
the nanoparticles are reduced. Consequently, SQUIDs
are not used for detecting spin-1/2 states in semiconduct-
ing quantum dots or P-donors in Si. Instead, these spin-
1/2 states are measured using single-shot spin-readout
technique, [16–18] where a spin signal is converted into
a charge signal. The latter signal can be measured with
relative ease using single-electronics or quantum point
contacts. In that vein, here we adapt spin-to-charge
conversion to observe magnetization motion in individ-
ual metallic ferromagnetic nanoparticles, by measuring

FIG. 1. (a) Transmission electron microscope image of Ni
nanoparticles on amorphous alumina substrate. The square
in the upper right has area of 10 × 10 nm2. (b) Zoomed-in
nanoparticles within the square demonstrate that they are
single crystal. (c) Schematic of our tunneling device used for
magnetic sensing of a single nanoparticle. The silver-painted
regions indicate the Al leads. The white marbleized region
indicates the alumina tunneling barrier.

an internal charge displacement induced by the magne-
tization displacement. Since spin-to-charge conversion is
effective in detecting motion of single spins, [16, 18] our
technique does not suffer from the difficulty due the re-
duced magnetic moment of the nanoparticles. Although
we measure the magnetization indirectly, the technique
is self-calibrating, because the chemical potential versus
magnetization orientation is measured independently us-
ing tunneling spectroscopy of discrete levels in magnetic
field. Our main results are the observation of record long
magnetic damping time of approximately 10 ms in a fer-
romagnet, finding a peak in damping time versus mag-
netic field, and a physical interpretation of the effect.

Single crystal Ni nanoparticles that we measure are
shown in Fig. 1. In the ferromagnetic state, the minority-
spin electron-box level spacing can be estimated using
the nanoparticle volume and band structure calculation
of the density of states, [19] δ = 0.45±0.18 meV, with the
uncertainty due to volume fluctuations among nanoparti-
cles. The spin magnitude S = 420 is estimated as the vol-
ume times bulk magnetization divided by µB. Fig. 1(c)
shows a schematic of the tunneling device we use for
measuring the nanoparticle. All measurements presented
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here are at 70 mK ambient temperature, using a current
amplifier with time constant T = 0.3 s. See Supplemen-
tal Material at [URL] for details about sample fabrication
and measurements.

Fig. 2(a) displays the IV-curves of sample 1 measured
at fixed B. Near B = 0, the Coulomb blockade voltage
threshold is 15.2 mV. The current exhibits discrete steps
with V due to the electron-in-a-box quantization. [20]
The electron temperature in the leads 150 mK is ob-
tained from the width of the steps at B = 0. When we
sweep B at fixed V , current does not display magnetic
hysteresis. Fig. 2(c,d) displays dI/dV versus voltage at
fixed B. As B varies, the peak voltages [or step voltages
in I(V )] shift non-monotonically and differently among
the levels, resembling prior work on magnetic quantum
dots. [21–25] These type of shifts are the consequence of
spin-orbit coupling between the magnetization orienta-
tion and the electronic states. [26, 27] To minimize the
Zeeman plus spin-orbit energy, the ground state magneti-
zation unity vector m(B) changes orientation with mag-
netic field, thereby inducing the energy level spin-orbit
shift ǫn[m(B)]. It is striking that the levels shift nonlin-
early even in the high magnetic field range of 6− 11.5 T.
The magnetization is mostly collinear with the magnetic
field at high magnetic fields, [28] implying that the effect
of spin-orbit coupling on electronic states is so strong
that the small magnetization displacements that remain
above 6 T lead to significant changes of the level ener-
gies. That is, the level energy is in a sense a sensitive
detector of magnetization displacement. The levels ap-
proach negative slope in voltage versus field at 11.5 T,
comparable to the expected slope −µB from the Zeeman
shift [red line in Fig. 2(d)]. At 11.5 T, the difference ∆n

between the measured (e.g., spin-orbit plus Zeeman) and
the expected (e.g., Zeeman) shifts fluctuates among the
lowest three levels, i.e., ∆n = 0.50, 0.90, and 1.05 meV
for n = 1, 2, 3, with the corresponding root-mean-square
value rms(∆) = 0.23 meV. The rms value is also an esti-
mate of the rms energy level for the isotropic magnetiza-
tion distribution, within a factor of 2. See Supplemental
Material at [URL] for the relation between the two rms
values.

A shift of the electronic energy induced by a magneti-
zation displacement implies that the magnetization will
also shift if the electronic subsystem is displaced. A sig-
nature of this magnetic reaction is the magnetic field de-
pendence of current noise, which is the first key result
of this paper. As shown by the IV curves and conduc-
tance maps in Fig. 2, the field intervals of ±(0.7, 1.5) T
exhibit enhanced current and conductance noise at high
voltage, with the typical tunneling current in the noisy
region In = 2 pA. This magnetic field induced enhance-
ment of the noise is particularly striking if we plot the
differential conductance traces [Fig. 2(b)]. Fig. 3(a) dis-
plays rms current noise versus magnetic field, obtained
from those conductance traces. (We calculate rms con-

FIG. 2. Sample 1 at 70 mK: (a) Current versus voltage at
fixed magnetic fields indicated by the numbers on panel a
and between pairs of panels on left and right. (b) Differential
conductance versus voltage, at three fixed fields, showing pro-
nounced noise at 1.2 T and high voltage. The spacing between
tick marks is 10−4e2/h. In (a,b) the curves are offset verti-
cally for clarity. (c,d) Differential conductance maps, showing
discrete level shifts with magnetic field. The enhanced cur-
rent noise in the narrow magnetic field range is indicated by
yellow boxed arrows to the right. Color bar indicates the con-
ductance interval (−10−4, 5× 10−4)e2/h. The yellow straight
lines are the expected Zeeman shifts of the lowest level.

ductance in voltage interval (17, 22) mV and multiply by
the voltage increment.) By fitting rms(I) versus B to a
Gaussian, we obtain peak noise field of BP ≈ 1.4 T and
the excess noise of rmsP (I) ≈ 30 fA at B = BP .

Bearing in mind that the tunneling current in a single
electron transistor is sensitive to charge fluctuations in
the surrounding dielectric, we may calculate the chem-
ical potential fluctuations of the nanoparticle [rms(µ)]
measured at the amplifier output, that would correspond
to the observed current noise. First we find the aver-
age slope of the IV-curve at voltages where we measure
the noise and multiply rms(I) with that slope to find
rms(V ). Then we convert from voltage to energy and
find rms(µ) ≈ 48µeV at B = BP .

The strong magnetic field dependence of the current
noise, along with the symmetry about B = 0, implies
magnetic rather than electric origin of the excess noise.
This conclusion is further supported by the observation
that the enhanced current noise is suppressed in the
voltage region that includes well resolved step-voltages
(< 17 mV). The sensitivity of the current to a chemical
potential fluctuation is generally highest at step voltages,
where I(V ) is the steepest. [29] So if the excess noise
near B = BP were induced by the fluctuating charges, it
would be more pronounced about the step voltages com-
pared to higher voltages where I(V ) curve is less steep.

Fig. 3(b) sketches the effect of electron transport on
magnetic damping. For simplicity, we may assume that
only minority levels are involved in transport and that
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the electronic system of the nanoparticle is fully relaxed.
(We revisit the assumption later on.) A tunneling tran-
sition into a discrete level of the magnetic nanoparticle
can either be direct or assisted by a spin-flip transition
∆Sz = ±1 in the magnetic subsystem. If the Fermi
level (EF ) is above a discrete level energy [level 1 in
Fig. 3(a)], but below that energy plus magnetic quantum
h̄Ω ≈ gµBB, then the lead can absorb but not emit mag-
netic quanta by tunneling into that level. This will cause
strong damping by electron transport consistent with the
suppression of chemical potential noise at the step volt-
ages. [30, 31] If, however, EF is much higher than the
transition energy [level 2 in Fig. 3(a)], the Fermi distri-
bution will not favor absorption to emission and therefore
damping by tunneling via level 2 will be suppressed. At
high voltage, only one level (level 1) near EF may con-
tribute to damping, while the remaining energetically ac-
cessible levels still contribute to symmetric emission and
absorption of magnetic quanta. Since the relative damp-
ing rate in that case is lower, the magnetic displacement
will be higher, consistent with the enhanced chemical po-
tential noise we measure at high voltages.

If all energetically accessible levels are well below EF

and no other damping mechanisms are present, the mag-
netization will be freely diffusing, with an approximately
isotropic distribution in solid angle. [30, 31] We note a
subtle point that the magnetic damping time is finite in
the free diffusion regime, since the principle of detailed
balance demands symmetry between time averaged emis-
sion and absorption powers. This free-diffusion damping
time is the one that we measure here.

It may be apparent that the measured rms(µ)
is related to the intrinsic rms-fluctuation 〈|δǫ|〉 of
the nanoparticle chemical potential as rms(µ) =
〈|δǫ|〉

√

T1,d/T . See Supplemental Material [url] for the
analysis of magnetization interaction with the environ-
ment, which includes Ref. [32].

T1,d = T

[

rms(µ)

〈|δǫ|〉

]2

. (1)

Let us assume that the magnetization is freely diffus-
ing. In that case, 〈|δǫ|〉 is the isotropic rms-shift and we
may substitute 〈|δǫ|〉 = rms(∆) and obtain T1,d = 13 ms
at B ≈ BP . Now we make our central hypothesis, which
is also the second main result of this paper, that the ex-
perimenter can identify free spin diffusion by observing
that rms(µ) increases with magnetic field at fixed bias
voltage. On the other hand, if they observe that rms(µ)
decreases with field, the magnetization will be in the lin-
ear, strongly damped, and harmonic oscillator regime,
while 〈|δǫ|〉 and by extension T1,d cannot be determined
from the data.

Before we justify the hypothesis, we evaluate the sta-
tus of the electronic subsystem in the nanoparticle in
our measurement. The status is not critical for the

FIG. 3. (a) Root-mean-square current versus magnetic field in
sample 1. The line between the points is a fit to a Gaussian.
(b) Schematic of magnetic damping by electron transport,
showing enhanced damping of level 1, and suppressed damp-
ing of level 2. (c) Same as in (a) but in sample 2. (d) Differen-
tial conductance in sample 2 at 70 mK, showing pockets of en-
hanced conductance noise indicated by yellow boxed arrows.
Color bar indicates conductance range (−2×10−5, 10−4)e2/h.

mechanistics of spin diffusion and damping, however,
it is related to prior experiments in the field which we
use as references. Fig. 4 sketches the ground state and
various electronic and spin excitations in the simplest
and exactly solvable model of metallic ferromagnetic
nanoparticles. [33, 34] In the ground state displayed in
Fig. 4(a), the minority and majority quasiparticle states
are shifted in energy by the exchange splitting, which
breaks the time reversal symmetry and the associated
Kramers degeneracy. Stoner excitations are spin-flip
particle-hole excitations involving different Kramers dou-
blets, as sketched in Fig. 4(b,c). Prior measurements of
the relaxation time T1,s of Stoner excitations in metal-
lic ferromagnetic nanoparticles yield unusually large val-
ues, of T1,s ∼ 0.1µs using nonequilibrium tunneling spec-
troscopy at mK-temperature, [22] and T1,s ∼ 0.1− 10µs
using spin accumulation. [35–37] Since in our measure-
ment the electron tunneling time e/In is shorter than
T1,s, the electronic subsystem is out of equilibrium, fluc-
tuating between Stoner excitations within the energy
range eV/kB ∼ 100 K. [34, 38]

Next we examine how electron tunneling and the
nonequilibrium electronic distribution impart dynamics
in the magnetic subsystem. Tunneling and internal re-
laxation transitions in the electronic subsystem produce
spin-orbit energy fluctuations, which can induce transi-
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FIG. 4. Spin excitations in an idealized metallic ferromagnetic
nanoparticle. The spin direction is indicated by the color gra-
dient, e.g. the left levels are spin down, and the right levels
are spin up. (a) The ground state. (b),(c) Stoner excita-
tions with ∆Sz = −1 and −2, respectively. The electronic
densities in (a,b,c) vary. (d,e,f) State representations after
subtracting the exchange splitting. (e,f) Components of the
collective magnetic excitations, for ∆Sz = −1 and ∆Sz = −3,
respectively. The electronic densities in (d,e,f) are the same.

tions between the states of the magnetic subsystem. A
useful intuitive picture of this effect is that the fluctu-
ating anisotropy energy induces noncollinear magneti-
zation orientations among the magnetic ground states
corresponding to different electronic configurations. In
general, electron transfer combined with noncollinear-
ity of the initial and final magnetizations implies spin-
transfer. [39] We may suppose that the ground state
magnetizations of different electronic configurations be-
come more collinear in the strong magnetic field, as the
Zeeman energy overtakes the anisotropy energy, thereby
suppressing the spin-transfer rates between the magneti-
zation and electrons. Hence, free spin diffusion embodies
a magnetic damping time that increases with magnetic
field. See Supplemental Material [url] for magnetic field
scaling of the damping time, which includes Refs. [40–42],
and magnetic damping to other environments.

However, the damping time due to phonons decreases
versus B with a power law, analogous to the spin relax-
ation time in semiconducting quantum dots. [8, 9] There-
fore, the magnetic field is a lever that changes the dom-
inant environment for magnetic damping. In the strong
magnetic field, spin fluctuations decrease rapidly with B,
as the magnetization localizes about the ground state di-
rection due to the strong damping by phonons. Thus,
the measured peak in rms(µ) versus B is consistent with
the crossover from free spin diffusion to strongly damped
magnetic dynamics. The key effects described here are
observed in two additional samples. Fig. 3(c,d) shows
those effects in sample 2, where we also find T1,d ≃ 10 ms.

Is there a physical justification for such long T1,d? The
relation between Stoner and collective spin excitations
in a metallic ferromagnetic nanoparticles is analogous to

that between the triplet-singlet and intra-Kramers (e.g.,
sublevel-to-sublevel) transitions in semiconducting quan-
tum dots. The relaxation time between the triplet and
singlet states is much shorter than that between the
Kramers sublevels, [16, 43] since triplet to singlet transi-
tions involve states with different electronic densities at
B = 0, while the transitions between Kramers sublevels
involve states with equal electronic density at B = 0.
Consider Figs. 4(d,e,f) that display the ground state
and the collective magnetic excitations in the simplest
theoretical model of metallic ferromagnetic nanoparti-
cle. [33, 34] These excitations are admixtures of particle-
hole excitations, with example components illustrated in
Figs. 4(e,f). Within the model, they all have the same
electronic density, in contrast to Stoner excitations. Since
the measured values of T1,s in metallic ferromagnetic
nanoparticles are up to 10 µs long, [22, 35–37] we find
that the observed value T1,d ≃ 10 ms is plausible.

In conclusion, we present real-time detection of mag-
netic motion in single metallic ferromagnetic nanopar-
ticles, using the conversion of magnetic dynamics into
an effective charge dynamics. We observe nonmonotonic
magnetic field dependence of magnetic damping time,
which we attribute to the crossover in damping between
the electronic and ambient environments. The magnetic
damping time of approximately 10 ms in Ni nanoparticles
establishes a benchmark for magnetic damping in mag-
netic nanoparticles, and provides the relevant time scale
where the magnetic dynamics can be studied. This long
time scale opens the possibility to explore highly under-
damped magnetodynamics, which is a prerequisite for
observing macroscopic quantum effects in the dynamics.
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