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We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material
α-RuCl3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance
were detected in the zigzag ordered phase, with magnetic field applied in the ab plane. A very
rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The
obtained data are compared with results of recent numerical calculations, strongly suggesting a
very unconventional multiparticle character of the spin dynamics in α-RuCl3. The frequency-field
diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced
energy gap, revealed by thermodynamic measurements.

PACS numbers: 75.10.Jm, 75.50.Ee, 76.30.-v, 75.30.Et

Spin systems with honeycomb structures have recently
attracted a great deal of attention, both theoretically
and experimentally. It was proposed that some of such
systems can be experimental realizations of the Kitaev-
Heisenberg model [1], which encompasses a variety of
possible magnetic ground states (from a conventional
Néel order to a quantum spin liquid) and emergent frac-
tional excitations (e.g., Majorana fermions and gauge
fluxes) [2–8]. An essential peculiarity of this model is
the presence of anisotropic bond-dependent interactions,
defined in the Hamiltonian (Eq. 1) by the Kitaev param-
eter K:

H = J
∑

〈i,j〉

SSSi ·SSSj +K
∑

〈i,j〉m

SSSm
i ·SSSm

j′ − hhh
∑

i

SSSi, (1)

where Si and Sj are spin-1/2 operators at sites i and
j, respectively, J is the Heisenberg exchange interaction,
m = x, y, z label the three different links of the lattice,
and h is the uniform magnetic field. The Kitaev physics
is thought to be realized in Ir-based magnets (such as
A2IrO3, A = Na or Li [2, 9–11]), where, due to a strong
spin-orbital interaction, the multiorbital 5d t2g state can
be mapped into a single orbital state with a pseudospin
jeff = 1/2.
Recently, the honeycomb-lattice material α-RuCl3

[Fig. 1(a)] has been proposed as another promising can-
didate to exhibit Kitaev physics. The local cubic sym-
metry of α-RuCl3 is almost perfect, in contrast to the iri-

dates. As revealed experimentally [12, 13], the magnetic
susceptibility and magnetization of α-RuCl3 are very
anisotropic, evident of the low-spin state of Ru3+. Low-
temperature neutron scattering measurements [14, 15]
suggested a collinear zigzag-ordered magnetic structure,
which is one of the magnetic states predicted by the
Kitaev-Heisenberg model. Magnetic field applied in the
ab plane suppresses the long-range magnetic order, so
that above the critical field Hc ≈ 7 T the system is in
a quantum paramagnetic phase [12, 13, 16]. At about
23 T the system undergoes the transition into the mag-
netically saturated phase [13, 17]. One exciting property
of the quantum paramagnetic phase is the presence of
a field-induced energy gap, revealed experimentally by
means of nuclear magnetic resonance and heat-transport
measurements [18–21].

In this work, we present results of systematic high-
frequency electron spin resonance (ESR) studies of α-
RuCl3 in magnetic fields up to 16 T, allowing us to gain
a deeper insight into the nature and peculiarities of the
spin dynamics in this material across different phases of
its phase diagram.

Single-crystal α-RuCl3 samples with typical sizes of
3x3x0.5 mm3 were prepared using a vapor transport tech-
nique starting from pure RuCl3 powder [14]. The sam-
ples were characterized using standard thermodynamic
techniques; the obtained specific-heat data are consis-
tent with published results [12], exhibiting a sharp peak
at TN ≃ 7.5 K and the onset of a broad anomaly near
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14 K (the latter is attributed to the presence of stack-
ing faults [13]). The ESR measurements were performed
employing a 16 T transmission-type ESR spectrometer,
similar to that described in Ref. [22]. In our experi-
ments, a set of backward-wave oscillators, Gunn diodes,
and VDI microwave sources were used, allowing us to
probe magnetic excitations in this material in the very
broad quasi-continuously covered frequency range from
ca 50 GHz to 1.2 THz. The experiments were done in
the Voigt configuration with magnetic field applied in
the ab plane at temperatures down to 1.4 K.

FIG. 1: (a) Schematic view of the α-RuCl3 crystal structure
in the trigonal setting (ab view). The Ru3+ ions are shown in
cyan, while the Cl− ions are shown in red. (b) The reciprocal
lattice of the honeycomb lattice (first and second Brillouin
zones are shown).
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FIG. 2: Examples of ESR spectra taken at different frequen-
cies (H ‖ [110], T = 1.4 K). The spectra are offset for clarity.

A very rich excitation spectrum was observed at a tem-
perature of 1.4 K (Fig. 2), revealing the presence of six
absorption lines: modes A and B were detected in the
low-field zigzag-ordered phase, while modes C, D, E, and
F in the field-induced quantum paramagnetic phase.
Angular dependences of resonance fields for modes C,

D, and E (measured at a frequency of 1119 GHz, T = 1.4
K) are shown in Fig. 3. The experiment reveals the 60◦

periodicity of ESR fields, as expected for a honeycomb

structure. The angles 0◦ and 30◦ correspond to [110]
and [100] direction, respectively. We would like to stress
the importance of these measurements, allowing us to
confirm the very high, twin-free, quality of the single-
crystalline samples we used.
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FIG. 3: Angular dependence of the ESR modes C, D, and E,
taken at a frequency of 1119 GHz, T = 1.4 K. The angles 0◦

and 30◦ correspond to [110] and [100] direction, respectively.
Lines are guides to the eye.

The frequency-field diagrams of ESR excitations for
H ‖ [110] are shown in Fig. 4. As mentioned, two gapped
ESR modes, A and B, were observed belowHc, where the
system is in the zigzag-ordered state. The intensities of
both modes decrease with increasing temperature, and at
about TN ≃ 7.5 K both resonance lines vanish (Fig. 5),
evidenced that the detected ESR modes are indeed the
modes of antiferromagnetic resonance (AFMR) in the
long-range magnetically ordered zigzgag phase. The ex-
trapolation of the frequency-field dependences of modes
A and B to zero field [23] revealed gaps ∆A = 620 GHz
(which corresponds to 2.56 meV) and ∆B = 790 GHz
(3.27 meV), respectively [Fig. 4]. The gap ∆A = 620
GHz is consistent with results of inelastic neutron scat-
tering at the Γ point [24], time-domain THz spectroscopy
[25] measurements (shown in Fig. 4 by a gray circle)
and calculations [26], providing clear evidence of mag-
netic excitations at the center of the Brillouin zone. It is
important to mention that due to absence of the inver-
sion symmetry on the second-nearest-neighbour bonds,
the Dzyaloshinskii-Moria (DM) term in α-RuCl3 is al-
lowed, allowing in its turn, ESR transitions at the K
point (Fig. 1). Such excitations at the Brillouin-zone
boundaries were observed in a number of multisublat-
tice antiferromagnets (see, e.g., [27–29]) and known as
exchange modes. Thus, mode B can be interpreted as
exchange AFMR mode. Both AFMR branches demon-
strate pronounced softening with increasing field. It is
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FIG. 4: Frequency-field diagrams of ESR excitations in α-
RuCl3 for H ‖ [110], T = 1.4 K (symbols). The experimen-
tal data are shown together with the ESR response at the Γ
point for H ‖ a, hω ⊥ H (color scale), obtained numerically
by means of ED for clusters up to 24 spins [31]. Zero-field ex-
citations observed at the Γ point by means of neutron scatter-
ing [24] and THz spectroscopy [25] measurements are shown
by a gray circle. Dash lines correspond to the fit results as
described in [23]. The field-induced gap revealed in the high-
field phase by means of heat-transport measurements [20] is
denoted by crosses.
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FIG. 5: Temperature dependence of integrated ESR intensi-
ties for modes A (a) and B (b), taken at frequencies 500 and
740 GHz, respectively (H ‖ [100]).

noticeable, that the lowest-energy observed AFMR gap,
corresponding to magnetic excitations at the Γ point, re-
mains open at Hc. The presence of additional anisotropic
terms (such as, e.g., the staggered DM interaction) can
be a reason of the observed phenomenon [30].

Now we would like to focus on the high-field spin dy-
namics in α-RuCl3. Above Hc ≈ 7 T, the long-range

zigzag order is suppressed, and the system is in the
magnetically disordered but strongly correlated quantum
paramagnetic phase. There, four modes were observed.
The corresponding frequency-field diagrams of magnetic
excitations for H ‖ [110] are shown in Fig. 4. In our
experiments, the most intensive mode C can be detected
at temperatures up to ∼ 20 K (Fig. 2). Mode D is less
intensive and was observed at temperatures up to ∼ 15
K. Modes E and F are relatively week, but still can be
detected at lowest available temperature, 1.4 K.

Using exact diagonalization (ED) calculations on a 22-
spin cluster for an extended Kitaev-Heisenberg model,
Yadav et al. [3] predicted the presence of a field-
induced gapped quantum spin liquid state. In addition
to the Kitaev coupling K = −5.6 meV, in-plane g fac-
tor gab = 2.51, and isotropic Heisenberg exchange in-
teractions between nearest-, second-nearest-, and third-
nearest-neighbor sites, J1 = 1.2 meV, J2 = J3 =
0.25 meV, the model includes nearest-neighbor symmet-
ric anisotropic exchange constants Γxy = −1.2 meV and
Γzx = −Γyz = −0.7 meV. For the given set of parame-
ters, a spin liquid state was predicted to exist in α-RuCl3
between approximately 11.5 and 14 T [3]. Notably, the
crossover from the spin-liquid to a spin-polarized phase
should be accompanied by a pronounced dip in the exci-
tation energy at about 15 T [3]. No indication of such a
dip in magnetic fields up to 16 T (at least for the chosen
direction of the applied magnetic field) has been reveled
in our experiments.

Baek et al. [18] performed ED calculations for the reg-
ular Kitaev-Heisenberg model on a 24-spin cluster, with-
out symmetric anisotropic coupling and assuming K =
−10.0meV, gab = 2.4, J1 = 2.0 meV, J2 = J3 = 0.5 meV.
The calculations were done for intensities integrated over
a broad momentum range and revealed a very rich exci-
tation spectrum.

Recently, Winter et al. [31] have reported another ED
study of α-RuCl3 for magnetic excitations at the Γ point
(which is the most common case for ESR) and includ-
ing symmetric anisotropic coupling. They considered a
simplified C3-symmetric four-parameter model, assum-
ing J1 = −0.5 meV, K1 = −5.0 meV, Γ1 = 2.5 meV,
J3 = 0.5 meV. For fields H > Hc the calculations showed
a large redistribution of spectral weight, which can be at-
tributed to the anisotropic frustration of the considered
model. Comparison of the calculation results for mag-
netic field H applied along the a axis (which corresponds
to the [110] axis in our experiments) with the ESR data
revealed a very good qualitative agreement. The calcu-
lation results are shown as color scale together with the
experimental data in Fig. 4. A particular good agree-
ment was obtained for the most intensive ESR mode C,
suggesting that this mode corresponds to excitations at
the Γ point. The observation of a number of ESR modes,
not accounted by the calculations [31] for magnetic exci-
tations at the Γ point, potentially suggests the presence
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of exchange ESR modes (see the discussion above). The
corresponding calculations are in progress [32].

Numerical calculations [18, 31] above Hc predicted a
rather complex excitation spectrum, consisting of a num-
ber of modes, whose activation energy increases with in-
creasing field. A noticeable high-field property of the
detected modes C and F is their unusually large slope
gabµB∆S ≈ 0.27 meV/T (it is interesting, that the field
dependence of mode F, the lowest mode observed in our
ESR study in the H > Hc region, matches that of the
gap, extracted from the heat-transport experiments [20]).
The remarkably large slope might imply the presence of
ESR transitions with ∆S ≈ 2 (contrary to ∆S = 1, ex-
pected for elementary one-particle excitations in simple
S = 1/2 systems). This observation (together with re-
sults of the ED calculations, evident of a number of ex-
citation modes, split off from the higher-energy contin-
uum), suggests that the spin dynamics of α-RuCl3 has
an emergent multiparticle nature. To the best of our
knowledge, such unconventional discrete (bound-state-
like) multiparticle excitation spectrum has never been
previously observed in magnetic systems with a honey-
comb lattice. One can speculate that strong ferromag-
netic Kitaev’s coupling K may facilitate the formation
of two-magnon bound states that are strongly split down
from the two-magnon continuum. However, at present
stage, it is unclear whether observed multiparticle exci-
tations correspond to bound magnons or to bound Majo-
rana spinons (and, in the latter case, whether the spinons
are confined or simply bound). We hope that our data
will stimulate further theoretical studies of the unusual
spin dynamics in α-RuCl3, in particular, in its high-field
phase.

In conclusion, we performed comprehensive high-field
ESR studies of α-RuCl3, an anisotropic spin system with
a honeycomb structure that is considered a top candidate
for exhibiting Kitaev’s spin-liquid physics. Our experi-
ments revealed the presence of two soft AFMR modes in
the zigzag-ordered phase and uncovered the rather com-
plex spin dynamics in the field-induced quantum para-
magnetic state, characterized by emergent multiparticle
excitations. Our observations can have a broader im-
pact, suggesting that honeycomb-lattice magnets might
serve as an excellent playground to study unconventional
many-body quantum processes in condensed matter, in-
cluding, e.g., field-induced condensation of bound states
(with a potential realization of the spin-nematic order),
Efimov effect, etc.

N ote: Upon finalizing this manuscript, we became
aware of two other high-field spectroscopy studies of α-
RuCl3, by Wang et al. [33] and Wellm [34]. Apart from
the low-frequency AFMR mode and a number of exci-
tations in the field-induced disordered phase (partially
similar to that observed by us), a signature of a broad ex-
citation continuum, an indication of the unconventional
multiparticle spin dynamics in α-RuCl3, was revealed.
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B. Büchner, Phys. Rev. Lett. 119, 037201 (2017).

[19] J. A. Sears, Y. Zhao, Z. Xu, J. W. Lynn, and Y.-J. Kim,
Phys. Rev. B 95, 180411 (2017).

[20] R. Hentrich, A. U. B. Wolter, X. Zotos, W. Brenig,
D. Nowak, A. Isaeva, T. Doert, A. Banerjee, P. Lampen-
Kelley, D. G. Mandrus, S. E. Nagler, J. Sears, Y.-J. Kim,
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