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The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit
coupling and facilitates the realization of a large-scale quantum processor. However, qubits based
on electron spins in semiconductor quantum dots have proven challenging to couple to microwave
photons. In this theoretical work we show that a sizable coupling for a single electron spin is
possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum
dot. Based on parameters already shown in recent experiments, we predict optimal working points
to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range
entanglement. Furthermore, we employ input-output theory to identify observable signatures of
spin-photon coupling in the cavity output field, which may provide guidance to the experimental
search for strong coupling in such spin-photon systems and opens the way to cavity-based readout
of the spin qubit.

PACS numbers: 42.50.Pq, 73.21.La, 03.67.Lx, 85.35.Gv

I. INTRODUCTION

Building a practical solid state quantum processor ne-
cessitates a flexible scheme of coupling individual qubits
such that a 2D array of qubits, or even a network with
connectivity between arbitrary pairs of qubits (“all-to-
all” connectivity), may be achieved [1–3]. For super-
conducting qubits, entanglement of qubits separated by
macroscopic distances has been demonstrated using the
approach of circuit quantum electrodynamics (cQED) [4–
7], whereby photons confined inside microwave frequency
cavities serve as mobile carriers of quantum information
that mediate long-range qubit interactions [8, 9]. Com-
pared to superconducting qubits, qubits based on spins
of electrons in semiconductor quantum dots (QDs) have
the virtue of long lifetimes (T1) that can be on the order
of seconds for Si [10, 11]. On the other hand, the cou-
pling between electron spins is typically based on nearest
neighbor exchange interactions [12], therefore the cou-
pling of spin qubits has remained limited to typical dis-
tances <100 nm [13–15]. The development of a spin-
cQED architecture in which spin qubits are coherently
coupled to microwave frequency photons is therefore a
critical goal which would enable a spin-based quantum
processor with full connectivity.

To transfer quantum states between a spin qubit and a
cavity photon with high fidelity, it is necessary to achieve
the strong-coupling regime in which the spin-photon cou-
pling gs exceeds both the cavity decay rate κ and the
spin decoherence rate γs [4, 16]. While demonstrations of
strong coupling have already been made with supercon-
ducting qubits [17] and semiconductor charge qubits [18–
20], such a task has proven challenging for a single spin
due to its small magnetic dipole, which results in coupling
rates that are less than 1 kHz and too slow compared
to typical spin dephasing rates [16, 21–23]. An alterna-
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Figure 1. Schematic illustration of the Si gate-defined DQD
influenced by an homogeneous external magnetic field, Bz,
and the inhomogeneous perpendicular magnetic field created
by a micromagnet, with opposite direction at the positions
of the two QDs, ±Bx. The DQD is electric-dipole-coupled
to the microwave cavity represented in blue. The cavity field
is excited at the left and right ports via ain,1 and ain,2, and
the output can be measured either at the left (aout,1) or right
port (aout,2).

tive route toward strong spin-photon coupling involves
hybridizing the spin and charge states of QD electrons
[6, 24–27]. The relatively large electric susceptibilities
of the electron charge states lead to an effective spin-
photon coupling rate gs on the order of MHz, as recently
demonstrated by a carbon nanotube double quantum dot
(DQD) device [28]. However, spin-charge hybridization
also renders spin qubits susceptible to charge noise, which
has up to now prevented the strong coupling regime from
being reached with a single spin [28]. Only recently, the
achievement of strong coupling between single spins and
microwave photons has been reported [29, 30]. Coupling
of three-electron spin states to photons has also been re-
ported [31].
Here we analyze a scheme for strong spin-photon cou-

pling using a semiconductor DQD placed in the inhomo-
geneous magnetic field of a micromagnet, first outlined
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Figure 2. (a,b) Energy levels En (n = 0, . . . 3) as a function
of the DQD detuning parameter ε. The dashed lines are the
energy levels without a magnetic field gradient (Bx = 0).
They correspond to the bonding (-) and antibonding (+) or-
bitals with spin ↑, ↓ in the z-direction, denoted by |±, ↑ (↓)〉.
The arrow represents the transition driven by the probe
field, at frequency ωR. Here, we choose the parameters
Bz = 24µeV and Bx = 10µeV. For the tunnel coupling: (a)
tc = 15.4µeV > Bz/2 and (b) tc = 10.2µeV < Bz/2. (c,d)
Schematic representation of the Λ-system that captures the
essential dynamics in (a) and (b), respectively (near ε = 0).
If the orbital energy, Ω =

√
ε2 + 4t2c , is near Bz, the levels

|−, ↑〉 and |+, ↓〉 hybridize into the states |1〉 and |2〉 due to
the magnetic field gradient, while the ground state is approx-
imately unperturbed |0〉 ∼ |−, ↓〉. The wavy lines represent
charge decoherence with rate γc.

in Ref. [26]. We extend this previous work by predict-
ing a complete map of the effective spin-photon coupling
rate gs and spin decoherence rate γs. This allows us
to find optimal working points for coherent spin-photon
coupling. We further present detailed calculations of the
cavity transmission and identify experimentally observ-
able signatures of spin-photon coupling. Importantly, we
predict that the strong-coupling regime between a single
spin and a single photon is achievable in Si using values of
the charge-cavity vacuum Rabi frequency gc and charge
decoherence rate γc from recent experiments [18, 32].

The physical system consists of a gate-defined Si
DQD that is embedded in a superconducting cavity; see
Fig. 1. The electric-dipole interaction couples the elec-
tronic charge states in the DQD to the cavity electric
field. The introduction of an inhomogeneous magnetic
field, as sketched in Fig. 1, hybridizes the charge states

of a DQD electron with its spin states, indirectly coupling
the cavity electric field to the electron spin.

II. THE MODEL

We assume that the DQD is filled with a single elec-
tron and has two charge configurations, with the electron
located either on the left (L) or right (R) dot, with onsite
energy difference (detuning) ε and tunnel coupling tc. If
a homogeneous magnetic field Bz and a perpendicular
spatial gradient field Bx are applied we can model the
single electron DQD with the Hamiltonian

H0 = 1
2 (ετz + 2tcτx +Bzσz +Bxσxτz) , (1)

where τα and σα are the Pauli operators in position (L,R)
and spin space, respectively. Here, Bz(x) are the mag-
netic fields in energy units and ~ = 1. The valley degree
of freedom present in these type of DQDs has not been
considered in this model. Low-lying valley states are ex-
pected to lead to additional resonances and be detected
in the cavity transmission [33, 34]. For the purposes con-
cerning this work, spin-photon coupling via spin-charge
hybridization, the ideal situation is to have quantum dots
with a sufficiently large valley splitting, & 40µeV, as the
ones recently measured in similar devices [34–36]. We
have therefore a 4-level Hamiltonian with eigenenergies
En and eigenstates |n〉 for n = 0, .., 3. The eigenenergies
in the regime 2tc > Bz (2tc < Bz) are shown in Fig. 2 (a)
[Fig. 2 (b)]. The magnetic field gradient generates spin-
charge hybridization, coupling the original (Bx = 0) en-
ergy levels (dashed lines) and inducing anticrossings at
ε = ±

√
B2
z − 4t2c if 2tc < Bz; see Fig. 2 (b).

In the dipole approximation, the coupling of the DQD
to the electric field of a microwave cavity can be described
as

HI = gc
(
a+ a†

)
τz , (2)

where a and a† are the bosonic cavity photon creation
and annihilation operators. The Hamiltonian for the rel-
evant cavity mode, with frequency ωc is Hc = ωca

†a.
In the eigenbasis of H0, the interaction acquires non-
diagonal elements,

HI = gc
(
a+ a†

) 3∑
n,m=0

dnm |n〉 〈m| . (3)

As we will show below, the essential dynamics of this
system can also be described in terms of a so called Λ-
system, with two weakly-coupled excited states and a
ground state; see Figs. 2 (c) and (d) [37–39].
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III. INPUT-OUTPUT THEORY

To treat the DQD and the cavity as an open system, we
move into the Heisenberg picture and use the quantum
Langevin equations (QLEs) for the system operators, in-
cluding the photon operators a, a†, and σnm = |n〉 〈m|.
This treatment enables the calculation of the outgoing
fields, aout,1 and aout,2, at the two cavity ports given the
incoming weak fields, ain,1 and ain,2 [40–42].

If the average population of the energy levels, pn ≡
〈σnn〉, follows a thermal distribution, the linear response
to a probe field is reflected in the dynamics of the non-
diagonal operators σnm. If the cavity is driven with a
microwave field with a near-resonant frequency ωR, the
QLEs in a frame rotating with the driving frequency read

ȧ = i∆0a−
κ

2a+
√
κ1ain,1 +

√
κ2ain,2 (4)

−igceiωRt
3∑

n,m=0
dnmσnm,

σ̇nm = −i (Em − En)σnm −
∑
n′m′

γnm,n′m′σn′m′ (5)

+
√

2γF − igc
(
ae−iωRt + a†eiωRt

)
dmn(pn − pm),

where ∆0 = ωR − ωc is the detuning of the driving field
relative to the cavity frequency, κ is the total cavity de-
cay rate, with κ1,2 the decay rates through the input
and output ports. F is the quantum noise of the DQD
and ain,i denote the incoming parts of the external field
at the ports. The outgoing fields can be calculated as
aout,i = √κia− ain,i. The superoperator γ, with matrix
elements γnm,n′m′ , represents the decoherence processes
which, in general, can couple the equations for the oper-
ators σnm. In this work, the decoherence superoperator
γ will capture charge relaxation and dephasing due to
charge noise (see Appendix A), since these are the most
relevant sources of decoherence.

This formalism allows us to compute the transmission
through the microwave cavity. Within a rotating-wave
approximation (RWA) (see Appendix B) we can elim-
inate the explicit time-dependence in Eqs. (4) and (5)
and solve the equations for the expected value of these
operators in the stationary limit (ā, σ̄n,m) to obtain the
susceptibilities,

σ̄n,n+j = χn,n+j ā; (j = 1, ..., 3− n), (6)

and the transmission A = āout,2/āin,1,

A =
−i√κ1κ2

−∆0 − iκ/2 + gc
∑2
n=0

∑3−n
j=1 dn,n+jχn,n+j

, (7)

which is in general a complex quantity. We have consid-
ered here 〈ain,2〉 = 0 and 〈F〉 = 0.

IV. ORBITAL BASIS

In the product basis of antibonding and bond-
ing orbitals +,− with spin ↑↓ in the z-direction,
{|+, ↑〉 , |−, ↑〉, |+, ↓〉 , |−, ↓〉}, the Hamiltonian in Eq. (1)
reads

Horb
0 = 1

2


Ω +Bz 0 Bx sin θ −Bx cos θ

0 −Ω +Bz −Bx cos θ −Bx sin θ
Bx sin θ −Bx cos θ Ω−Bz 0
−Bx cos θ −Bx sin θ 0 −Ω−Bz

 ,

(8)

where Ω =
√
ε2 + 4t2c is the orbital energy and we intro-

duce θ = arctan ε
2tc as the “orbital angle”. In this basis

the dipole operator takes the form

dorb =


sin θ − cos θ 0 0
− cos θ − sin θ 0 0

0 0 sin θ − cos θ
0 0 − cos θ − sin θ

 . (9)

In the simplest case, ε = 0, the orbital angle θ is zero,
and we can rewrite the Hamiltonian as

Horb
0 (ε = 0) = r

2


2tc+Bz

r 0 0 − sin Φ
0 − cos Φ − sin Φ 0
0 − sin Φ cos Φ 0

− sin Φ 0 0 −2tc−Bz

r

 ,

(10)
with r =

√
(2tc −Bz)2 +B2

x and the spin-orbit mixing
angle Φ = arctan Bx

2tc−Bz
(Φ ∈ (0, π)). As the dipole op-

erator couples the states |−, ↓〉 and |+, ↓〉 and the field
gradient couples |+, ↓〉 to |−, ↑〉, the combination of these
two effects leads to a coupling between the two differ-
ent spin states |−, ↓〉 and |−, ↑〉. It is this coupling that
can be harnessed to coherently hybridize a single electron
spin with a single photon and achieve the strong-coupling
regime.

V. RESULTS

A. Effective coupling at zero detuning

The spin-charge hybridization created by the inhomo-
geneous magnetic field allows for the coupling of the spin
to the cavity. This is visible in the form of the operator d
in the eigenbasis; see Eq. (3). In the simple case of zero
DQD detuning, ε = 0, the ordered energy levels are

E3,0 = ±1
2
√

(2tc +Bz)2 +B2
x, (11)

E2,1 = ±1
2
√

(2tc −Bz)2 +B2
x. (12)
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Using the spin-orbit mixing angle Φ, the eigenstates |1〉
and |2〉 can be expressed as

|1〉 = cos Φ
2 |−, ↑〉+ sin Φ

2 |+, ↓〉 , (13)

|2〉 = sin Φ
2 |−, ↑〉 − cos Φ

2 |+, ↓〉 , (14)

while the other two can be approximated by
|0〉 ' |−, ↓〉 , (15)
|3〉 ' |+, ↑〉 , (16)

if r � (2tc +Bz), i.e., for small |2tc −Bz|. In this limit,
the dipole matrix elements,

d =


0 d01 d02 0
d01 0 0 d13
d02 0 0 d23
0 d13 d23 0

 , (17)

simplify to

d01 = d23 ' − sin Φ
2 , (18)

d02 = −d13 ' cos Φ
2 . (19)

This means that the hybridization due to the weak mag-
netic field gradient generates an effective coupling be-
tween the levels |−, ↓〉 and |−, ↑〉, with opposite spin.
The spin nature of the transitions 0 ↔ 1 and 0 ↔ 2
depends on the spin-orbit mixing angle Φ; see Eqs. (13)
to (15). Assuming that the cavity frequency is tuned to
the predominantly spin-like transition, which is 0 ↔ 1
(0 ↔ 2) for cos Φ > 0 (cos Φ < 0), as indicated in the
level structure of Fig. 2 (c) [(d)], the effective spin-cavity
coupling strength will be given by gs = gc|d01(2)|.

B. Effective coupling at ε 6= 0

For ε 6= 0 the energy levels are

E3,0 = ±1
2

[(
Ω +

√
B2
z +B2

x sin2 θ

)2
+B2

x cos2 θ

]1/2

,

(20)

E2,1 = ±1
2

[(
Ω−

√
B2
z +B2

x sin2 θ

)2
+B2

x cos2 θ

]1/2

.

(21)

Analogously to the previous section, if√
(Ω−Bz)2 +B2

x � (Ω + Bz) we can approximate the
eigenstates by Eqs. (13) to (16) where the spin-orbit
mixing angle is now Φ = arctan Bx cos θ

Ω−Bz
(Φ ∈ (0, π)).

Within this approximation,

d01 = d23 ' − cos θ sin Φ
2 , (22)

d02 = −d13 ' cos θ cos Φ
2 . (23)
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Figure 3. (a) Expected effective coupling gs/gc = |d01(2)|, ac-
cording to Eqs. (22) and (23) as a function of tc and ε. The
black dashed line corresponds to Ω = Bz and separates the
region where gs/gc = |d0,1| (above) from the region where
gs/gc = |d0,2| (below). The most interesting region lies in
between the two white dashed lines, where our approxima-
tions are accurate (

√
(Ω−Bz)2 +B2

x � (Ω+Bz)). We chose
Bx = 1.62µeV and Bz = 24µeV. (b) Spin-photon coupling
strength gs/gc and spin decoherence rate γs/γc as a function
of tc for ε = 0, Bz = Bres

z , and Bx = 1.62µeV. Between
the two blue vertical lines, the resonance cannot be achieved
by tuning Bz. Inset: ratio gs/

√
(γ2

s + (κ/2)2)/2 in the same
range. The coupling is strong when this quantity is larger
than one (dashed line). We have chosen γc/2π = 100 MHz,
gc/2π = 40 MHz, and κ/2π = 1.77 MHz.

C. Effective coupling map

Before calculating the effect of the Si DQD on the cav-
ity transmission A, let us estimate the magnitude of the
coupling gs. For Ω > Bz (Ω < Bz), 0↔ 1 (0↔ 2) is pre-
dominantly a spin transition, therefore we can obtain a
map for the effective coupling by using gs = gc|d01(2)|;
see Fig. 3 (a). As the value of Ω approaches Bz, Φ
tends to π/2 and the coupling is maximized. However, in
this regime, due to strong spin-charge hybridization, the
charge nature of the transition increases [see Eqs. (13)
and (14)] and with it the decoherence rate increases, pre-
venting the system from reaching strong coupling. In the
following we show that the ratio of the coupling rate to
the total decoherence rate can be optimized by working
away from maximal coupling. In particular the strong-
coupling regime for the spin can be achieved.
In Appendix C, we have generalized the model to a less



5

symmetric situation, where the gradient of the magnetic
field between the quantum dot positions is not perpen-
dicular to the homogeneous magnetic field. This effect
is not critical and we expect the strong coupling regime
to be accessible as well. For simplicity, we consider the
symmetric case in the following.

D. Cavity transmission

In the following, we consider the DQD to be in its
ground state, such that pn = δn,0 in Eq. (5). If the cav-
ity frequency is close to the Zeeman energy, ωc ∼ Bz,
the transition 0↔ 3 is off-resonant and the relevant dy-
namics is contained in the level structure of Figs. 2 (c)
and (d). Moreover, this transition is not coupled to the
others since d03 = 0 and γ03,nm ∝ δn0δm3 (see Ap-
pendix A). To calculate the cavity response, it is suffi-
cient to solve the QLEs for 〈a〉, 〈σ01〉 and 〈σ02〉 (in the
following we omit the brackets) within the RWA (see Ap-
pendix B).

As explained above, the decoherence processes ac-
counted for in Eq. (5) can result in a different decay
rate for every transition and can also couple different
transitions. As shown in Appendix A, the decoherence
superoperator in the basis {σ01, σ02} reads

γ = γc

(
sin2 Φ

2 −
sin Φ

2
− sin Φ

2 cos2 Φ
2

)
, (24)

where γc is the total charge dephasing rate, which ac-
counts for charge relaxation and dephasing due to charge
noise. With this, the QLEs read

ȧ = i∆0a−
κ

2a+
√
κ1ain,1

−igc(d01σ01 + d02σ02), (25)

σ̇01 = −iδ1σ01 − γc sin2 Φ
2 σ01

+γc
2 sin Φσ02 − igcad10, (26)

σ̇02 = −iδ2σ02 − γc cos2 Φ
2 σ02

+γc
2 sin Φσ01 − igcad20 , (27)

with the detunings δn ≡ En − E0 − ωR (n = 1, 2). The
solution of these equations in the stationary limit allows
us to compute the susceptibilities

χ01 = σ̄01

ā
= gc cos θ sin(Φ/2)

δ1 − iγ(2)
eff

, (28)

χ02 = σ̄02

ā
= −gc cos θ cos(Φ/2)

δ2 − iγ(1)
eff

, (29)

where γ(n)
eff ≡ γc[δ2 sin2(Φ/2) + δ1 cos2(Φ/2)]/δn, and the

transmission through the cavity

A =
−i√κ1κ2

−∆0 − iκ2 + gc (χ01d01 + χ02d02) , (30)
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Figure 4. Cavity transmission spectrum, |A|, as a function of
Bz and ε at zero driving frequency detuning ∆0 = 0. The
other parameters are tc = 15.4µeV, Bx = 1.62µeV, γc/2π =
(100 + 150| sin θ|) MHz, gc/2π = 40 MHz, κ/2π = 1.77 MHz,
and ωc/2π = 5.85 GHz ' 24µeV.

with d01 and d02 defined in Eqs. (22) and (23). If 0↔ 1
(0↔ 2) is predominantly a spin transition and the corre-
sponding transition energy is in resonance with the cavity
frequency, we expect an effective spin decoherence rate
γs = γ

(2)
eff (γs = γ

(1)
eff ). In Fig. 3 (b) we show the ra-

tio γs/γc, together with gs/gc, as a function of the tun-
nel coupling for ε = 0. Here, we have set the exter-
nal magnetic field to the resonant value Bres

z such that
E1(2) − E0 = ωc. This is

Bres
z = ωc

√
1− B2

x

ω2
c − 4t2c

, (31)

for ε = 0. In a small region around 2tc ∼ ωc
(
√
ωc(ωc −Bx) < 2tc <

√
ωc(ωc +Bx)), indicated with

the vertical lines in Fig. 3 (b), it is not possible to achieve
the desired resonance by tuning Bz. We observe that in
the wings of the peak gs/gc � γs/γc, which may lead the
spin-cavity system to be in the strong-coupling regime
even when the charge-cavity system is not (gc < γc).
This is visible in the inset, where we show that the
ratio gs/

√
(γ2

s + (κ/2)2)/2 exceeds one, signifying the
strong-coupling regime (see Appendix D). For this cal-
culation, and in the remainder of the text, we have as-
sumed a gradient of the magnetic field between the two
dots of Bx ∼ 15 mT, one order of magnitude smaller
than the external magnetic field, a charge-cavity cou-
pling gc/2π = 40 MHz, a cavity decay rate on the order
of MHz and a much larger charge dephasing rate on the
order of 100 MHz.
According to the level structure, we expect to observe

a signature of spin-photon coupling by driving the cav-
ity near resonance (∆0 ∼ 0) and sweeping the external
magnetic field through the cavity frequency. In Fig. 4 we
show the calculated transmission through the cavity as a
function of the external magnetic field Bz and the DQD
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Figure 5. (a) Cavity transmission spectrum |A| as a function
of Bz and ∆0. (b) ((c)) shows |A| as a function of Bz (∆0) for
the value of ∆0 (Bz) indicated by the black (blue) dashed line.
In (a) tc = 15.4µeV, while in (b) and (c) we show the result
for this value (solid line) and for tc = 13.9µeV (dashed line)
and tc = 19.7µeV (dotted line). The other parameters are
ε = 0, Bx = 1.62µeV, γc/2π = 100 MHz, gc/2π = 40 MHz,
κ/2π = 1.77 MHz, and ωc/2π = 5.85 GHz ' 24µeV.

detuning ε when the driving frequency matches the cav-
ity frequency. We have chosen κ1 = κ2 = κ/2. When the
cavity frequency is close to the transition energy 0 ↔ 1,
the interaction between the electron and the cavity field
results in a significantly reduced cavity transmission. In-
terestingly, close to Bz ∼ ωc the transmission approaches
one due to an interference between the two energy levels.
At this point, χ01d01 + χ02d02 ' 0.

In the usual scenario of a two-level system coupled to
a photonic cavity, strong coupling results in light-matter
hybridization, as evidenced in the observation of vacuum
Rabi splitting in the cavity transmission spectrum when
the qubit transition frequency matches the cavity fre-
quency. The two vacuum Rabi normal modes are sepa-
rated by a frequency corresponding to the characteristic
rate of the light-matter interaction, and the linewidth of
each mode reflects the average decoherence rate of light
and matter [43]. In Fig. 5 (a), we show the absolute
value of the transmission, |A|, as a function of the mag-
netic field Bz and the driving frequency relative to ωc,
∆0, at ε = 0. The phase gives similar information (not
shown). When the driving frequency is near the cav-
ity frequency, ∆0 ∼ 0, two peaks emerge in the cavity
transmission, signifying the strong-coupling regime. In
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−30 −20 −10 0 10 20 30

Figure 6. Cavity transmission |A| as a function of ∆0 close to
the resonant field for different values of the charge-cavity cou-
pling gc/2π = {40, 80, 160}MHz. The magnetic field has been
slightly detuned from the resonance condition to make the rel-
ative heights of the vacuum Rabi split modes the same. The
rest of parameters are tc = 15.4µeV, ε = 0, Bx = 1.62µeV,
γc/2π = 100 MHz, gc/2π = 40 MHz, κ/2π = 1.77 MHz, and
ωc/2π = 5.85 GHz ' 24µeV.

Figs. 5 (b) and (c) we show the horizontal and vertical
cuts of this figure at ∆0 = 0 and Bz = Bres

z , respectively,
where Bres

z , given by Eq. (31), ensures E1 −E0 = ωc. In
Fig. 5 (b) we observe the same interference effect seen in
Fig. 4, and in Fig. 5 (c) the vacuum Rabi splitting. As
indicated with a red arrow, the effective coupling, related
to the separation between the two peaks, corresponds to
gs/2π ∼ 5 MHz and the parameters under consideration
can be readily achieved in Si DQD architectures [18, 32].

In the present case, we are dealing with a three-level
system, where the spin-photon coupling is mediated by
the spin-charge hybridization [6]. The three-level sys-
tem structure explains not only the interference but also
why the width and position of the two resonance peaks in
Fig. 5 (c) is slightly asymmetric. As expected, this asym-
metry is more apparent as gc increases, which is shown
in Fig. 6. In section VF, we reduce the problem to an
equivalent two-level system to be able to characterize the
spin-photon coupling within the standard formalism uti-
lized for the Jaynes-Cummings model.

E. Broadening due to nuclear spins

The estimated value of the spin decoherence rate in-
duced by the spin-charge hybridization is of the order
γs/2π ∼ 1 − 10 MHz. Another source of decoherence in
Si QDs is the effect of the 29Si nuclear spins which sur-
round the electron spin. As their evolution is slow com-
pared to the typical time scale of the electronic processes,
the nuclear spins effectively produce a random magnetic
field which slightly influences the total magnetic field on
the DQD. This small perturbation of the magnetic field,
Btot
z = Bz + Bnuc

z , will modify the frequency ωc + ∆0
of the two vacuum Rabi normal modes, as can be ex-
tracted from Fig. 5 (a). The nuclear magnetic field fol-
lows a Gaussian distribution with average zero and stan-
dard deviation σnuc. In this way, a Gaussian profile is
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superimposed to the Lorentzian profile of the resonances
and the final width also depends on σnuc. At the point
with maximum spin-charge hybridization (Ω ∼ Bz), this
effect is negligible because the decoherence is dominated
by charge decoherence. Away from this point, the two
broadening mechanisms have to be combined, resulting
in a Voigt profile [44]. The spin dephasing times in nat-
ural Si are ∼ 1µs, which corresponds approximately to a
standard deviation of σnuc/2π ∼ 0.3 MHz for the nuclear
magnetic field distribution [33]. According to Eq. (30),
the positions of the two vacuum Rabi modes are given
by the solutions of the equation

−∆0 + gc Re (χ01d01 + χ02d02) = 0, (32)

where the susceptibilities are a function of ∆0 via the
detunings δ1(2) ≡ E1(2)−E0−ωR and ωR = ωc + ∆0. As
the magnetic field created by the nuclear spins is small,
we can expand the solutions ∆±0 to first order to obtain

∆±0 ' ∆±0 (Bnuc
z = 0) + ∂∆±0

∂Bz

∣∣∣∣
Bnuc

z =0
Bnuc
z . (33)

Therefore the broadening of the vacuum Rabi modes due
to the nuclear spins is given by σ =

∣∣∂∆±0 /∂Bz
∣∣σnuc, and

the total spin decoherence rate is

γtot
s = γs/2 +

√
(γs/2)2 + 8(ln 2)σ2. (34)

The long spin dephasing times in Si allow the strong-
coupling regime to be reached approximately at the same
working points. For instance, for a tunnel coupling tc ∼
15µeV, the estimated spin dephasing rate induced by
charge hybridization is γs/2π ∼ 2 MHz and the broaden-
ing due to the nuclear spins is given by σ/2π ∼ 0.14 MHz,
therefore γtot

s /2π ∼ 2 MHz.

F. Two-level equivalent system

To reduce the problem to a two-level system, it is
more convenient to work in the orbital basis. Using
the relations in Eqs. (A8) and (A9) we can rewrite the
QLEs in terms of the operators a, στ = |−, ↓〉 〈+, ↓| and
σs = |−, ↓〉 〈−, ↑|. Neglecting input noise terms for the
charge relaxation which will be irrelevant for our linear
response theory, these equations read

ȧ = i∆0a−
κ

2a+
√
κ1ain,1 + igc cos θστ , (35)

σ̇τ = −i∆τστ − γcστ + igc cos θa

+iBx cos θ
2 σs, (36)

σ̇s = −i∆sσs + i
Bx cos θ

2 στ , (37)

where ∆τ(s) = ±Ω−Bz

2 − E0 − ωR. As evident from
these equations, although the electric field of the cavity

t c
(µ

eV
)

ε(µeV)

5

10

15

20

−40 −20 0 20 40
0

2

4

6

8

10

gs/Γ

Figure 7. Strength of the spin-cavity coupling gs/Γ according
to Eq. (45) as a function of tc and ε. Bz has been adjusted
to the resonance condition Eq. (44). Note that the strong-
coupling regime (gs/Γ > 1) is achieved away from the black
dashed line, Ω = ωc = 24µeV, in agreement with Fig. 3 (b).
The other parameters are Bx = 1.62µeV, γc/2π = (100 +
150| sin θ|) MHz, gc/2π = 40 MHz, and κ/2π = 1.77 MHz.

only couples to the charge excitation, the spin-charge hy-
bridization generates an effective spin-photon coupling.
Solving equation Eq. (36) for the steady state we can

obtain the bright (B) mode that mediates this coupling,

σB = −2 cos θ(∆τ − iγc)√
4g2
c +B2

x

σ̄τ = sinασs + cosαa , (38)

where we have introduced the angle α = arctan Bx

2gc
. For

the Eqs. (35) and (37), we obtain the reduced dynamics

ȧ = i(∆0 + ∆τη cos2 α)a− κ′

2 a+
√
κ1ain,1

+i sinα cosαη(∆τ + iγc)σs, (39)
σ̇s = −i(∆s −∆τη sin2 α)σs − γsσs

+i sinα cosαη(∆τ + iγc)a, (40)

with

η = B2
x/4 + g2

c
∆2
τ + γ2

c
cos2 θ, (41)

and effective decay rates

κ′ = κ+ 2γcη cos2 α = κ+ 2γc
g2

c cos2 θ

∆2
τ + γ2

c
, (42)

γs = γcη sin2 α = γc

4
B2
x cos2 θ

∆2
τ + γ2

c
. (43)

According to the derivation in Appendix D, the resonance
condition reads

(∆s + ∆0)res = −∆τη
2γcη + κ cos 2α
κ+ 2γcη cos 2α , (44)
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and strong coupling is achieved for

gs > Γ ≡ |κ+ 2γcη cos 2α|

2
√

2
√

4γ2
c η

2+4γcηκ cos 2α+κ2

4γ2
c η

2+4γcηκ cos2 α+κ2

, (45)

where we have defined

gs = |∆τ |η sinα cosα = |∆τ |
Bxgc cos2 θ

2(∆2
τ + γ2

c ) . (46)

In Fig. 7 we provide a map of the coupling strength via
the quantity gs/Γ, with the magnetic field adjusted to
the resonance condition. This map indicates the opti-
mum working points that create a strong spin-photon
interaction that overcomes the decoherence.

VI. CONCLUSIONS

In conclusion, we detail the conditions for achieving
strong coupling between a single electron spin and a mi-
crowave cavity photon, which eventually would allow long
distance spin-spin coupling and long-range spin-qubit
gates. Non-local quantum gates may also facilitate quan-
tum error correction within a fault-tolerant architecture,
and have already been used for this purpose in other sys-
tems [45–47].

Our analysis on the dynamics of the full hybrid silicon-
cQED system confirms that, with the recent advances in
Si DQDs fabrication and control, a spin-photon coupling
of more than 10 MHz with a sufficiently low spin decoher-
ence rate is achievable with this setup, potentially allow-
ing the strong-coupling regime [18, 48]. In such a regime,
the cavity not only can act as a mediator of spin-spin cou-
pling but also enables cavity-based readout of the spin
qubit state [33, 49]. Interestingly, the strong-coupling
regime for the spin-cavity coupling may be attained even
when the coupling strength of the charge-cavity coupling
can not overcome the charge decoherence rate.

Although here we have focused on the coupling of a
single electron spin to a single photon, the implementa-
tion of proposals for other type of spin qubits with more
than one electron [50–53] seems feasible with the present
technology in Si QDs.
Acknowledgments.— This work has been supported

by the Army Research Office grant W911NF-15-1-0149.
Work at Princeton was also supported by the U.S. De-
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Appendix A: Decoherence model

We assume that the charge relaxation processes dom-
inate over direct spin relaxation. The most relevant
sources of decoherence in the present system are charge

relaxation effects due to the phonon environment (γ1)
and dephasing due to charge noise (γφ), therefore the
Liouvillian can be written as

Lphρ = γ1

2 (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+ γφ
4 (2σzρσz − σzσzρ− ρσzσz) , (A1)

where σ± = |±〉 〈∓|, σz = |+〉 〈+| − |−〉 〈−|. (Note that
in this appendix the Pauli operators σα are in the basis
of bonding and antibonding states, |±〉, instead of left
and right.)
The interaction Hamiltonian for charge decays can be

written as

Hph =
∑

k

ck

(
|+〉〈−|bk + |−〉〈+|b†k

)
, (A2)

where bk annihilates a phonon in mode k. Therefore the
relaxation rate at zero temperature can be obtained using
Fermi’s Golden Rule,

γ1 = 2π
~
∑
f

|〈f |〈−|Hph|+〉|0〉|2δ(Ω− Ef ), (A3)

where |0〉 and |f〉 are the initial phonon vacuum and
single-phonon final states, Ω is the orbital energy (Ω =√
ε2 + 4t2c), and Ef denotes the phonon energy. Substi-

tuting Eq. (A2) into Eq. (A3), we obtain

γ1 = 2π
~
∑

k

|ck|2δ(Ω− Ek) = 2π
~
|ck|2D(Ω), (A4)

where k is the modulus of the k vector evaluated at the
energy Ω. Here, D(E) is the phonon density of states. In
general, γ1 depends on the parameters tc and ε both via
D(Ω) and ck, since k = k(Ω). We assume here a constant
γ1 since we expect that this approximation will hold in
a small transition energy window around the cavity fre-
quency.
The pure dephasing term is due to charge noise in the

environment. A contribution to the dephasing rate γφ is
proportional to the first derivative of the energy transi-
tion with respect to ε, i.e.,

γ
(1)
φ ∝ ∂(E+ − E−)

∂ε
= sin θ, (A5)

therefore is zero at the “sweet spot” ε = 0. However, as
observed in recent experiments, the charge noise at the
sweet spot cannot be neglected [29, 54, 55]. To account
for this observation, we have added an offset value to γφ,
which we model then as γφ = γ

(0)
φ + γ

(1)
φ .

Using the Liouvillian in Eq. (A1), we can calculate the
decoherence dynamics for the mean value of any opera-
tor as

〈
Ȧ
〉

= tr{ALphρ}. (In the following we omit the
brackets for simplicity.) The coherences decay as

σ̇± = −γcσ± = −
(γ1

2 + γφ

)
σ±. (A6)
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In this work we include the spin degree of freedom and
here, we assume spin-independent rates. In the main text
we have defined στ = |−, ↓〉〈+, ↓| and σs = |−, ↓〉〈−, ↑|.
While στ decays as σ̇τ = −γcστ , the same type of calcu-
lation taking into account the spin reveals σ̇s = 0. The
decoherence part of the dynamics entering in Eq. (5) is
obtained via a rotation of the previous uncoupled equa-
tions into the eigenbasis of H0, which results in

σ̇nm = −
∑
n′,m′

γnm,n′m′σn′m′ . (A7)

From the form of the eigenstates in the bonding-
antibonding basis (Eqs. (13) to (16)), we can determine
the effect of charge dephasing in the eigenbasis of H0.
Since

σ01 ' cos Φ
2 σs + sin Φ

2 στ , (A8)
σ02 ' sin Φ

2 σs − cos Φ
2 στ , (A9)

the decoherence dynamics can be expressed as(
σ̇01
σ̇02

)
' −γc

(
sin2 Φ

2 −
sin Φ

2
− sin Φ

2 cos2 Φ
2

)(
σ01
σ02

)
. (A10)

Note also that σ03 ' |−, ↓〉〈+, ↑|, therefore its deco-
herence is decoupled from the other transitions, σ̇03 '
−(γ1 + γφ)σ03/2.

Appendix B: Multilevel RWA

The time-dependent equations of motion, Eqs. (4)
and (5), can be solved within a rotating-wave-
approximation (RWA) if the driving frequency is close to
the transition energies of the system. Defining σ̃n,n+j =
σn,n+je

iωRt for j > 0, these equations include both time-
independent terms and terms which oscillate at frequency
2ωR,

ȧ = i∆0a−
κ

2a+
√
κ1ain,1 +

√
κ2ain,2 (B1)

−igc
2∑

n=0

3−n∑
j=1

dn,n+j σ̃n,n+j

−igc
3∑

n=1

n∑
j=1

dn,n−j σ̃n,n−je
2iωRt,

˙̃σn,n+j = −i (En+j − En − ωR) σ̃n,n+j (B2)

−
∑
n′j′

γn,n+j,n′,n′+j′ σ̃n′,n′+j′

−
∑
n′j′

γn,n+j,n′,n′−j′e
2iωRtσ̃n′,n′−j′

+
√

2γFeiωRt − igc
(
a+ a†e2iωRt

)
dn+j,nδn,0.

Here, j, j′ > 0. The RWA consists in neglecting the fast-
oscillating, i.e., counter-rotating terms. For the mean
value of the operators and using σn,n+j instead of σ̃n,n+j
to simplify the notation, the equations in the RWA read

ȧ = i∆0a−
κ

2a+
√
κ1ain,1 (B3)

−igc
2∑

n=0

3−n∑
j=1

dn,n+jσn,n+j ,

σ̇n,n+j = −i (En+j − En − ωR)σn,n+j

−
∑
n′j′

γn,n+j,n′,n′+j′σn′,n′+j′ (B4)

−igcadn+j,nδn,0,

since 〈ain,2〉 = 0 and 〈F〉 = 0. In the equations, as in the
main text, we have omitted the brackets for simplicity.

Appendix C: General magnetic field gradient
direction

In the main text we have assumed that the micromag-
net in a given external magnetic field introduces a gra-
dient of the magnetic field in a perpendicular direction
between the positions of the two quantum dots. In a more
realistic situation, the micromagnet could also introduce
a net magnetic field in this perpendicular direction or a
gradient in the direction of the external magnetic field.
These situations can be described in a general way with
a model Hamiltonian like the one presented in the main
text [Eq. (1)] plus a contribution corresponding to a mag-
netic field gradient in z-direction between the two quan-
tum dots, i.e., H ′0 = H0 + ∆zσzτz/2.

Analogously to Eq. (8), in the product basis of anti-
bonding and bonding orbitals ± with spin ↑↓ in the z-
direction, {|+, ↑〉 , |−, ↑〉, |+, ↓〉 , |−, ↓〉}, the Hamiltonian
reads
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H
′orb
0 = 1

2


Ω+ cosα+ +Bz −Ω+ sinα+ Bx sin θ −Bx cos θ
−Ω+ sinα+ −Ω+ cosα+ +Bz −Bx cos θ −Bx sin θ
Bx sin θ −Bx cos θ Ω− cosα− −Bz Ω− sinα−
−Bx cos θ −Bx sin θ Ω− sinα− −Ω− cosα− −Bz

 , (C1)

where we have defined the two different orbital energies
Ω± =

√
4t2c + (ε±∆z)2, and the angles

α± = arctan 2tc∆z

4t2c + ε (ε±∆z)
. (C2)

As expected, the parallel gradient ∆z couples bonding
and antibonding states with the same spin. Now, we can
apply a rotation to the orbital states from {|+, σ〉 , |−, σ〉}
to the new {|+′, σ〉 , |−′, σ〉} such that

H
′orb′
0 = 1

2


Ω+ +Bz 0 Bx sin

(
θ + α+−α−

2

)
−Bx cos

(
θ + α+−α−

2

)
0 −Ω+ +Bz −Bx cos

(
θ + α+−α−

2

)
−Bx sin

(
θ + α+−α−

2

)
Bx sin

(
θ + α+−α−

2

)
−Bx cos

(
θ + α+−α−

2

)
Ω− −Bz 0

−Bx cos
(
θ + α+−α−

2

)
−Bx sin

(
θ + α+−α−

2

)
0 −Ω− −Bz

 . (C3)

Therefore, under approximately the same conditions as in
the main text case, the eigenstates can be approximated
by

|1〉 ' cos Φ′

2 |−
′, ↑〉+ sin Φ′

2 |+
′, ↓〉 , (C4)

|2〉 ' sin Φ′

2 |−
′, ↑〉 − cos Φ′

2 |+
′, ↓〉 , (C5)

|0〉 ' |−′, ↓〉 , (C6)
|3〉 ' |+′, ↑〉 , (C7)

with the spin-orbit mixing angle

Φ′ = arctan
Bx cos

(
θ + α+−α−

2

)
Ω++Ω−

2 −Bz
. (C8)

Finally, the relevant dipole matrix elements read

d01 ' − cos (θ − α−) sin Φ′

2 , (C9)

d02 ' cos (θ − α−) cos Φ′

2 . (C10)

In Fig. 8, we have represented the expected spin-photon
coupling strength as a function of the DQD detuning
and the tunnel coupling. As compared to Fig. 3 (a),
the map in Fig. 8 (a) is distorted due to the introduced
asymmetry, but importantly a strong coupling can be
also achieved, even for a large value of ∆z.

Appendix D: Characterization of the spin-photon
coupling

In this appendix, we detail the calculation of the
strong-coupling condition for our two-level equivalent
system. For this, let us first analyze the simpler case
of a Jaynes-Cummings model, often studied in the lit-
erature. This model describes the interaction of a two-
level system (TLS) to a photonic mode in a cavity in the
RWA. The Hamiltonian reads H = −∆0a

†a + ∆JCσz −
gJC

(
a†σ− + aσ+), where ∆0 is the detuning between the

driving and the cavity and ∆JC the detuning between
the TLS and the driving. The TLS decoherence rate
is γJC and the cavity decay rate is κ. If the transition
energy of the two-level system is near the cavity fre-
quency, one can probe the coherent light-matter interac-
tion by driving the cavity close to resonance and observ-
ing resonances coming from the hybridized one-excitation
light-matter states, superpositions of the excited states
{|0, n+ 1〉 , |1, n〉}, where n is the number of photons in
the cavity and 0(1) the two-level state. However, this is
only observable if the coupling is strong enough in com-
parison with the decay rates. To determine how strong
the coupling should be in order to observe separate res-
onances, it is useful to diagonalize the non-Hermitian
Hamiltonian in the one-excitation subspace containing
the decay rates,

HJC = −
(

∆0 + iκ/2 gJC
gJC −∆JC + iγJC

)
. (D1)
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Figure 8. (a) Expected effective coupling gs/gc = |d01(2)|,
according to Eqs. (C9) and (C10) as a function of tc and ε.
The black dashed line corresponds to Ω+ + Ω− = 2Bz and
separates the region where gs/gc = |d0,1| (above) from the
region where gs/gc = |d0,2| (below). (b) Vertical cuts for
ε = 0 (black) and ε = 20µeV (blue) for different values of ∆z.
We chose Bx = 1.62µeV, Bz = 24µeV, and the values of ∆z

indicated on the figures.

The eigenvalues are of the form

µ± = A− iB/2±
√
C + iD, (D2)

with A,B,C,D all real. A can be seen to be the average
frequency of the system, while B is the average damping.
However, the C and D terms are more subtle. The strong
coupling condition is defined as having a sufficiently large
interaction such that two separated peaks are observable
in the photon response (C > B2/4) and system modes
that are near equal equal combinations of matter and
light (C > 0, D = 0), which occurs when ∆0 = −∆JC. If
this is the case, we have the combined condition

gJC >

√
γ2
JC + (κ/2)2

2 , (D3)

which reduces to the usual gJC > γJC , κ/2 for 2γJC ≈ κ.
Let us now consider weak versus strong coupling for

the two-level equivalent system, whose interaction is de-
scribed by Eqs. (39) and (40). In the one-excitation sub-
space, the effective non-hermitian Hamiltonian reads

Heff = −
(

∆0 + iκ′/2 0
0 −∆s + iγs

)
(D4)

−η
(

∆τ cos2 α (∆τ + iγc) sinα cosα
(∆τ + iγc) sinα cosα ∆τ sin2 α

)
.

The eigenvalues of this Hamiltonian have the same form,
therefore we will define resonance as D = 0 and strong
coupling as C > B2/4, as above. We first examine the
on-resonance condition. The detuning for resonance is

(∆s + ∆0)res = −∆τη
2γcη + κ cos 2α
κ+ 2γcη cos 2α . (D5)

This value corresponds to setting the detuning to match
the (quantum) ‘Stark shifted’ response of the spin and
the photon. If one does not choose the detunings such
that D = 0, then the two vacuum Rabi-split peaks will
have different linewidths. We also find a modification of
the strong-coupling condition. This arises for

gs > Γ ≡ |κ+ 2γcη cos 2α|

2
√

2
√

4γ2
c η

2+4γcηκ cos 2α+κ2

4γ2
c η

2+4γcηκ cos2 α+κ2

, (D6)

with the definition

gs = |∆τ |η sinα cosα = |∆τ |
Bxgc cos2 θ

2(∆2
τ + γ2

c ) . (D7)
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