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Abstract. The spectral approach to infinite disordered crystals is applied to an Anderson-type 
Hamiltonian to demonstrate the existence of extended states for nonzero disorder in 2D lattices of 
different geometries. The numerical simulations shown prove that extended states exist for 
disordered honeycomb, triangular, and square crystals. This observation stands in contrast to the 
predictions of scaling theory, and aligns with experiments in photonic lattices and electron 
systems. The method used is the only theoretical approach aimed at showing delocalization. A 
comparison of the results for the three geometries indicates that the triangular and honeycomb 
lattices experience transition in the transport behavior for similar levels of disorder, which is to be 
expected from the planar duality of the lattices. This provides justification for the use of artificially-
prepared triangular lattices as analogues for honeycomb materials, such as graphene. The analysis 
also shows that the transition in the honeycomb case happens more abruptly compared to the other 
two geometries, which can be attributed to the number of nearest neighbors. We outline the 
advantages of the spectral approach as a viable alternative to scaling theory and discuss its 
applicability to transport problems in both quantum and classical 2D systems.   
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I. INTRODUCTION 

Due to its wide applicability, the subject of Anderson localization has grown into a rich field across 
both physics and mathematics. In condensed matter, a crystal without impurities at zero 
temperature acts like a perfect conductor for a travelling wave-particle. According to Anderson 
[1], as the level of impurities reaches a critical value, the conductance of the crystal decreases and 
the travelling wave-particle experiences a transition from an extended to an exponentially localized 
state, called Anderson localization. Anderson localization is currently well understood for the 1D 
[2] [4] and 3D [5] [10] cases, where the problem has been studied in both quantum mechanical 
[5], [8], [11] [14] and classical [15][21] systems. However, the existence of metal-to-insulator 
transition (MIT) in the critical 2D case has been the subject of heated debate over the past few 
decades due to a disagreement between theoretical prediction and experimental observation. 
According to the well-established scaling theory [22], all electron states in a 2D crystal should be 
exponentially localized for any amount of disorder. Nevertheless, a transition from strong to weak 
localization has been observed in photonic lattices [23], [24] and a MIT has been reported in 
electron systems [25][28]. 

With the discovery of graphene in 2004 [29], [30], the resolution of the 2D transport debate has 
become increasingly important. The extraordinary properties of graphene make it an ideal 
candidate for the development of flexible and durable semi-transparent technology, improved 
energy storage units, high-efficiency solar panels, and water purification systems. The realization 
of such applications is sensitive to a deep understanding of the transport properties of this 2D 
material. Recently, a metal-to-insulator transition has been experimentally established for 
graphene doped with hydrogen [31]. However, the origins of this transition are unclear. One 
possible explanation is that graphene exhibits a localization length longer than the size of current 

d states [32][34]. 
The other major hypothesis, which will be the one examined in this work, is that scaling theory 
does not yield reliable results for all dimensions and system sizes [35], [36], and that its limitations 
come to play in the critical 2D case.  

In physical applications, there are two widely used numerical methods for studying Anderson 
localization: the Kubo-Greenwood (KG) theory [37], [38] a
technique (RGT) [39], [40]. Both approaches rely on finite size scaling and periodic boundary 
conditions to restrict the energy of a random Hamiltonian acting on an unbounded lattice. Since 
the spectra (and therefore important physical properties) of self-adjoint operators are sensitive to 
boundary conditions applied to the edges of the domain, restriction of the Hilbert space can lead 
to false information about the energy states of the Hamiltonian. For example, one unfortunate side 
effect of any finite size formulation of the Hamiltonian is that the existence of scattering states (in 
the sense of absolutely continuous spectrum) is excluded a priori.  

In this paper, we apply the (recently introduced) spectral approach [41][43] to study 
delocalization in infinite disordered 2D systems and demonstrate the existence of extended states 
(and, therefore, MIT) in 2D honeycomb, triangular, and square lattices. The spectral approach 
employs a bounded Hamiltonian, which is defined on the entire Hilbert space without requiring 
scaling or the assumption of periodic boundary conditions. The use of spectral theory has been 
recognized by mathematicians as a valid approach to the Anderson localization problem [44][46] 
but has yet to be applied to physical systems. Here we argue that the results of the spectral approach 
can significantly contribute to the debate over the transport properties of 2D materials.  

















where the exponential term indicates how rapidly D  tends to a finite value and b   corresponds to 
the limiting value of D  as n . We applied a nonlinear regression model to equation (9) and 
performed hierarchical clustering of the resulting values for b , which allowed us to distinguish 
the delocalized regime for each geometry.  

1. Nonlinear regression model 

Figure 3 shows that the values of D  are rapidly changing for 1000n ; accordingly, the data fit 
was performed using a nonlinear regression model for equation (9) with a weight function handle 

1 4501w n . To further reduce data fluctuations, separate fits were generated for each of the 
five realizations of each considered disorder. The resulting values for b were then averaged and 
the standard deviation from the mean was used as an error estimate. Representative fits for small 
( 0.60W ), medium (0.60 0.90W ), and large ( 0.90W ) disorder are shown in Fig. 4. The 
extrapolated values of b  as n  are given in Table II. For all considered cases the root mean 
squared error5 from the fit equation was consistently small ( 6 510 10� � ), which indicates a good 
agreement with the weighted regression model.  

Examination of the column containing the values of b  for the honeycomb lattice indicates that 
these values experience a sharp drop when the disorder increases from 0.70W  to 0.75W
(highlighted in Table II). This suggests the existence of two regions of disorder, where the distance 
values have distinct limiting behavior. The first region corresponds to the delocalized regime and 

0.75W  marks the onset of the phase transition to a different transport behavior. Such sharp 
drops in the distance values are not as obvious for the triangular and the square lattice. However, 
regions corresponding to distinct behavior of the b  values can be identified for all three geometries 
using a hierarchical clustering analysis introduced in the following section.  

TABLE II . Equation parameters yielding the best fit for various amounts of disorder in the 2D honeycomb, triangular, 

and square lattices. Here 4500 4500R D b D✁ ✂  measures the relative contribution of the exponential term 

at 4500n ✄ .  

 Honeycomb Triangular Square 

W   
310b ☎   (%)R   

310b ☎  (%)R  
310b ☎  (%)R  

0.10 900 ± 2 1 ± 0 986 ± 3 1 ± 0 886 ± 0.1 0 

0.15 897 ± 8 1 ± 1 984 ± 8 1 ± 1 886 ± 0.3 0 

0.20 885 ± 10 3 ± 1 986 ± 10 1 ± 1 885 ± 0.1 0 

0.25 877 ± 15 3 ± 2 978 ± 10 2 ± 1 884 ± 1 0 

0.30 871 ± 21 4 ± 2 978 ± 13 2 ± 1 884 ± 0.5 0 

0.35 839 ± 35 7 ± 4 967 ± 21 3 ± 2 882 ± 0.5 0 

0.40 850 ± 34 6 ± 4 957 ± 15 4 ± 2 881 ± 0.6 0 

0.45 825 ± 56 8 ± 6 968 ± 13 2 ± 1 878 ± 1 0 

0.50 833 ± 42 7 ± 5 957 ± 29 3 ± 3 876 ± 2 0 

0.55 756 ± 63 15 ± 7 933 ± 32 6 ± 3 873 ± 1 1 ± 0 

                                                           

5 Note that there are two distinct errors in the discussion. The error estimates obtained from the spread of the 
random realizations for each disorder (the ones shown in Table I) indicate the certainty with which we can 
determine the limiting behavior of the distance values. The root mean squared error shows the goodness of the fit.  



0.60 700 ± 55 21 ± 6 952 ± 22 3 ± 2 866 ± 7 1 ± 1 

0.65 745 ± 49 16 ± 6 922 ± 56 6 ± 6 864 ± 4 1 ± 1 

0.70 756 ± 87 14 ± 10 908 ± 84 7 ± 9 844 ± 30 4 ± 3 

0.75 585 ± 76 33 ± 9 850 ± 58 13 ± 6 854 ± 4 2 ± 1 

0.80 483 ± 57 44 ± 7 830 ± 35 15 ± 4 850 ± 7 2 ± 1 

0.85 517 ± 72 40 ± 8 867 ± 76 11 ± 8 842 ± 15 3 ± 2 

0.90 641 ± 110 25 ± 13 839 ± 84 13 ± 9 825 ± 21 5 ± 2 

0.95 486 ± 149 42 ± 18 831 ± 162 14 ± 17 833 ± 6 4 ± 1 

1.00 246 ± 67 71 ± 8 765 ± 87 21 ± 9 771 ± 81 11 ± 9 

1.05 265 ± 198 68 ± 24 803 ± 130 16 ± 14 780 ± 63 9 ± 7 

1.10 344 ± 239 59 ± 29 828 ± 68 14 ± 7 806 ± 4 6 ± 1 

1.15 173 ± 107 91 ± 18 735 ± 85 23 ± 9 763 ± 53 11 ± 6 

1.20 155 ± 179 81 ± 22 801 ± 102 16 ± 10 737 ± 67 13 ± 8 

The second value in Table II is the ratio 4500 4500R D b D� ✁ , which quantifies the 

contribution of the exponential term in equation (9) to the value of D  at 4500n .  Although the 
spectral model identifies the existence of extended states for any nonzero limiting value of  (i.e. 
the exact magnitude of D  as  is irrelevant), the simulations are finite ( 4500n ) and the 
value of R gives a good idea of how rapidly the distance D  approaches the limiting value. Small 
R indicates rapid decay of D  to its limiting value b , whereas increasing R  suggests that the 
contribution of the exponential term is still significant after  iterations. In the range of 
disorders for which R is large, the number of iterations may not be sufficient to extrapolate the 
limiting behavior ofD  at infinity. For both the honeycomb and the triangular lattice, R  increases 
with increasing disorder and we can again identify the emergence of two regions (corresponding 
to smaller R and larger R), where the rate of decay of D  is different. In the case of the square 
lattice, the ratio remains small for almost all values of disorder considered, suggesting that the 
transition point for this geometry will be apparent if higher disorder values are included. In the 
next section, we identify the regions of distinct behavior of R  using hierarchical clustering.  

2. Hierarchical clustering 

Since every finite numerical simulation has limitations, a nonzero positive value for b  is not the 
only criterion used in our analysis. Here, we claim the existence of extended states if, in addition 
to lim 0

n
b

✂✄

, the following two trends in the distance plots are observed: (i) consistency in the b  

values, and (ii) consistency in the R values. For each geometry, we identify the region where 
extended states exist using hierarchical clustering of the values of b  and R  together with the 
corresponding error estimates (from Table II). The clustering algorithm uses a Euclidean metric 

e method. The results for each geometry are represented by the 
dendrograms in Fig. 6. Dendrograms can be interpreted in two distinct ways: in terms of large-
scale groups and in terms of variation among individual branches. The plots in Fig. 6 show the 
existence of two large-scale clusters for both b  and R  in each geometry case, which indicates that 
all examined 2D lattices experience a transition from one transport regime to another as disorder 
increases. The left cluster in each dendrogram for  (Fig. 6(a), (b), (c)) groups together limiting 
distance values that exhibit small variation with increasing disorder and therefore correspond to 
the regime where extended states exist. The right clusters mark the formation of a second group of 



b  values which exhibit distinctly different behavior from the first one. Data points within the 
second cluster correspond to values of disorder which trigger the onset of a phase transition 
towards different transport behavior. The dendrograms for R (Fig. 6(c), (d), (e)) confirm the 
trends established for the b  values. 

Comparison between Fig. 6(a) and Fig. 6(b) indicates key similarities between the triangular and 
the hexagonal lattices. In both cases, the left cluster includes all points in the range 1-13 
(corresponding to 0.10 0.70W ) and the first point included in the right cluster is point 14 (

0.75W ). In addition, each main cluster of both lattices has two sub-clusters, which group 
together similar disorder values. Thus, we conclude that in the honeycomb and triangular cases, 
extended states exist for 0.70W . In contrast, the transition in the square lattice begins with point 
19 ( 1.00W ), i.e. extended states in this geometry exist for 0.95W 6. However, since the right 
cluster in Fig. 6(c) consists of only four points, more data should be generated to confirm the 
transition point of the square lattice.  

It is interesting to note that for the honeycomb lattice there is an obvious dissimilarity between the 
two transport regimes (represented by the difference in cluster heights), which suggests an abrupt 
phase transition. In contrast, for the triangular case the heights of the two clusters are similar and 
for the square case, the right cluster is slightly lower than the left one. This indicates a more gradual 
transition in those two geometries. Such trends in the 
the transition between transport regimes is affected by the number of nearest neighbors, which 
varies in each geometry.   

A limitation of the current analysis is the number of realizations generated and averaged for each 
disorder value. Based on our previous work, we expect five realizations to be sufficient to identify 
the global regions of distinct transport behavior, i.e. to distinguish between localized and extended 
states. However, it is possible that occasionally, the randomly generated five realizations may not 

. From both Table I and 
Fig. 6 we see that in the square lattice, 1.10W  (point 21) fall in the left cluster even though it is 
expected to appear in the right one. We assume 
of realizations and do not affect significantly the group behavior of the clusters. Notice that the 
spectral method was inconclusive for those values since they are considered to lie past the 
transition points for that geometry. 

                                                           

6 In our previous work [43], we showed delocalization for  in the square lattice. This result was obtained 
with a less robust method for data fit. The weaker method was compensated for by including a worst-case analysis 
argument. Altogether, this resulted in less resolution for the value of critical disorder. Here, we have improved on this 
result by generating more data and refining the fitting criteria.  







triangular lattices, which is to be expected from planar duality. This justifies the application of the 
spectral model to systems with triangular symmetries, which are commonly used as analogues to 
honeycomb lattices, such as graphene. Finally, we observed that the abruptness of the transition 
from one transport regime to another is dependent on the lattice geometry.  

The main goal of this work is to identify the delocalization regime for the three 2D lattices, which 
was obtained by examining the two main clusters in each dendrogram in Fig. 6. However, the 
analysis can be extended by considering the substructure of the two main clusters in each geometry. 
Smaller clusters allow us to identify sub-regimes within the global transport behavior. In our future 
work, we will include more data points and consider greater values of the disorder, which will 
improve the accuracy of the statistical analysis and allow us to recognize a rich substructure of 
transport properties. Since the improved statistical analysis applicable to both classical and a 
quantum system, below we propose two directions of future research.  

A. Complex plasma crystal as an analogue for graphene 

As discussed in Sec. I, graphene is a truly 2D material with extraordinary properties and numerous 
applications in technology and industry. However, until the transport properties of graphene are 
well understood, the material cannot be easily utilized as a semiconductor. One approach to 
resolving this issue is the use of 2D toy systems, or analogues, exhibiting similar properties to 

-like 
lattices designed to study the tunneling of electrons, atoms, and waves under controlled system 
conditions [52]. Germane to this argument, the electron-electron interaction in graphene has been 
shown to be very weak [53], allowing its transport properties to be studied employing classical 
crystals of similar geometry. One such system, which is easily realized experimentally, is a 2D 
complex plasma crystal, where micron-sized particles form a triangular lattice in a weakly ionized 
plasma [54][57]. Both electromagnetic and acoustic waves can be induced in 2D complex plasma 
crystals, which makes them an ideal candidate for the study of Anderson localization. In addition, 
dusty plasma systems allow control over the fundamental parameters of each scattering center as 
well as system disorder, providing rapid characterization of the criteria necessary for localization 
across large parameter spaces. A goal of our future research is to expand the spectral method into 
the classical regime, which will allow for the use of dusty plasma crystals as a tool for the 
investigation of transport properties in real materials. 

B. Application to quantum percolation 

It has been shown [58], [59] that the Anderson model belongs to the same universality class as the 
so called quantum percolation problem, which describes a quantum particle moving through a 
disordered system. The transport problem outlined in Sec. II A can be related to an independent 
site percolation problem if we consider the 2D integer lattice, where each lattice site is called a 
vertex and two vertices at a Euclidean distance one unit apart are called neighbors. Two neighbors 
are connected by a bond. In a site percolation7 problem all bonds are considered open, whereas the 
vertices are, independently of each other, chosen to be open with probability p  and closed with 
probability 1 p. An open cluster is a set of open vertices. In the case of an infinite size lattice, 

one is interested in the probability that there exists an open cluster 0C  from the origin to infinity, 

i.e. the probability that the system percolates. The percolation probability (or percolation function) 
                                                           

7 Alternatively, we can consider all vertices to be open and let the bonds be open or closed with a certain probability. 
This setup is called a bond percolation problem. 



p has limiting values 0 0p (all vertices closed) and 1 1p  (all vertices open). 

Therefore, there exists a critical occupation probability cp  at which the system exhibits a phase 

transition.  

There is a disagreement on the value of the critical probability in 2D, which is related to the 2D 
Anderson localization problem in the following way. Quantum percolation deals with the problem 
of a quantum particle moving through a disordered system. The interference of different phases 
accumulated by the particle as it moves along different paths can lead to Anderson localization. If 
all states are localized in an infinite 2D crystal for any nonzero disorder (as predicted by scaling 
theory), then the particle can percolate (delocalize) only when there is zero disorder in the crystal 
corresponding to critical probability 1qp  (all sites open, all bonds open). However, the existence 

of extended states for a nonzero disorder (established by the spectral approach) indicates that the 
quantum particle will percolate for 1qp . Thus, resolution of the 2D Anderson localization 

problem will contribute greatly to the study of the exact value of the critical probability in quantum 
percolation theory.  

The spectral approach to delocalization indicates that for small amounts of the disorder (i.e.,  
smaller than some critical value), extended states exist almost surely. The relationship between the 
percolation probability and the amount of disorder,p W , is dependent on the type of disorder 

and the choice of distribution function, , that assigns the disorder to the lattice sites. In this 

paper, we used a constant distribution for  and varied only the amount of disorder in the 

system. Similarly, one can fix the amount of disorder and vary the choice of a distribution function, 
or both  and  can be varied. In future work, we will compare the square, bimodal, and 

Gaussian distributions for various amounts of disorder in 2D systems to study the dependence of 
the percolation probability on the amount of disorder for each distribution.  
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