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The control of a ferromagnet’s magnetization via only electric currents requires the efficient gen-
eration of current-driven spin-torques. In magnetic structures based on topological insulators (TIs)
current-induced spin-orbit torques can be generated. Here we show that the addition of graphene,
or bilayer graphene, to a TI-based magnetic structure greatly enhances the current-induced spin
density accumulation and significantly reduces the amount of power dissipated. We find that this
enhancement can be as high as a factor of 100, giving rise to a giant Edelstein effect. Such a large
enhancement is due to the high mobility of graphene (bilayer graphene) and to the fact that the
graphene (bilayer graphene) sheet very effectively screens charge impurities, the dominant source of
disorder in topological insulators. Our results show that the integration of graphene in spintronics
devices can greatly enhance their performance and functionalities.

I. INTRODUCTION

The ability to generate and control spin currents in
condensed matter systems has led to several discoveries
of great fundamental and technological interest 1,2. In
recent years the discovery of whole new classes of mate-
rials with strong spin-orbit coupling, such as topological
insulators (TIs)3,4, has allowed the realization of novel
basic spin-based phenomena5–8.

In a system with spin-orbit coupling (SOC), a charge
current (I) can induce a spin-Hall effect (SHE)2 i.e. a
pure spin-polarized current. A companion effect to the
SHE, also arising from the SOC, is the inverse spin-
galvanic effect (ISGE), where a current induces a non-
equilibrium uniform spin accumulation2,9–11. In a mag-
netic system this current-driven spin accumulation re-
sults in a spin-orbit torque (SOT) acting on the magne-
tization (M), and therefore can be exploited to realize
current-driven magnetization dynamics. The SOT, τSO,
can be either an (anti-)damping torque2,12, i.e. have the
same functional form as the Gilbert damping term, or
field-like2, i.e. have the form τSO = γBSO ×M, where
BSO is an effective spin-orbit field, and γ is the gyro-
magnetic ratio. The presence of a current-driven SOT
on the surface of TIs has been predicted13–17 and it has
been recently measured in TI-ferromagnet bilayers18 and
magnetically doped TIs19.

The two-dimensional nature of graphene (SLG) and
bilayer graphene (BLG)20–22 and the fact that their
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FIG. 1. Sketch of a TI-graphene-FM, (a), and of a magnet-
ically doped TI-graphene, (b), heterostructure. In (a) the
random charges are shown. In (b) the spheres represent mag-
netic dopant, the random charges are not shown explicitly.
(c) Atoms’ arrangement for the commensurate stacking con-
sidered. (d) Bands for TI-SLG for ∆ = 0, δµ = 0. (e) Bands
for TI-BLG for ∆ = 20 meV and δµ = 0. (f) Spin texture
on the Fermi surface formed by the bands shown in (d) for
εF = 100 meV.
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room-temperature mobilities are higher than in any other
known material23 make them extremely interesting for
transport phenomena. However, the SOC in graphene is
extremely small and as a consequence graphene alone is
not very interesting for spintronics applications, except
as a spin-conductor. Several methods have been pro-
posed to induce larger SOC in graphene24. Recent exper-
iments on TI-graphene heterostructures seem to demon-
strate the injection of spin-polarized current from a TI
into graphene25,26.

In this work we show that the combination of a par-
ticular class of three-dimensional (3D) TIs and graphene
allows the realization of devices in which a charge cur-
rent induces a spin density accumulation that can be up
to a factor 100 larger than in any previous system, i.e. a
giant Edelstein effect. We find that for most of the ex-
perimentally relevant conditions considered the SOT in
TI-graphene vdW heterostructures should be higher than
the already very large values observed in TI-Ferromagnet
bilayers18 and magnetically doped TIs19. In Ref. 18, for
I = 7.7 mA, a BSO = 3 × 10−2 mT was measured, in
Ref. 19, for I = 4µA, a BSO = 80 mT was measured27.
Assuming that our work is able to capture the key ele-
ments affecting the SOT in TI-graphene systems we find
that in these systems the SOT could be ten times larger
than the values found in Ref. 18 and 19. We also find that
TI-SLG and TI-BLG systems have conductivities much
higher than TI surfaces and would therefore allow the
realization of spintronics effects with dramatically lower
dissipation than in TIs alone.

The rest of the paper is organized as follows: in Sec.
II we introduce the effective model for the TI-graphene
heterostructure, describe the treatment of disorder, and
outline the calculation of the current-induced spin den-
sity response function; in Sec. III we present our results;
finally, in Sec. IV we present our conclusions.

II. THEORETICAL FRAMEWORK

In vdW heterostructures28, the different layers are held
together by vdW forces. This fact greatly enhances the
type of heterostructures that can be created given that
the stacking is not fixed by the chemistry of the elements
forming the heterostructure. With a = 2.46Å being the
lattice constant of graphene, and aTI the lattice constant
of the 111 surface of a TI in the tetradymite family, we
have aTI/a =

√
3(1 + δ), where δ < 1% for Sb2Te3,

δ = −3% for Bi2Se3, and δ = 3% for Bi2Te3. As a
consequence, graphene and the 111 surface of Sb2Te3,
Bi2Se3, Bi2Te3, to very good approximation, can be ar-
ranged in a

√
3×
√

3 commensurate pattern 29–31. When
the stacking is commensurate the hybridization between
the graphene’s and the TI’s surface states is maximized.
This property of graphene, combined with its high mobil-
ity, its intrinsic two-dimensional nature, and its ability at
finite dopings to effectively screen the dominant source of
disorder in TIs, make graphene the ideal material to con-

sider for creating a TI heterostructure with a very large
Edelstein effect.

TI-graphene heterostructures can be formed via me-
chanical transfer26,32,33. As a consequence, the stack-
ing pattern and the shift are fixed by the exfoliation-
deposition process and can be controlled34. Density func-
tional theory (DFT) results show that the binding energy
between graphene and the TIs surface depends only very
weakly on the rigid shift29,35–37. Among the commen-
surate configurations with free energy close to the mini-
mum, as obtained from DFT calculations29, we consider
the stacking configuration shown in Fig. 1 (c). For this
configuration, we expect the Edelstein effect to be the
smallest because the graphene bands split into Rashba-
like bands (see Figs. 1 (d), (e)), that give an Edelstein
effect with opposite sign to the one given by TI-like
bands18. Therefore, to be conservative, in the remain-
der we consider both the commensurate case for which
the Edelstein effect is expected to be the weakest (i.e.,
the case in the graphene sublattice symmetry is broken)
and the extreme case in which the tunneling strength
between the TI and graphene is set to zero.

At low energies, the Hamiltonian for the system can

be written as H =
∑

k ψ
†
kHkψk where ψ†k (ψk) is the

creation (annihilation) spinor for a fermionic excitation
with momentum k, and

Hk =



ĤG,K

k 0 T̂ †

0 ĤG,K′

k T̂ †

T̂ T̂ ĤTI
k


 , T̂ =

(
t 0 0 0
0 0 t 0

)
,

(1)

where ĤG,K
k (ĤG,K′

k = [ĤG,K
k ]∗) is the Hamiltonian de-

scribing graphene’s low energy states around the K (K ′)
of the Brillouin zone. For SLG ĤG,K

k = ĤSLG,K and

for BLG ĤG,K
k = ĤBLG,K . ĤTI

k is the Hamiltonian

describing the TI’s surface states, and T̂ is the matrix
describing spin- and momentum- conserving tunneling
processes between the graphene layer and the TI’s sur-
face31, t being the tunneling strength. The TI’s bulk
states are assumed to be gapped. This condition is
realized, for example, in novel ternary or quaternary
tetradymites, such as Bi2Te2Se and Bi2−xSbxTe3−ySey,
for which it has been shown experimentally that the bulk
currents have been completely eliminated38–45. For SLG

we have ĤSLG,K
k = ~vgkσ0 [cos(φk)τx + sin(φk)τy]− µg,

where vg ≈ 106 m/s is the graphene’s Fermi veloc-
ity, k = |k|, φk = arctan(ky/kx), σi, τi are the
Pauli matrices in spin and sublattice space respectively,
and µg is the chemical potential. For BLG we have

ĤBLG,K
k = ~2k2/(2m∗)σ0 [cos(2φk)τx + sin(2φk)τy]−µg,

where m∗ ≈ 0.035me is the effective mass. For the TI’s
surface states, we have ĤTI

k = ~vTI (kyσx − kxσy) −
µTIσ0 , where vTI ≈ vg/2 and µTI is the chemical po-
tential on the TI’s surface . In the remainder the Fermi
energy εF is measured from the neutrality point of the
SLG (or the BLG) and δµ ≡ µTI − µg.

In a magnetically doped TI, below the Curie temper-
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ature, the low energy Hamiltonian for the TI-graphene’s
quasiparticles, Eq. (1), has an additional term, Hex, de-
scribing the exchange interaction between the quasipar-
ticles and the magnetization M. Hex = ∆

∫
Ω
m̂ · ŝ dr/Ω,

where ∆ is the strength of the exchange interaction,
m̂ ≡ M/|M|, ŝ ≡ s/|s| with s the TI-graphene’s spin
density operator, and Ω is the 2D area of the sample.
For a TI-graphene-ferromagnet heterostructure the fer-
romagnet (FM) will also cause simply the addition of
the term Hex to the Hamiltonian for the quasiparticles,
Eq. (1), as long as the FM is an insulator, and is placed on
graphene, or bilayer graphene, via mechanical exfoliation,
likely with a large twist angle to minimize hybiridiza-
tion. Recent experiments have studied Bi2Se3 − EuS sys-
tems46,47. In the remainder, for TI-graphene-FM het-
erostructures we assume the FM to be an insulator.

To maximize the effect of the current-induced spin
accumulation on the dynamics of the magnetization, it
is ideal to have M perpendicular to the TI’s surface.
This is the case for magnetically doped TIs such as
Cr2x(Bi0.5Sb0.5−x)2Te3

19. For TI-graphene-FM trilayers
this can be achieved, for example, by using a thin film of
BaFe12O19, a magnetic insulator with high Tc and large
perpendicular anisotropy48.

By comparing the bands for TI-SLG, at low-energies,
obtained from Eq. (1), Fig. 1 (d), with the ones obtained
using DFT29,36,37 we obtain that the effective value of t
is ∼ 45 meV. For this reason, most of the results that
we show in the remainder were obtained assuming t =
45 meV. Fig. 1 (d) clearly shows that, in general, the
hybridization of the graphene’s and TI’s states preserves
a TI-like band and induces the formation of spin-splitted
Rashba bands. The TI and Rashba nature of the bands
can clearly be evinced from the winding of the spins, as
shown in Fig. 1 (f). The same qualitative features can be
observed in Fig. 1 (e) that shows the low energy bands
of a TI-BLG system with ∆ = 20 meV, and δµ = 0.

In the remainder, we restrict our analysis to the case
in which εF is such that the system is metallic. In this
case contributions to the Edelstein effect from interband-
transitions49 can be neglected and the SOT is primarily
field-like. For most of the conditions of interest, quan-
tum interference effects can be assumed to be negligible
due to dephasing effects at finite temperatures and the
large dimensionless conductance of the system. The SOT
can be obtained by calculating the current-induced spin
density accumulation δsi = χsiJj (q, ω)Ej , where Ej is
the electic field applied in the j-direction and the spin
density response function χsiJj (q, ω), within the linear
response regime, is equal to the spin-current correlation
function. Considering that the SOT is given by Bso×M,
where Bso = δs is the effective spin-orbit field due to the
Edelstein effect, and that the response function depends
weakly on the gap ∆ induced by M (see Fig. (5)), the
angular dependence of the torque is mainly geometrical.
Without loss of generality, we can assume the external
current to be in the y direction so that δs ‖ x̂ and there-
fore τSO ≈ |M|δsx cosϑ [−ŷ + ẑ tanϑ sinφ], where ϑ is
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FIG. 2. Diagrams used to calculate the charge conductivity
and the spin-current response.

the angle formed by the magnetization and the TI’s sur-
face (see Fig. (1a)) and φ is the angle with respect to x̂
in the TI surface plane.

The unavoidable presence of disorder induces a broad-
ening of the quasiparticle states, and vertex corrections
that are captured by the diagrams shown in Fig. 2. In
TIs charge impurities appear to be the dominant source
of disorder50 and so it is expected that they will also be
in TI-graphene heterostructures. We therefore model the
disorder as a random potential created by an effective 2D
distribution of uncorrelated charge impurities with zero
net charge placed at an effective distance d below the TI’s
surface. Direct imaging experiments51 suggest d ≈ 1 nm,
consistent with transport results50,52.

In momentum space, the bare potential v(q) created
on the TI’s surface by a single charge impurity is v(q) =
2πe2e−qd/(κq) where κ = (κTI + κ0)/2 is the average
dielectric constant with κTI ≈ 100 50–54 the dielectric
constant for the TIS and κ0 = 1 the dielectric constant of
vacuum55. The screened disorder potential is v(q)/ε(q)
where ε(q) is the dielectric function23,56,57. To obtain the
current-driven SOT in the dc limit, and for temperatures
T much lower than the Fermi temperature TF , to very
good approximation we can assume ε(q) ≈ 1+vc(q)ν(εF ),
where vc(q) = 2πe2/(κq) and ν(εF ) is the density of
states at the Fermi energy.

The lifetime τ0a(k) of a quasiparticle in band a with
momentum k is given by

~
τ0a(k)

= 2π
∑

a′q

nimp

∣∣∣∣
v(q)

ε(q)

∣∣∣∣
2

|〈a′k+q|ak〉|2δ(εa,k−εa′,k+q),

(2)
where nimp is the impurity density and |ak〉 is the Bloch
state with momentum k and band index a. In the re-
mainder, we set nimp = 1012cm−2.50 The transport time
τta(k), that renormalizes the expectation value of the
velocity operator, is obtained by introducing the fac-
tor [1 − k · (k + q)] under the sum on the right hand
side of Eq. (2), and in general differs from the lifetime
τ0a(k)58–62.

For a charge current in the y direction the non equi-
librium spin density is polarized in the x direction, as
shown schematically in Fig. 4 (a). Due to the rotational
symmetry of the system we have χsxJy = −χsyJx and
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χsxJx = χsyJy . Without loss of generality we can as-
sume the current to be in the y direction. Within the
linear response regime, taking into account the presence
of disorder, the response function χsxJy of the system
can be obtained by calculating the diagrams shown in
Fig. (2). The diagram in Fig. (2a) represents the equation
for the self-energy in the first Born approximation, where
the double line represents the disorder-dressed electrons’
Green’s function, the single line the electron’s Green’s
function for the clean system, and the dashed lines scat-
tering events off the impurities. The diagram in Fig. (2b)
corresponds to the equation for the renormalized velocity
vertex, ṽy, at the ladder level approximation. In the long
wavelength, dc, limit we have

χsxJy ≈ e

2πΩ
Re
∑

k,a

sxaa(k)ṽyaa(k)GA
kaG

R
ka , (3)

where siaa(k) ≡ 〈ak|si|ak〉 is the expectation value of the
i-th component of the spin density operator, ṽiaa(k) =
(τa/τ0a)kv

i
aa(k) with viaa(k) ≡ 〈ak|vi|ak〉 the expecta-

tion value of the i-th component of the velocity operator

v = ~−1∂Hk/∂k, and G
R/A
ka = (εF − εka± i~/2τ0a(k))−1

are the retarded and advanced Green’s functions, respec-
tively, for electrons with momentum k and band index
a.

III. RESULTS

In this section, we present our results for the transport
properties and current-induced spin density accumula-
tion of TI-graphene heterostructures.

We define the average τ0, τt as 〈τ0(t)(εF )〉 ≡∑
ka τ0a(ta)(k)δ(εF − εka)/

∑
ka δ(εF − εka). Figs. 3 (a),

(b) show 〈τ0(εF )〉, and 〈τt(εF )〉, respectively, for a TI’s
surface, a TI-SLG heterostructure, and a TI-BLG het-
erostructure, with ∆ = 0 meV. We see that the presence
of a graphene layer strongly increases both 〈τ0(εF )〉, and
〈τt(εF )〉, and that such increase is dramatic for the case
when the layer is BLG. 〈τ0(εF )〉, and 〈τt(εF )〉 are larger in
BLG-TI than TI-SLG because, especially at low energies,
BLG has a larger density of states than SLG causing ε(q),
that enters in the denominator in Eq. (2), and therefore
〈τ0(εF )〉, and 〈τt(εF )〉 to be larger in BLG than in SLG.
Notice that τ0, τt increase after adding a graphene layer
even in the limit when t = 0 as shown by the dashed lines
in Fig. 3. This is due to the fact that the graphene layer
screens the dominant source of disorder in the TI even
when t = 0. Changes in ∆ have only minor quantitative
effects as long as ∆ < (t, εF ).

Figure 4 (a) shows the dependence of χsxJy on εF for
TI, TI-SLG, and TI-BLG for t = 45 meV, δµ = 0 and
∆ = 20 meV with out-of-plane magnetization m̂ = ẑ
(solid lines). The dashed lines corresponds to the case
∆ = 0. The inset shows a sketch of the system, with
charge flowing in the y-direction. The direction of the
spin accumultion on the top and bottom layer is indi-
cated by the arrows on the electrons. The insertion of

a graphene layer strongly enhances the current-induced
spin density response and therefore the SOT. Now, we
consider in-plane magnetization. In this case, the Fermi
surface is not isotropic as for out-of-plane magnetization,
which makes the computation of scattering time, trans-
port times, and the Edelstein effect more challenging. For
concreteness, we assume the magnetization direction to
be m̂ = x̂ (‖). Fig. 4 (b) shows χsxJy as a function of εF
for in-plane m̂ = x̂ (‖) magnetization and ∆ = 20 meV,
dashed lines. The red lines correspond to a TI-BLG-FM
and the black lines to a TI-FM heterostructure. We ob-
tained an enhancement as large as the one obtained for
out-of-plane magnetization m̂ = ẑ (⊥), solid lines.

We find that changes in δµ have a strong impact on
χsxJy . Figure 4 (c) shows that by increasing δµ the en-
hancement of the SOT can be raised to values as high
as 100 in TI-BLG heterostructures due to the flattening
and consequent increase of the DOS of the TI-like bands
(see Appendix A). The results of Fig. 4 show that in TI-
SLG and TI-BLG heterostructures the current-induced
SOT can be expected to be much higher than in TI sur-
faces alone. They show that for TI-BLG systems there
is a large range of values of δµ, εF for which the en-
hancement of χsxJy due to the presence of the BLG is
consistently close to 10 or larger, Fig. 4 (c).

We also find that the strong enhancement of χsxJy is
not affected significantly by the value of ∆, as shown
in Fig. (5), where we plot χsxJy as a function of ∆ at
εF = 60 meV. In Fig. (5) (a) we plot χsxJy for TI-FM,
while (5) (b) shows the response function χsxJy for TI-
SLG(BLG)-FM normalized to the response in a TI-FM
system.

In addition, in a TI-graphene heterostructure, by plac-
ing the source and drain on the graphene (BLG) and tak-
ing into account the high mobility of graphene (BLG), it
is possible to force most of the current to flow within
graphene (BLG) and the TI’s surface adjacent to it.
Therefore, we can minimize the amount of spin density
accumulation with opposite polarization that a current
flowing in the TI’s bottom surface generates. This fact
should further increase the net SOT.

The large enhancement of the spin density accumula-
tion in TI-graphene systems is due to two main reasons:
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FIG. 3. (a) 〈τ0(εF )〉, and (b) 〈τt(εF )〉 for ∆ = 0 meV, δµ =
0 meV, and nimp = 1012 cm−2. The solid lines correspond to
t = 45 meV while dashed lines to the limit t = 0 meV.
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FIG. 4. (a) χsxJy as a function of εF for δµ = 0, t = 45 meV,
and ∆ = 20 meV (∆ = 0) with out-of-plane magnetization
m̂ = ẑ (⊥), solid (dashed) lines. Inset: sketch showing the
spin density accumulation on the top and bottom surface of
a TI induced by a current in the y direction. (b) χsxJy as a
function of εF for in-plane m̂ = x̂ (‖) (out-of-plane m̂ = ẑ (⊥))
magnetization and ∆ = 20 meV, dashed (solid) lines. The
other parameters are the same as in (a). (c) Enhancement of
χsxJy in a TI-BLG system compared to TI alone as a function
of εF and δµ for ∆ = 0. (d) χsxJy for TI-BLG when t = 0. In
all the panels, the disorder parameters are nimp = 1012 cm−2,
and d = 1 nm.

(i) the survival, after hybridization, of TI-like bands well
separated from Rashba bands; (ii) the strong enhance-
ment of the relaxation time τ0 and transport time τt due
to the additional screening by the graphene layer of the
dominant source of disorder. It is important to notice
that the presence of the Rashba bands, see Fig. 1, not
only is not essential for the enhancement of the spin den-
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FIG. 5. (a) χsxJy as a function of the exchange interaction
∆ for a TI-FM heterostructure at εF = 60 meV. (b) Ratio

χsxJy/χ
sxJy

TI of the TI-BLG-FM (red circles) and TI-SLG-FM
(blue squares) response to the TI-FM response. The magne-
tization direction is out-of-plane, m̂ = ẑ (⊥).

sity accumulation but it can be detrimental given that the
Rashba bands give a χsxJy with opposite sign of the TI-
like bands. This fact can be seen at large Fermi energies
for BLG-TI in Fig. 4 (b): for εF & 140 meV the Fermi
surface intersect the Rashba bands that by giving a con-
tribution to χsxJy opposite to the TI-like bands brings
the net SOT of TI-BLG to be slightly lower than the
SOT of TI-alone. Point (ii) explains the fact the χsxJy ,
at low energies, is always larger in TI-BLG rather than
TI-SLG given that τ0 and τt are larger in TI-BLG than in
TI-SLG. In addition, it explains the fact that even in the
limit when there is no hybridization between the TI and
the graphene bands, i.e. t=0 due for example to a large
twist angle (see Appendix B), the spin-current correla-
tion function in TI-graphene systems is still larger than
in TIs alone for the experimentally relevant case where
charge impurities are the dominant source of disorder, as
shown in Fig. 4 (d).

In Fig. 6 (a), we show the current-induced spin density
accumulation response function dependence on the tun-
neling amplitude t, normalized to the TI response. As
t is increased, TI and graphene hybridize more strongly,
leading to a larger SOT. However, even at vanishing tun-
neling, an enhancement is still present.

In Fig. 6 (b), we plot χsxJy as a function of the ef-
fective distance from the TI surface to the effective layer
of impurities d. The further away the impurities are lo-
cated, the weaker the disorder, and therefore the larger
the expected SOT.
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FIG. 6. (a) χsxJy/χ
sxJy

TI as a function of the tunneling ampli-
tude t for TI-SLG and TI-BLG heterostructures at εF = 60
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To estimate the efficiency of the current-induced SOT
in TI-graphene heterostructures, we calculate the associ-
ated dc longitudinal conductivity σii for the same param-
eters. In the linear-response, long-wavelength, regime we
have

σii ≈ e2

2πΩ
Re
∑

k,a

viaa(k)ṽiaa(k)GA
kaG

R
ka . (4)

Fig. 7 (a) shows σyy for TI, TI-SLG, and TI-BLG as a
function of εF in the limit ∆ = 0. We see that the pres-
ence of a graphene layer enhances the conductivity of
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the system by an order of magnitude or more. Fig. 7 (b)
shows that the exchange term Hex does not affect σyy

significantly. The results shown in Fig. 7 (b) imply that
in TI-graphene heterostroctures not only the current-
induced SOT can be much larger than in TIs alone, but
also that the generation of the SOT is much less dis-
sipative. For example, for an applied electric fields of
the order of 0.1 V/µm, we can reach a conservative spin
density accumulation δsx ≈ 5 × 107~ cm−2. For typi-
cal carrier density in graphene (n ≈ 1011cm−2), we have
δsx/n = 5× 10−4~.

3

a thin film of BaFe12O19, a magnetic insulator with high
Tc and large perpendicular anisotropy [31]. In the re-
mainder we will assume m̂ = ẑ.

Fig. 1 (d), (e) shows the band structure for a TI-BLG-
FM heterostructure obtained assuming t = 45 meV,
� = 20 meV, and �µ = 0, �µ = 125 meV respectively.
The hybridization of the BLG’s TI’s states gives rise to
Rashba bands that are then splitted by the exchange
term due to the finite magnetization M = M0ẑ. The
Rashba-like nature of some of the bands is evident from
Fig. 1 (f) that shows the spin texture on the Fermi sur-
faces obtained from the bands shown in panel (d) for
✏F = 100 meV, denoted by the dashed line in (d). We
see that on two of the Fermi surfaces the spins wind in
opposite directions and that on the larger (TI-like) band
the spins wind as on the surface Fermi surface of the
isolated TI.

Having obtained the bands of the TI-graphene-FM het-
erostructure we are now in a position to calculate the cur-
rent induced SOT. For the setups considered (Fig. 1 the
dominant SOT is the field-like one due to the ISGE. This
SOT can be obtained by calculating the current-induced
spin-density response function �siJj (q, !). For a charge
current in the y direction the non equilibrium spin den-
sity is polarized in the x direction, as shown schemati-
cally in Fig. 3 (a). Due to the rotational symmetry of
the system we have �sxJy = ��syJx and �sxJx = �syJy .
Without loss of generality we can assume the current
to be driven in the y direction and therefore set i = x
and j = y. In the remainder, we restrict our anal-
ysis to the case in which ✏F is such that the system
is metallic and therefore interband transitions contribu-
tions [32] can be neglected when calculating the the dc,
long-wavelength, current-induced spin density response
function, �sxJy ⌘ limq!0

!!0
�sxJy (q, !).

Within the linear response regime the �siJj (q, !) can
be obtained by calculating the spin-current correlation
function. The unavoidable presence of disorder induces a
broadening of the quasiparticle states, and vertex correc-
tions that are captured by the diagrams shown in Fig. 1
in the supplementary material [33]. It is expected that in
most TI-graphene heterostructures charge impurities are
the dominant source of disorder. We therefore model the
disorder as a random potential created by an e↵ectively
2D distribution of uncorrelated charge impurities with
zero net charge placed at an e↵ective distance d below
the TI’s surface. In momentum space, the bare potential
v(q) created on the TI’s surface by a single charge impu-
rity is v(q) = 2⇡e2e�qd/(q) where  = (TI + 0)/2 is
the average dielectric constant with TI ⇡ 100 [34–38]
the dielectric constant for the TIS and 0 = 1 the dielec-
tric constant of vacuum. The screened disorder potential
is v(q)/✏(q) where ✏(q) is the 2D random phase approx-
imation dielectric function [21, 39, 40]. To obtain the
current-driven SOT in the dc limit, and for temperatures
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(d) �yy(✏F ) for TI, TI-SLG, and TI-BLG systems with � =
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1012 cm�2.

T much lower than the Fermi temperature TF , to very
good approximation we can assume ✏(q) ⇡ 1+vc(q)⌫(✏F ),
where vc(q) = 2⇡e2/(q) and ⌫(✏F ) is the density of
states at the Fermi energy.

The lifetime ⌧0a(k) of a quasiparticle in band a with
momentum k is given by

~
⌧0a(k)

=
X

a0q

nimp

2⇡

����
v(q)

✏(q)

����
2

|ha0k+q|aki|2�(✏a,k�✏a0,k+q)

(2)
where nimp is the impurity density and |aki is the Bloch
state with momentum k and band index a. In the remain-
der, we set nimp = 1012cm�2 [37]. We can define an aver-
age single particle lifetime h⌧0(✏F )i ⌘ P

ka ⌧0a(k)�(✏F �
✏ka)/

P
ka �(✏F � ✏ka). The transport time ⌧a(k), that

renormalizes the expectation value of the velocity opera-
tor, is obtained by introducing the factor [1�k · (k+q)]
under the sum on the right hand side of Eq. (2). Given
that in the systems considered the disorder potential, in
general, is long-range, even taking into account screening
e↵ects [41–44], and the fact that the electronic states are
chiral, the transport time ⌧a(k) in general di↵ers from the
lifetime ⌧0a(k). We can then define the average transport
time h⌧(✏F )i, analogous to h⌧0(✏F )i. Figs. 2 (a), (b) show
h⌧0(✏F )i, and h⌧(✏F )i respectively for a TI’s surface, a
TI-SLG heterostructure, and a TI-BLG heterostructure,
with � = 0. We see that the presence of a graphenic layer
strongly increases both h⌧0(✏F )i, and h⌧(✏F )i, and that
such increase is dramatic for the case when the graphenic
layer is BLG. A finite value of � . 30meV has only a
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general, is long-range, even taking into account screening
e↵ects [41–44], and the fact that the electronic states are
chiral, the transport time ⌧a(k) in general di↵ers from the
lifetime ⌧0a(k). We can then define the average transport
time h⌧(✏F )i, analogous to h⌧0(✏F )i. Figs. 2 (a), (b) show
h⌧0(✏F )i, and h⌧(✏F )i respectively for a TI’s surface, a
TI-SLG heterostructure, and a TI-BLG heterostructure,
with � = 0. We see that the presence of a graphenic layer
strongly increases both h⌧0(✏F )i, and h⌧(✏F )i, and that
such increase is dramatic for the case when the graphenic
layer is BLG. A finite value of � . 30meV has only a

(b)

FIG. 7. σyy(εF ), for TI (dashed line), TI-SLG (dotted line),
and TI-BLG (solid line) for ∆ = 0, (a), and ∆ = 20 meV (b)
with out-of-plane magnetization, m̂ = ẑ (⊥). t = 45 meV,
δµ = 0, and nimp = 1012 cm−2.

IV. CONCLUSIONS

In conclusion, we have shown that in magnetic TI-
graphene heterostructures the non-equilibrium uniform
spin density accumulation induced by a charge current
can be 10-100 times higher than in TIs alone giving rise to
a giant Edelstein effect. The reasons for these enhance-
ments are (i) the additional screening by the graphene
layer of the dominant source of disorder; (ii) the fact that
graphene and the TI’s surface are almost commensurate
making possible a strong hybridization of the TI’s and
graphene’s states; (iii) the fact that the spin structure
of the hybridized bands has a spin structure very simi-
lar to the one of the original TI’s band for a large range
of dopings; (iv) the fact that graphene is the ultimate
2D system, only one-atom thick. These facts and our
results suggest the TI-graphene systems are very good
candidates to realize all-electric efficient magnetization
switching.
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Appendix A: TI-BLG BAND STRUCTURE

As long as the interlayer tunneling tBLG between the
carbon atoms in bilayer graphene is much larger than
the expected tunneling t between the TI’s surface and
the graphenic layer any difference between the tunnel-
ing strength between the carbon layers forming BLG
and the TI will give very negligible effects. Consider-
ing that in bilayer graphene the interlayer tunneling is
350 meV, and the fact that for the TI-graphene tunnel-
ing t we only consider values smaller than 45 meV for
all our results is t� tBLG. In this limit, at low energies
(. 350 meV), BLG can be treated as 2D system with the
effective Hamiltonian HBLG presented in the main text.

Fig. 1 (e) in the main text shows the bands of a TI-
BLG systems for which the exchange field ∆ = 20 meV
and δµ = 0. Fig 3 shows that the strongest enhancement
of the SOT happens for TI-BLG systems when δµ 6=
0. It is therefore interesting to see how the low-energy
bands of TI-BLG are affected by a nonzero value of δµ.
Fig. 8 shows the band structure of TI-BLG for the case
when δµ = 125 meV in the absence of any exchange
field. We see that one of TI-like bands (shown in orange)
becomes much flatter: the high density of states of this
band explains the high values of SOT for TI-graphene
systems when δµ 6= 0.
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Appendix B: INVERSE SPIN GALVANIC EFFECT
IN TWISTED TI-GRAPHENE

HETEROSTRUCTURES

It can expected that even when the stacking of the
graphenic layer and the TI’s surface is incommensurate,
the screening of the charge impurities by the graphenic
layer will lead to a strong enhancement of τ0 and τt and
therefore of the SOT. The accurate treatment of the real-
istic case in which the main source of disorder are charge
impurities for incommensurate stackings requires the cal-
culation of the dielectric constant for incommensurate
structures, a task that is beyond the scope of the present
work. For this reason, to exemplify how the presence of a
small twist angle θ between the graphenic layer and the
TI surface, giving rise to an incommensurate stacking,
affects the calculation of the SOT, we consider a very
simple model for the effect of the disorder: we simply
assume that the disorder gives rise to a constant quasi-
particle broadening.

Let |q| ≡ q = 2KD sin(θ/2), where KD is the magni-
tude of the graphene K point. The dimensionless param-

eter γ ≡ t′

~vTIq
, where t′ = t/3, measures the strength of

the coupling between the graphenic layer and the TIS.
For γ < 1 we can obtain the electronic structure using
the weak coupling theory for twisted systems63–65 that
for the case of a TI-graphene heterostructures we pre-
sented in Ref.31. After obtaining the electronic struc-
ture in the regime γ < 1, we can obtain χsxJy . To un-
derstand how the response between the commensurate
and the incommensurate regimes differ, we have calcu-
lated χsxJy assuming a constant quasiparticle broaden-
ing 1/(2τ0) = 2 meV, with t′ = 15 meV, δµ = 0, and
εF = 10 meV for a range of values of θ for which the
weak coupling theory is valid. The dependence of χsxJy ,
per valley, as a function of θ for TI-SLG and TI-BLG
is shown in Fig. 9. As to be expected, the results show
that in the incommensurate case the response is smaller
than in the commensurate case. However, they also show,
in particular for the case in which the graphenic layer
is BLG, that a TI-graphene heterostructure is expected
to have stronger χsxJy , and therefore a stronger inverse
spin-galvanic effect, even in the incommensurate regime
and for the case in which the disorder is modeled very
simply.
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