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Abstract 
 
For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) 
surfaces mediated by edge atom hopping,  macroscale continuum theory suggests that 
the diffusion coefficient scales like DN ~ N-

β with β = 3/2. However, we find quite different 
and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small 
sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N 
= Np = L2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate 
sizes 9 ≤ N ≤ O(102); the same also applies for N = Np +3, Np + 4,… (iii) facile diffusion 
but with large β > 2 for N = Np + 1 and Np + 2 also for moderate sizes 9 ≤ N ≤ O(102);  
(iv) merging of the above distinct branches and subsequent anomalous scaling with      
1 ○ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(102) to N 
= O(103); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The 
specified size ranges apply for typical model parameters. We focus on the moderate 
size regime where show that diffusivity cycles quasi-periodically from the slowest 
branch for Np + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by 
Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, 
precise analysis must account for a strong enhancement of diffusivity for short time 
increments due to back-correlation in the cluster motion. Further understanding of this 
enhancement, of anomalous size scaling behavior, and of the merging of various 
branches, is facilitated by combinatorial analysis of the number of the ground state and 
low-lying excited state cluster configurations, and also of kink populations. 
 
1. INTRODUCTION 
 
Significant long-range diffusion of large two-dimensional (2D) homoepitaxial adatom 
clusters on single-crystal metal(100) surfaces with sizes on the order of hundreds or 
even thousands of atoms was studied by Scanning Tunneling Microscopy (STM) as 
early as the mid-1990’s [1,2] and also more recently [3]. It is generally accepted that 
cluster diffusion is mediated by periphery diffusion (PD), also described as edge 
diffusion, of adatoms along the steps at the periphery of the cluster. The STM studies 
prompted extensive atomistic lattice-gas modeling starting in the 1990’s of epitaxial 
cluster diffusion [4-11] and of related reshaping phenomena [12-19]. This work 
supplemented limited earlier studies [20-22]. Mesoscale continuum Langevin theory for 
PD-mediated cluster diffusion has also been applied, and predicts that the diffusion 
coefficient for clusters of N atoms satisfies DN ~ σPD N-

β with β = 3/2, where σPD denotes 
the mesoscale mobility for atoms at step edges [23,24]. Simple mean-field type 
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atomistic-level theory for compact clusters also predicts the same size dependence as 
the continuum theory [25]. However, significantly, the experimentally observed size 
scaling exponent, β, for moderate cluster sizes, N = O(102) to O(103), is below the 
prediction of the continuum and mean-field theories [2,3].  

Diffusion of smaller 2D clusters with less than ~10 atoms on metal(100) surfaces 
was also observed instead by Field Ion Microscopy [27-29], and has been interpreted 
with appropriate theoretical analyses [30-33]. However, diffusion of small sized clusters 
exhibits a distinctive irregular size dependence and Arrhenius energetics which is 
readily understood, e.g., given the innate stability of 2x2 atom square clusters relative to 
2-atom dimers and 3-atom trimers. We also mention that there have been multiple 
studies of 2D cluster diffusion for metal(111) and metal(110) homoepitaxial systems, 
and also for heteroepitaxial metal systems [34-37]. Theoretical studies, particularly for 
metal(111) systems, have explored concerted many-atom and off-lattice non-epitaxial 
mechanisms [38-41]. These latter systems are of less relevance for the current study, 
so we do not discuss them further. 

For 2D cluster diffusion on metal(100) surfaces, there is naturally interest in the 
effective or overall activation barrier, Eeff, for the process where DN ~ exp[-Eeff/(kBT)]. 
Here, kB denotes the Boltzmann constant, and T denotes the surface temperature. Eeff 
is related to the kinetic parameters in atomistic-level models including the barrier, Ee, to 
diffuse along close-packed <110> cluster step edges, and any additional barrier, δ, to 
round corners or kinks. Eeff also reflects thermodynamic parameters determined by 
adatom interactions, particularly the formation energy, Eform, to create a step edge atom 
from a kink atom. It was previously suggested that long-range cluster diffusion is limited 
by creation of edge atoms through their extraction from the core of the cluster or “core 
breakup” [1,20], so that Eeff = Ee + δ + Eform [19]. This perspective is consistent with the 
predictions of the mesoscale continuum Langevin theory where the activation energy for 
cluster diffusion corresponds to that for mobility of edge atoms, EPD, where σPD ~      
exp[-EPD/(kBT)] with EPD = Ee + δ + Eform [23,24]. The latter result for EPD has been 
rigorously demonstrated in the absence of a corner or kink rounding barrier [42], but it is 
expected to apply more generally [43].  

However, Mills et al. [10] noted that if cluster edges are effectively facetted, then 
cluster diffusion can be limited by nucleation of new edge layers on these facetted step 
edges. This picture leads to higher values of Eeff than predicted above (see Sec.3), and 
also to a weaker dependence of DN on N reminiscent of experimental observations. This 
facetted regime occurs for linear cluster sizes, L ~ N1/2 (in units of surface lattice 
constant, a = 1) which are below the characteristic separation, Lk ≈ ½ exp[εk/(kBT)], of 
kinks on close-packed <110> edges [44]. Here, εk denotes the kink creation energy. 
Another perspective on anomalous size scaling for diffusivity was provided by Pierre-
Louis [45] who modified the continuum Langevin theory by introducing an additional 
diffusion field for edge atoms. This approach also recovered weaker size scaling. 

Jensen et al. [15] adopted an analogous nucleation-mediated picture to describe 
the effective barrier and anomalous size scaling for shape relaxation of convex non-
equilibrium cluster shapes. Regarding the relationship between this shape relaxation 
process and the long-range diffusion of clusters, it should be noted that both require 
nucleation of new edge layers. Furthermore, a simple relationship was proposed 
between the size scaling exponents for cluster diffusion and relaxation of convex 
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shapes [46]. It was later shown that further refinement to anomalous scaling could be 
induced in the presence of an additional kink or corner rounding barrier [14,17].  

However, we show in this contribution that the above observations, while 
providing key insight into deviations from standard macroscale and mean-field theories, 
fall far short of providing a complete characterization of the full diversity of cluster 
diffusion behavior on the nanoscale. A comprehensive and precise characterization of 
the dependence of the cluster diffusion coefficient, DN, on size, N, can be provided by 
analysis utilizing Kinetic Monte Carlo (KMC) simulation of a stochastic atomistic-level 
lattice-gas model for cluster diffusion which incorporates an appropriate description of 
PD kinetics. Indeed, this approach is a key component of the current study, and reveals 
various size regimes with distinct behavior: (i) facile diffusion for small sizes N < 9;       
(ii) slow nucleation-mediated diffusion with weak size-scaling β < 1 for “perfect” sizes N 
= Np = L2 or L(L+1) with L = 3, 4,… having unique square or near-square ground state 
shapes, and also for sizes Np + 3, Np + 4,…, versus facile diffusion with string size 
scaling β > 2 for sizes Np+1 and  Np + 2 for moderate sizes 9 ≤ N ≤ O(102); (iii) merging 
of these distinct branches and subsequent anomalous scaling with 1 ○ β < 3/2, the 
latter reflecting the quasi-facetted structure of clusters for larger N = O(102) to N = 
O(103); and (iv) classic scaling with β = 3/2 consistent with macroscopic or mean-field 
theories for very large N = O(103) and above. We mainly focus elucidation of behavior in 
regime (ii), and to some extent regime (iii). To this end, in addition to KMC analysis, we 
also develop and utilize results from combinatorial analysis of cluster configurations to 
provide deeper insight.  

In Sec. 2, we describe our stochastic lattice-gas model for PD-mediated cluster 
diffusion, and also various strategies for model analysis. In Sec.3, we discuss different 
possible types or branches of cluster diffusion, and Sec.4 present KMC results providing 
an overview of the variation of DN versus N. A brief report of such behavior was recently 
provided for just one choice of adatom interactions and no kink rounding barrier, δ = 0 
[47]. Here, we consider different interactions, and finite δ > 0 as well as δ = 0. We also 
present a comprehensive analysis and interpretation of diverse aspects of this behavior, 
as detailed in the following sections. In Sec.5, we describe the variation of the effective 
diffusivity, DN(δt), for short time-increments, δt, where DN = limδt→∞ DN(δt). 
Characterization of the variation of DN(δt) with δt, which reflects a strong back-
correlation in cluster motion, is necessary reliable extraction of DN. Additional 
elucidation of diverse size scaling and cyclic variation of diffusivity in regime (ii), and of 
intermingling and merging of diffusion branches by regime (iii), is provided in Sec.6 
based on counting the number of ground state and first excited state configurations of 
key classes of clusters. Conclusions are provided in Sec.7. 
 
2. ATOMISTIC MODEL FOR CLUSTER DIFFUSION 
 
2A. Tailored stochastic lattice-gas model 
 
We adopt a tailored model for PD-mediated epitaxial cluster diffusion on metal(100) 
surfaces, which captures the key features of these systems [16]. In our stochastic 
lattice-gas model, clusters of adatoms reside on a square lattice of adsorption sites with 
lattice constant ‘a’ typically set to unity. Adatoms interact with just nearest-neighbor 
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(NN) attractive lateral interactions of strength φ > 0. They can hop to NN sites, and also 
to 2nd NN (2NN) sites, provided that hopping retains at least one NN adatom in the 
cluster. Thus, this hopping dynamics preserves NN connectivity (and size) of the 
cluster. All hop rates have the Arrhenius form h = ν exp[-Eact/(kBT)], where ν is a 
common attempt frequency for both NN and 2NN hops. Let nNN denote the number of 
in-plane NN adatoms of the hopping adatom in its initial configuration. Then, the 
activation barrier, Eact, selected to be consistent with detailed-balance, satisfies 
 
Eact = Ee + (nNN -1)φ for NN hops, and Eact = Ee + (nNN -1)φ + δ for 2NN hops. (1) 
 
In this model, the edge atom formation energy equals Eform = φ. It also follows that one 
has activation barriers of: Ee for hopping of isolated adatoms along close-packed <110> 
edges via NN hops; Er = Ee + δ for hopping around corners or kinks via 2NN hops; Ek = 
Ee + φ for kink escape via NN hops; and Ec = Ee + φ + δ for “core breakup” via 2NN 
hops. (cf. Sec.1). See Fig.1. Corresponding rates are denoted he, hr, hk, and hc, 
respectively. The characteristic times associated with these various hop rates are 
denoted τe = 1/he, τk = 1/hk, etc. An atom can also be extracted from a straight close-
packed step edge with barrier Eextract = Ee + 2φ + δ, but this process is not prominent, 
and thus is not shown in Fig.1. 
 

 
 
Fig. 1. Schematic of different hopping processes in our stochastic lattice-gas model. 
Atoms correspond to filled red squares and available adsorption sites to empty squares  
 
2B. Model analysis 
 

Our focus is on analysis of the diffusion coefficient, DN, for clusters of various 
sizes N (in atoms). To this end, it is appropriate to first define an effective time-
dependent diffusion coefficient, DN(δt) = <[δr(δt)]2>/(4δt), where δr(δt) is the 
displacement in the cluster center-of-mass (CM) in a time interval δt, and <> is an 
average of data over a long trajectory. Precise and comprehensive characterization of 
model behavior is naturally extracted from KMC simulation. See Fig.2 for a typical 
cluster CM trajectory extracted from such a simulation. The algorithm used is a standard 
rejection-free Bortz type algorithm. Note that in contrast to a “pure” random walk, DN(δt) 
is not in general constant, but can vary for shorter δt due to correlations in the walk of 
the cluster CM [1,10,22,32]. However, DN(δt) plateaus for larger δt, and the conventional 
diffusion coefficient is obtained from DN = limδt→∞ DN(δt) = DN(∞). Thus, appropriate 
analysis of DN must account for this transient behavior. For our model where DN(δt) ∝ 



5 
 

a2he, one has that DN(δt)/DN versus he δt, and DN/(a2he) are independent of our choice of 
Ee and ν, and thus he. For reference, choosing Ee = 0.29 eV and ν = 1012.5 s-1 mimicking 
Ag/Ag(100) yields he = 107.6 s-1 at 300 K. 

We expect DN(δt) to have converged to its plateau value of DN for δt > δtc, where 
<[δr(δtc)]2> ~ a2, i.e., when the cluster of CM has moved about one lattice constant. To 
obtain precise DN we need the total length of the trajectory ttot of at least O(103 δtc). 
Then, <[δr(δtc)]2> can be estimated from O(103) statistically independent values 
obtained from non-overlapping time increments of length δtc along the trajectory. 
Overlapping time increments can be used, although then the values of [δr(δtc)]2 are not 
completely independent. We choose ttot ~ 35000 δtc. 

It is appropriate to note that DN can in principle be determined exactly for any 
clusters size, N, by analysis of the linear master equations for the stochastic lattice-gas 
model [30,32]. These master equations track the evolution of the probability of various 
cluster configurations for the infinite possible number of CM positions. Let ΩN denote the 
total number of distinct configurations for a cluster of size N. Then, applying a discrete 
spatial Fourier transform to these master equations with respect to cluster position 
converts them into a finite-dimensional ΩN x ΩN matrix evolution equation in transform 
space. One then extracts DN from analysis of the “acoustic” eigenmode of this evolution 
matrix, and specifically from its quadratic variation for small wavenumbers. It should 
also be noted that transformed ΩN x ΩN matrix encodes connectivity between cluster 
configurations, i.e., indicating which configurations can be directly reached from other 
configurations by hopping of a single edge atom. Thus, the behavior of DN also reflects 
this connectivity, although in a non-trivial indirect way. Finally, we emphasize that an 
exact analysis utilizing this approach is only viable for relatively small clusters since ΩN 
increases quickly with N. Nonetheless, it is useful to elucidate behavior in the small 
cluster size regime (i). See Appendix A. 
 

 
 
Fig. 2. Trajectory of CM of a diffusing cluster with N = 36 for φ = 0.20 eV with δ = 0 at 
300 K. Start: red square. End: pink square. 
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 The relevance of the total number of cluster configurations, ΩN, is already clear 
from the above discussion of exact analysis. However, one anticipates that not all 
configurations are equally relevant for the cluster diffusion processes, particularly at 
lower T. Thus, it is natural to separately analyze the number of ground state 
configurations, ΩN(0), the number of first excited state configurations, ΩN(1), etc. This 
analysis involves non-trivial combinatorics exploiting results related to partitions of 
integers in number theory. Additional useful analysis will involve estimation of the 
number of kinks in ground state, etc., configurations. Details are provided in Appendices 
B-D. These results will be utilized to elucidate short-time transient behavior, anomalous 
scaling observed for moderate sizes, and intermingling and merging of different 
diffusion branches. 
 
3.  DISTINCT BRANCHES OF CLUSTER DIFFUSIVITY FOR MODERATE SIZES 
 
First, we characterize of various branches or classes of cluster sizes for which distinct 
diffusion behavior is observed in regime (ii) of moderate clusters sizes N = 9 to O(102). 
We close with comments on behavior for small clusters with N < 9. 
 
3A. Nucleation-mediated (NM) diffusion for “perfect” sizes 
 
“Perfect” sizes N = Np = L2 or L(L+1), with L = 3,4,…, have unique non-degenerate 
ground state shapes corresponding to perfect squares and near-square rectangles, 
respectively. This uniqueness does not apply for sizes N = L(L+n) with n ≥ 2 where the 
Lx(L+n) rectangular configuration is either one of multiple ground states, or corresponds 
to an excited state. If φ/(kBT) is not too small, clusters with N = Np primarily exist in their 
unique ground states shapes, and are subject to “nucleation-mediated” diffusion. In this 
process, the first step is extraction of one of the four corner atoms onto a straight close-
packed <110> step edge, which raises the total energy by ΔE = +φ. However, typically 
this atom will soon return to the more highly coordinated corner site. Thus, to initiate 
significant cluster restructuring leading to long-range diffusion, it is necessary that a 
second atom detaches from a corner and aggregates with the first atom before the first 
atom can return to the corner [9,14,16]. In this way, a step edge dimer is formed, thus 
potentially nucleating a new edge layer. Once this dimer is formed on one edge, 
subsequent atoms can migrate from kink or corner sites to complete that new edge 
layer.  

The most direct pathway to facilitate translation of the unique ground state for Np 
= L2 to a different location, a key component of long-range diffusion, is shown in Fig.3a. 
In this case, two atoms are shifted from one side of the cluster to nucleate a dimer on 
the opposite side. Thereafter, atoms continue to be shifted from that same side to the 
opposite side. After each individual atom transfer is completed, the cluster is in a 
different first excited state configuration with energy ΔE = +φ above the ground state. 
Only when the last atom is transferred does the energy decrease again by ΔE = -φ. 
However, we note that there are indirect pathways leading to long-range diffusion as 
shown in Fig.3b. Here, atoms shifted from multiple corners of the cluster whose 
configuration (after each atom transfer) wanders through a large number of first-excited 
state configurations. However, to achieve the translated ground state, multiple eroded 
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corners must be largely reconstructed, so that ultimately atoms are only removed from a 
single side of the cluster. Significantly, we note that while long-range diffusion accesses 
many configurations iso-energetic with the first excited state, it requires repeatedly 
returning to the unique ground state shape. Fig.3c shows the direct pathway for Np = 
L(L+1), which is analogous to that for Np = L2. 

Finally, we comment on the effective barrier for nucleation-mediated diffusion of 
perfect clusters. An isolated edge atom extracted from the corner of a perfect core 
exists with low quasi-equilibrium density, neq = exp[-φ/(kBT)]. Mills et al. [10] argued that 
DN should reflect the nucleation rate knuc ~ neq hc to create a dimer on an outer edge. 
knuc is the product of the density, neq, times the rate, hc, of extracting a second atom at 
the core, as the extracted atom must meet the preexisting edge atom to nucleate a new 
step edge.  Consequently, the effective barrier for cluster diffusion is given by Eeff = Ee + 
2φ + δ [10,15,17].  
 

 
 
Fig.3. Nucleation-mediated cluster diffusion for perfect sizes Np = L2: (a) direct; and (b) 
indirect pathways. (c) Direct pathway for perfect sizes Np = L(L+1). 
 
3B. Facile (FA) cluster diffusion 
 
For clusters of size N = Np + 1 and N = Np + 2, with either Np = L2 or L(L+1), the edge 
dimer nucleation process described above for perfect clusters is not necessary for long-
range cluster diffusion. For N = Np + 1, we note the existence of a “special” ground state 
configurations with an isolated adatom on the edge of a perfect square or rectangular 
core of Np atoms. For these special configurations, the isolated edge adatom can 
readily diffuse around the entire cluster perimeter. For N = Np + 2, “special” ground state 
configurations involve a NN pair of edge atoms or edge dimer on a perfect core, where 
this edge dimer can dissociate and readily reform on another edge. Either process 
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results in no net change of energy. After transferring the isolated edge atom or dimer to 
new edge of the core, atoms can be transferred from another edge to complete the new 
edge of the core. This again leaves an isolated atom or dimer at on the edge of a 
perfect core with shifted location.  

The above scenario for N = Np + 1 with atoms transferred from a single edge 
corresponds to a direct pathway to facilitate translation of the special ground state 
configuration to a different location. This direct pathway is shown in Fig.4a. However, 
there are indirect pathways leading to the same outcome. Analogous to the above case 
of perfect sizes, these indirect pathways involve shifting of atoms from multiple corners 
of the cluster as shown in Fig.4b so the cluster wanders through a large number of 
ground state configurations. However, to achieve the translated ground state, most of 
these eroded corners must be reconstructed so that atoms are only shifted from a single 
side of the cluster. Shifting atoms from one kink to another does not change the energy 
after reattachment, so as a result for either direct or indirect pathways, after each atom 
transfer, the system evolves through a set of configurations iso-energetic with the 
special ground state configurations. The direct pathway for N = Np + 2 is shown in 
Fig.4c.  

Finally, we emphasize that while the diffusing cluster can wander through many 
iso-energetic configurations, long-range diffusion (if restricted to these configurations) 
requires that the cluster repeatedly passes through a special configuration with an 
isolated atom or dimer at an edge of a perfect core. This is the only way to create a new 
complete edge on the original perfect core. Also, we note that since diffusion of facile 
clusters just involves breaking atoms out of kink sites and subsequent edge diffusion, 
the effective cluster diffusion barrier, Eeff, is simply given by Eeff = Ee + φ + δ. 
 

 
 
Fig.4. Facile cluster diffusion for sizes N = L2 + 1: (a) direct; and (b) indirect pathways. 
(c) Direct pathway for sizes N = L2 + 2. 
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3C. Other cases of nucleation-mediated cluster diffusion  
 
Clusters of size N = Np + n with 3 ≤ n ≤ L, for either Np = L2 or L(L+1), also exhibit 
nucleation-limited diffusion. The ground states for these sizes includes the subclass of 
configurations with a linear triple or longer string of atoms at the edge of a perfect 
square or rectangular core. For these configurations, adatoms can readily transfer from 
the opposite complete edge to that on which the string of n adatoms reside (without 
raising the energy after transfer), thereby completing that edge. However, this leaves 
behind a triple or longer string of atoms which cannot readily be transferred to another 
edge. Certainly, the ground states are degenerate, as starting with the above subclass 
of configurations, atoms can be removed from multiple corners, and added to the above 
mentioned string with no net change in energy.  However, in any case, nucleation of a 
dimer on a new outer edge (i.e., on an edge outside the rectangle inscribing the ground 
state configurations) is always required to facilitate long-range diffusion of the cluster 
CM. The same argument as used for perfect clusters indicates that the effective barrier 
for cluster diffusion equals Eeff = Ee + 2φ + δ. 
 
3D. Facile behavior for small sizes N < 9.  
 
Diffusion for all small clusters with N < 9 is always facile (i.e., not nucleation-mediated). 
For N = 2 or 3, cluster diffusion does not even require breaking atoms out of kink sites, 
so the effective barrier is even lower than described above for facile diffusion of larger 
clusters. A dimer CM undergoes a pure random walk on a square grid rotated at 45° to 
the adsorption sites with lattice constant a/√2 hopping at rate hr. Thus, one has D2 = 
D2(δt) = ½ a2 hr and Eeff = Ee + δ. For a trimer, D3(δt) generally decreases with 
increasing δt to its asymptotic value, and diffusion is controlled by corner rounding so 
that again Eeff = Ee + δ [32]. Cases N = 5 = 2x2 + 1 and N = 7 = 2x3 + 1 fit within the 
category Np+1. Cases N = 4 = 2x1+ 2, N = 6 = 2x2 + 2, and N = 8 = 2x3 + 2 fit within the 
category Np+2. Thus, all these cases with 4 ≤ N ≤ 8 have Eeff = Ee + φ + δ, and they all 
exhibit non-constant DN(δt). See Appendix A for an exact master equation based 
analysis for some of these cases. 
 
4. CLUSTER DIFFUSIVITY VERSUS SIZE: KMC RESULTS 
 
4A. Cluster diffusivity with no kink rounding barrier (δ  = 0). 
 
We first present an overview of KMC results illustrating various size regimes and 
branches of DN-behavior focusing on the case φ = 0.20 eV and δ = 0 at 300 K. See Fig. 
5. For small sizes N = 4 to 8, high facile values of DN are evident. Even higher values for 
N = 1 to 3 are not shown. For moderate sizes, N = 9 to O(102), we just show for clarity 
just four distinctive branches: facile Np +1; facile Np +2; perfect Np; and slow Np + 3. Key 
features are: (a) initially high values and rapid decay of DN ~ N-

β
f for facile Np + 1 clusters 

up to N ~ 82 with large βf ≈ 2.3; similarly high DN, but less regular decay for facile Np +2 
clusters; (b) lowest values and slow decay of DN ~ N-

β
s for sizes Np + 3 for N ~ 39-103 
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with small βs ≈ 0.83; (c) very weak size-dependence of DN for perfect Np clusters up to 
N ≈ 81; also perfect Np and slow Np + 3 branches merge for small N = 12 (and N = 9); 
(d) intermingling of DN for perfect Np with facile branches for Nmingle ≈ 43, and 
subsequent transition to a rapid decrease of DN for perfect clusters; (e) near-merging of 
all branches for N ≈ Nmerge ≈ 150. For larger sizes N > Nmerge, if we write DN ~ N-

β
eff, the 

effective exponent varies slowly from βeff ≈ 1.09 for N just above Nmerge, to βeff ≈ 1.33 for 
N from 500-1000, to β = 1.50 (the asymptotic value for compact clusters) for N from 
2000-3600. See Fig.6. This latter result is consistent with a kink separation Lk = ½ 
exp[½φ/(kBT)] ≈ 24 for φ = 0.20 eV, given that the asymptotic regime should apply for N 
>> (Lk)2 ≈ 570. 
 

 
 
Fig.5. KMC results for DN versus N with δ = 0 and φ = 0.20 eV (φ = 0.24 eV in the inset) 
at 300 K. 
 

It is instructive to contrast behavior for φ = 0.20 eV with that for φ = 0.24 eV 
retaining δ  = 0 at 300K (see the insets for Fig.5 and Fig.6). All of the features described 
above are preserved qualitatively for φ = 0.24 eV. However, now the deviations between 
the different branches for moderate sizes are enhanced, which is a natural 
consequence of larger values of φ/(kBT) producing a larger difference between Eeff for 
facile and nucleation-mediated branches. Also, the approach to asymptotic behavior is 
significantly delayed for larger φ/(kBT), as expected given the larger values of Lk. 
Specifically, for φ = 0.24 eV, we find that βf ≈ 2.6 up to N ~ 101, βs ≈ 0.53 for N ~ 67-
200, Nmingle ≈ 81, and Nmerge ≈ 200-250. With regard to scaling for larger sizes, we find 
that βeff ≈ 0.75 just above Nmerge, and βeff ≈ 1.12 for N from 500-1000. Now Lk = 52 for φ 
= 0.24 eV, so we do not access the asymptotic scaling for N >> (Lk)2 ≈ 2700. Naturally, 
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choosing φ < 0.20 eV would minimize difference between different branches for 
moderate sizes and accelerate the approach to asymptotic behavior. However, if φ/(kBT) 
is too small, the cluster connectivity constraint becomes artificial. In the limit as φ/(kBT) 
→ 0, the clusters become “random animals” with perimeter length proportional to size. 
This also results in deviations from β = 1.5 [22]. 
 

 
 
Fig.6. Post-merging effective scaling behavior of 𝐷! with N for φ = 0.20 eV (φ = 0.24 eV 
in the inset) and δ = 0 at 300 K. 
 

Next, we consider in more detail diffusion behavior in the moderate size regime. 
Fig.7 reveals a quasi-periodic variation of DN with N = Np + n within each cycle n = 1 to 
nmax, where nmax = L for Np = L2 or (L-1)L. Specifically, DN has a local maximum for n = 
1, drops significantly for n = 2, and again for n = 3, where the latter corresponds to the 
lowest value within each cycle. DN then increases within each cycle N = Np + n for 
increasing n = 3, 4, 5,…, nmax, where N = Np + nmax recovers the next perfect size above 
Np. For example, for Np = 30 (36), nmax = 6 and Np + 3 = 36 (42). Note that the length of 
these cycles increases for larger N, noting that N = 15, 24, 35,… is smallest value of N 
for which one can realize Np + 3, Np + 4, Np + 5,…  

Interestingly, DN values for perfect sizes for n = nmax within each cycle can be 
comparable to those for facile clusters for n = nmax + 2. On the other hand, they are often 
well above DN for n = 3 (the slowest clusters). This contrasts a possible perception that 
perfect sizes should be the slowest. Thus, one might question the assignment of 
nucleation-mediated diffusion for n = nmax versus facile diffusion for n = nmax +1. 
However, an Arrhenius plot for DN versus φ/(kBT) does show clearly the distinction 
between Eact for these classes. Typically such Arrhenius plots plot ln[DN] versus 1/(kBT) 
for fixed φ, the slope corresponding to Eeff. Here, instead we plot ln[DN/(a2he)]  versus φ 
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for fixed T = 300 K yielding a slope of –n/(kBT) with n=1 (n=2) for facile (nucleation-
mediated) diffusion. See Fig.8. This format is instructive for showing the extent of 
variation of DN for the expected range of φ-values for metal(100) homoepitaxial systems, 
and for a typical experimental temperature (T = 300 K). 

 

 
 
Fig. 7 Cyclical behavior of DN versus N between minima (𝑁!  + 3) and maxima (𝑁! + 1) 
for 𝜙 = 0.20 𝑒𝑉 and δ = 0 at 300 K. Inset: 𝜙 = 0.24 𝑒𝑉. 
 

 
 
Fig.8 Arrhenius analysis of DN for facile (Np + 1, Np + 2) and nucleation-mediated (Np + n 
for n = 3, 4,…, np) sizes with Np = 30 and np = 6. T = 300 K is fixed and φ is varied. 
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4B. Cluster diffusivity with a finite kink rounding barrier (δ  = 0.1). 
 

The introduction of a significant kink rounding barrier, δ > 0, reduces the magnitude of 
DN as a result of the increased Eeff described in Sec.3. However, the qualitative features 
of the different diffusion branches for moderate sizes, and the variation of DN versus N 
are the same as for δ = 0. These features are shown in Fig.9 for φ = 0.20 eV and δ = 0.1 
eV at 300 K (and in the inset for φ = 0.24 eV). A detailed characterization of the cyclical 
behavior of DN versus N in the moderate size regime is shown in Fig.10 where again the 
local maxima (minima) in DN occur for N = Np + 1 (N = Np + 3). As for δ = 0, DN for N = 
Np + n for the case of perfect sizes with n = nmax is not so far below that for facile sizes 
with n = nmax + 2, but well above that for n = 3. Again, we have performed an Arrhenius 
analysis to reveal that Eeff for n = 3, 4,…, and nmax (nucleation-mediated cases) are all 
similar, and are clearly above those for n = nmax + 1 and n = nmax + 2 (facile cases). 

A previous study [17] indicated that introduction of a kink rounding barrier 
reduces the values of effective scaling exponents, βeff. Specifically, this should apply for 
regime (iii) where facile and nucleation-mediated branches have merged, but prior to 
the true asymptotic regime of large sizes. For φ = 0.20 eV at 300 K, we find that just 
after merging, βeff ≈ 0.86 for 144 ≤ N ≤ 325 when δ = 0.1 eV (versus βeff ≈ 1.09 for 121 ≤ 
N ≤ 327 when δ = 0). We also find that βeff ≈ 1.09 for 361 ≤ N ≤ 677 when δ = 0.1 eV 
(versus βeff ≈ 1.32 for 364 ≤ N ≤ 2028 when δ = 0). For φ = 0.24 eV, data is more limited 
for δ = 0.1 eV as simulation is more computationally demanding [48]. However, we 
estimate that just after merging, βeff ≈ 0.71 when δ = 0.1 eV (versus βeff ≈ 0.75 when δ = 
0). These results confirm the proposal that increasing δ decreases βeff. 
 

 
 

Fig.9. KMC results for DN versus N with δ = 0.10 and φ = 0.20 eV (φ = 0.24 eV in the 
inset) at 300 K. 
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Fig.10 Cyclical behavior of DN versus N between maxima (𝑁!  + 1) and minima (𝑁! + 3) 
for 𝜙 = 0.20 𝑒𝑉 and δ = 0.1 𝑒𝑉 at 300 K. Inset: 𝜙 = 0.24 𝑒𝑉 and δ = 0.1 𝑒𝑉. 
 
5. TIME-DEPENDENT DIFFUSIVITY AND BACK-CORRELATION 
 
The time-dependent diffusion coefficient, DN(δt) = <[δr(δt)]2>/4δt, was introduced in 
Sec.2B, where δr(δt) is the CM displacement in a time interval δt. The plateau value of 
DN(δt) corresponds to the conventional diffusion coefficient, DN = lim δt→∞ DN(δt) = DN(∞). 
Thus, it is important to understand the transient behavior in order to reliably assess DN. 
In fact, this was essential to obtain the smooth cyclical variation of DN shown in Sec. 4.  
Here, we consider behavior only in the absence of a kink rounding barrier, δ = 0, 
although the basic observations and strategies of analysis apply more generally. In Fig. 
11, we show KMC simulation results for δ = 0 for the behavior of DN(δt)/DN(∞) versus 
heδt for sizes within a single cycle N = Np + 1 to N = Np + nmax (cf. Sec.4). As noted in 
Sec.2A, the form of these curves is independent of the choice of he. There is a strong 
decrease in DN(δt) to its plateau value DN = DN(∞). In Sec.5A, we estimate the short 
time-increment values, DN(δt→0), for special cases of perfect and facile sizes. Then, in 
Sec.5B, we provide further insight into the underlying back-correlation in cluster motion.  
 
5A. Short-time behavior of DN(δt) 
 
Our estimate of the value of DN(δt→0) assumes independent contributions to the mean-
square displacement of the cluster CM from the short-time motion of all isolated (singly-
coordinated) edge atoms and all doubly-coordinated kink atoms. Thus, we sum over 
these contributions to obtain DN(δt→0). For short-times increments, δt, the mean-square 
displacement of isolated edge atoms (called “monomers” below) from their initial 
position satisfies <δre(δt)2> ≈ 2heδt, 3heδt, and 4heδt for atoms on straight close-packed 
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steps which can make two NN hops, atoms at corners which can make one NN and one 
2NN hop, and atoms which can make two 2NN hops, respectively. The latter case is 
rare for larger clusters, so effectively one has 2heδt ≤ <δre(δt)2> ≤ 3heδt. The mean-
squared displacement of kink atoms (just called “kinks” below) from their initial position 
satisfies <δrk(δt)2> ≈ 3hkδt for atoms which can make one NN and one 2NN hop, and 
<δrk(δt)2> ≈ 4hkδt for corner atoms which can make two 2NN hops. Thus, one has that 
3hkδt ≤ <δrk(δt)2> ≤ 4hkδt. To simplify the analysis below, we will not discriminate 
between the different categories of monomers and kink atoms, and will interpret 
<δre(δt)2> and <δrk(δt)2> as suitable averages over all categories. Subsequently, we will 
just obtain upper and lower bounds for 𝐷!(�𝑡�0)  using the above upper and lower 
bounds on <δre,k(δt)2>. 
 

 
 
Fig.11. Time-dependent diffusion coefficients reflecting backward correlation in the CM 
motion for various cluster sizes within a cycle (see text) with φ = 0.20 eV (and φ = 0.24 
eV in the inset) for δ = 0 at 300 K. Here DN(∞) = limδ→∞ DN(δt) = DN. 
 
 Before presenting our approximation for 𝐷!(�𝑡�0), we also note that when a 
periphery atom is shifted by one lattice constant in a certain direction, the CM of the 
cluster is shifted by 1/𝑁 in that direction. This will produce an additional factor of 
1/𝑁! = 1/𝐿! in our analysis of mean-squared cluster displacement. Thus, our 
expression for 𝐷!(�𝑡�0)  becomes 
 

𝐷! 𝛿𝑡 → 0 ≈ !
!!!

𝑛!,!(𝑖)
!!!! !" !!

!"
+ 𝑛!,!(𝑖)

!!!! !" !!
!"

!"#[!!!/(!!!)]
!!  ,  (2) 

 
where 𝑛!,!(𝑖) and 𝑛!,!(𝑖) are the number of monomers and kinks in 𝑖th state with 
energy 𝐸!, and 𝑍 = 𝑒𝑥𝑝[−𝐸!/(𝑘!𝑇)]!  is the relevant partition function. We use this 
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result to estimate 𝐷!(�𝑡�0) focusing on two special cases. Further details are provided 
in the Supplementary Material (SM) [49]. 
 

Perfect sizes Np = L2. The ground state is unique, i.e., Ω!!(0) = 1, and has a 
square shape with no monomers and four kinks. Thus, the total contribution to 𝐷!(�𝑡�0) 
from the ground state is of order ℎ!/𝑁!, denoted 𝑂(ℎ!/𝑁!). There are 4×(4𝐿 − 2) first 
excited states where an atom is shifted from one of the four corners of the ground state 
and placed as a monomer on an edge, and 2 x 4L first excited states with a monomer 
on an edge of a 𝐿 − 1 ×(𝐿 + 1) rectangle.  Thus, the total number of first excited states 
with a monomer is Ω′!! 1 = (24𝐿 − 8). The total contribution to 𝐷!(�𝑡�0) from these 
states is dominated by monomer hopping and is  𝑂 Ω!!! 1  ℎ!𝑒𝑥𝑝 −𝜙/(𝑘!𝑇) /𝑁!  = 
𝑂 𝐿ℎ!/𝑁!  which exceeds the contribution from the ground state.  

The great majority of the Ω!! 1  first excited states have no monomers, but many 
kinks. If 𝑛!!,!(1) denotes the number of kinks in such states, then one has that 
3 ≤  𝑛!!,! 1 ≤ 2(1+ 2𝐿 + 1). See Appendix B. Despite the penalty of a Boltzmann 
factor of 𝑒𝑥𝑝(−��), the total contribution of kinks in first excited states, 
𝑂 𝑛!!,! 1 Ω!! 1 ℎ!𝑒𝑥𝑝 −𝜙/(𝑘!𝑇) /𝑁!  becomes comparable to those above for 
moderate 𝑁 due to the large number of first excited states Ω!!(1). Specifically, the 
contribution becomes comparable when Ω!! 1 𝑒𝑥𝑝 −𝜙/(𝑘!𝑇)  ~𝑂(1) which occurs 
when 𝑁~49 (81) for 𝜙 = 0.20 𝑒𝑉 (0.24 𝑒𝑉). See Appendix C.  

Finally, we find that it is also necessary to consider contributions from the 
subclass of second excited states which include a monomer. We note that the number 
of such states, Ω′!! 2 ~4𝐿 Ω!!!! 1  (see Appendix D for a more precise analysis) is 
somewhat larger than Ω!! 1  for 𝑁~𝑂(10!). The total contribution of such states is of 
order 𝑂 Ω!!! 2 ℎ!𝑒𝑥𝑝 −2𝜙/(𝑘!𝑇) /𝑁! , which is of the same order as the above 
contributions for moderate cluster sizes if one accounts for this large Ω′!! 2   and for the 
high monomer hop rate ℎ!. Combining these four types of contributions (of which the 
last one dominates for moderate 𝑁) yields estimates for 𝐷!(�𝑡�0) close to simulation 
values as shown in Fig. 12a for ℎ!𝛿𝑡 = 1, 𝜙 = 0.20 𝑒𝑉  

It is appropriate to note that the contributions explicitly included above 
correspond to exactly the configurations which arise in our picture of nucleation-
mediated cluster diffusion for moderate sizes. The cluster primarily exists in the ground 
state, but must access first excited states in order to initiate motion. However transitions 
between the numerous monomer-free first excited states involve second excited states 
with a monomer. We note that contributions from second excited states without a 
monomer and higher excited states are of lower order than those above since the 
number of relevant configurations is not substantially greater than Ω!! 1  or Ω′!! 2 . 
 

Facile clusters of sizes N = L2 + 1. Here, we mimic the above analysis for perfect 
clusters. For 𝑁 =  𝐿! + 1, there are 4𝐿 ground states with a monomer, i.e., Ω′!!!! 0 =
4𝐿, each of which provide a contribution 𝑂 ℎ!Ω′!!!! 0 ~𝑂(ℎ!) dominated by monomer 
hopping. All ground states contribute by kink hopping with total contribution of order 
𝑂 𝑛!!!!,! 0 ℎ!Ω!!!! 0 ~𝑂 ℎ!  for 𝑁 ≥ 65(101) with 𝜙 = 0.20 𝑒𝑉 (0.24 𝑒𝑉), using the 
feature that Ω!!!! 0  grows far more quickly than Ω′!!!! 0 . Note also that  𝑛!!!!,! 0 ≤
2(1+ 2𝐿 − 1). See Appendix B. The third contribution comes from first excited states 
with a monomer, where the number of such states satisfies Ω′!!!! 1 ~4𝐿 Ω!! 1  (see 
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Appendix D for a more precise analysis). Thus, the total contribution of first excited 
states is 𝑂 ℎ!Ω′!!!! 1 𝑒𝑥𝑝[−𝜙/(𝑘!𝑇)] ~𝑂 ℎ! , due to the large number of states 
considered, 𝑂 Ω′!!!! 1 𝑒𝑥𝑝[−𝜙/(𝑘!𝑇)] ~𝑂 1  for 𝑁 ≥ 65(101) with 
𝜙 = 0.20 𝑒𝑉 (0.24 𝑒𝑉). Combining these three contributions yields estimates for 
𝐷!(�𝑡�0) close to simulation values. See Fig. 12 (inset) for ℎ!𝛿𝑡 = 1, 𝜙 = 0.20 𝑒𝑉. Note 
that the states explicitly included above are exactly those in our picture of facile diffusion 
for moderate sized clusters, and other states have a lower order contribution.   
 

  
 

Fig.12. Estimated upper and lower bounds of 𝐷! 𝛿𝑡 → 0  versus simulation results for 
ℎ!𝛿𝑡 = 1 (black dots) for 𝑁 = 𝐿! (inset 𝑁 = 𝐿! + 1) for 𝜙 = 0.20 𝑒𝑉 and δ = 0 at 300 K. 
 
 Other cases and further comparison. The above analysis readily extends to other 
cases. For the nucleation-mediated cases, N = Np + n with n = 3, 4,…, nmax, we  claim 
that DN(δt→0) will decrease from a local maximum for N = Np + 3 to a local minimum for 
N = Np + np (corresponding to perfect clusters). Clusters within this class for N = Np + 3 
have the highest ground state degeneracy and importantly also the highest number of 
kinks. Consequently, the contribution from the ground states 𝑂 𝑛!!!!,! 0 ℎ!Ω!!!! 0  
for N = Np + 3 will exceed that for perfect clusters due to the substantial number of kink 
sites, 𝑛!!!!,! 0 ≤ 2(1+ 2𝐿 − 5). The larger factor Ω!!!! 0  versus Ω!!!!! 0  = 1 does 
not in itself boost DN(δt→0), as this factor also appears in the partition function 
denominator of (2). For N = Np + n, as n increases from 3 towards np, the degeneracy of 
the ground state and importantly the typical number of kinks decreases. 
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Correspondingly, DN(δt→0) also decreases with increasing n = 3,4,… Finally, comparing 
the above analysis for perfect and facile clusters shows that DN(δt→0) for perfect 
clusters is smaller roughly by a Boltzmann factor of 𝑒𝑥𝑝[−𝜙/(𝑘!𝑇)] than for facile 
clusters. 
 
5B. Further analysis of back-correlation 
 
The substantial characteristic time, δtc, associated with the transient short-time diffusion 
behavior of DN(δt) is evident from Fig.11. This data suggests he δtc ~ 105-106 (106-107) 
for φ = 0.20 (0.24) eV at 300 K at least for nucleation-mediated (NM) cluster diffusion, 
where the branch with N = Np + 3 appears to have a larger δtc than for N = Np + n with n 
> 3. This latter feature is confirmed by a suitably rescaled version of Fig.11 which is 
shown in the SM [49].  It is reasonable to expect that for NM diffusion, δtc should reflect 
the characteristic time δtnuc = 1/knuc to nucleate a dimer on an outer edge. This implies 
that he δtc ~ he δtnuc ~ exp[+2φ/(kBT)] ~ 106.4 (108.0) for φ = 0.20 eV (φ = 0.24 eV) at 300 K 
with δ = 0. These crude estimates at least roughly reflect those from Fig.11, and also 
the feature that δtc increases with φ. The larger δtc for N = Np + 3 plausibly reflects the 
larger degeneracy of the ground state and the larger typical number of kinks for that 
cluster size (see Sec.7) which can inhibit nucleation of new outer edges. 

For facile clusters with N = Np + 1 or N = Np + 2, Fig.11 perhaps suggests a 
somewhat shorter δtc although this is not evident in the further rescaled plots in SM [49]. 
One might expect a shorter δtc based upon the feature that nucleation is not needed so 
correspondingly Eeff is lower, and the long-time diffusion coefficient is higher. However, 
other factors, such as the high degeneracy of the ground state (see Sec.7), no doubt 
play a role in determining δtc.   

As noted previously, assessment of transient behavior in DN(δt) is essential for 
precise determination of DN, where precise determination becomes more demanding for 
longer δtc. Thus, accurate treatment of the case N = Np + 3 is most demanding, failure to 
do so leading to distorted representation of the cyclical behavior of DN versus N. See 
Sec.7. Practically, we initially estimate that the plateau in DN(δt) is achieved for δt > δt* 
where <[δr(δt*)]2> is of the order of a2 (where δt* gives a measure of δtc). The total 
length of the trajectories used to determine DN is tmax ~35,000 δt* where data is 
collected only for δt >> δt*. (For reference, choosing Ee = 0.29 eV and ν = 1012.5 s-1 for 
Ag/Ag(100) yields he = 107.6 s-1 at 300 K, and tmax ~ 70,000 s for N = 59.) 
 Finally, we elaborate on the interpretation of the decrease of DN(δt) to a plateau 
value as corresponding to a back-correlation in the walk of the cluster. Consider the 
canonical model of a correlated walk with hops to NN sites on a lattice at total rate h. If rj 
denotes the displacement of the jth hop, then the displacement of the jth hop is 
correlated to that of previous hops as quantified by A(k) = <rj⋅rj-k>/<r1⋅r1>, where A(k) < 0 
for back-correlation. Adapting results for the time-dependent diffusion coefficient, D(δt), 
for this system into a continuous-time framework for a large number of hops yields 
 
D(δt)/D(δt→0) = 1 + 2 ∫0≤ u≤ hδt du A(u), so that A(hδt) = ½ d/ds[D(s)/D(0)]|s=hδt. (3) 
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Note that the magnitude of cumulative (integrated) correlation is strictly bounded by ½ in 
this formulation. Clearly, the decrease in DN(δt) with increasing δt shown in Fig.11 
corresponds to back-correlation A(u) < 0. One could extract an effective A(u) from the 
form of DN(δt)  after assigning an effective total hop rate. 
 
6. FURTHER ANALYSIS OF DIFFUSIVITY VIA CONFIGURATION COUNTING 
 
Deeper insight into the diverse aspects of cluster diffusion behavior described in Sec.4 
follows from exploiting results of a combinatorial analysis of cluster configurations 
corresponding to ground states and first excited states. This non-trivial analysis utilizes 
results related to (number theoretic) partitions of integers. Details are relegated to 
Appendix C.   
 
6A. Anomalous scaling for facile clusters 
 
As noted in Sec.4, for facile Np + 1 clusters, one finds initially high values and rapid 
decay of DN ~ N-

β
f with large βf ≈ 2.3 (βf ≈ 2.6) up to N ~ 82 (101) for φ = 0.20 (0.24) eV 

at 300 K. These exponent values are far larger than any reported in previous studies. 
To elucidate this behavior, recall that long-range diffusion requires that the cluster 
repeatedly pass through a special configuration with one edge atom on a perfect core. 
We suggest that behavior of DN reflects the possibility to wander through a large 
number of iso-energetic ground state configurations far removed from the special 
configuration, where the number, ΩN(0), of these states increases rapidly with 
increasing N. After the system leaves the special configuration, let tret denote the mean-
time for the system to return, where one expects that DN ~ a2/tret.  A key result of 
Montroll and Weiss [50] for regular lattices is that this return time is directly proportional 
to the size of the system, independent of dimension. This in turn suggests that DN ~ 
a2hc/ΩN(0). Results presented in Table I indicate that ΩN(0) ~ Nα with α ≈ 2.6 up to N ~ 
100, reasonably consistent with the above large βf values. See Appendix C.  

For another perspective, note that all iso-energetic states have equal population. 
Thus, the probability, Pret, that the system is in a ground state which can directly 
transition to (or “return to”) the special configuration scales like Pret ~ 1/ΩN(0). Then, we 
claim that DN ~ a2hcPret which recovers the above result.  
 
N=L2+1 10 17 26 37 50 65 82 101 
Ω!(0) 28 80 210 504 1148 2480 5160 10360 
Ω!∗ (0) 28 80 202 464 988 1976 3748 6792 

 
Table I. Number of iso-energetic ground state configurations, Ω! 0 , and restricted iso-
energetic configurations, Ω!∗ (0), for 𝑁 = 𝐿! + 1. 

 
The exact behavior of DN actually depends not just on the number of iso-

energetic configurations, but on their connectivity to the special configuration [30,32]. 
Presumably configurations more closely connected to the special configuration should 
play a more significant role. This motivates analysis of the number, ΩN*(0), of restricted 
iso-energetic configurations where starting from the special configuration, additional 
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atoms are shifted to the edge with the isolated atom from just the outermost layer of the 
other edges. Analysis of ΩN*(0) data also in Table I produces a modified exponent of α 
≈ 2.4 again reasonably consistent with the βf values.  
 
6B. Intermingling of perfect and facile branches  
 
While DN for facile clusters decreases strongly with N for moderate sizes, the variation 
of DN for perfect clusters is extremely weak. The latter behavior reflects the feature that 
diffusion of perfect clusters is largely controlled by the nucleation step, which depends 
weakly on N, and not so much on the subsequent transfer of atoms to complete the new 
edge. Thus, the DN in the facile branch which are large for smaller sizes but rapidly 
decreasing naturally meet and “intermingle” with the DN of the perfect branch which are 
lower for small sizes but slowly decreasing. Since DN for the Np + 3 branch are even 
lower than for perfect clusters and decrease with increasing N, this branch remains 
separate from the facile and perfect clusters at the point of intermingling. 

The distinction between perfect clusters and facile (or other) classes of clusters is 
predicated on the feature that the former primarily exist in their ground states. However, 
perfect 𝑁! clusters would have a significant probability of being in 1st excited state when 
Ω!!(1)/Ω!!(0) ≈ Ω!!(1) ≈ exp[φ/(kBT)] where again Ω! 𝑛  gives the number of iso-
configurations for the nth excited state for a cluster of sizes N, and Ω!!(0) =1. Results 
for Ω!!(1) determined from combinatorial analysis in Appendix C are reported in     
Table II. For 𝜙 = 0.20 𝑒𝑉 (0.24 𝑒𝑉) the Boltzmann factor 𝑒𝑥𝑝[𝜙/(𝑘!𝑇)]  = 2290 (10730), 
and thus intermingling for perfect and facile branches should occur around N = Nmingle 
~49 (81). This prediction is consistent with the behavior shown in Fig.13 where Nmingle is 
indicated by a dashed vertical line. Note that DN for perfect (facile) clusters decreases 
more quickly (slowly) after intermingling. 
 
𝑁 = 𝐿! 25 36 49 64 81 100 
Ω!!(1) 496 1140 2472 5152 10352 20208 

 
Table II. Values of Ω!!(1) for Np = L2. 
 

 
 
Fig.13. The intermingling sizes of 𝐿! and 𝐿! + 1 branches predicted with 
thermodynamics for 𝜙 = 0.20 𝑒𝑉 (inset:  𝜙 = 0.24 𝑒𝑉 ) with δ = 0 at 300 K. 
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6C. Merging of all branches of cluster diffusivity  
 
As noted above, the feature that DN for the Np + 3 branch are lower than those for 
perfect clusters and also that they decrease slowly with N delays merging with the 
perfect and facile branches. It is appropriate note that while both Np + 1 and Np + 3 
branches have a high ground state degeneracy, this only produces strong size 
dependence of DN for the former. Why? Long-range diffusion of clusters for sizes Np + 3 
does not require repeatedly passing through a single special configuration, unlike for Np 
+ 1. Thus, the strong increase in the number of ground states with increasing N does 
not induce a strong reduction in DN for N = Np + 3. 

Analogous to our assessment of intermingling and perfect branches, here we 
argue that the distinctive nature of Np + 3 clusters (relative to Np + 1) is lost when the 
ratio of the number of 1st excited states ΩNp+3(1) to the number of ground states ΩNp+3(0) 
satisfies ΩNp+3(1)/ΩNp+3(0) = exp[φ/(kBT)]. The method to count the number of iso-
energetic states, Ω!!!!(1), Ω!!!!(0) is the same as that of counting Ω!!(1). Relevant 
results are presented in Table III. See Appendix C for details. The predicted sizes for 
merging, N = Nmerge ≈ 199 (403) for 𝜙 = 0.20 𝑒𝑉 (0.24 𝑒𝑉), are indicated by dashed 
vertical lines in Fig.14.   
 
𝑁 = 𝐿! + 3 147 172 199 327 364 403 
Ω!!!!(0) 10360 20216 38416 407968 706034 1.20×10! 
Ω!!!!(1) 1.53×10! 3.95×10! 9.86×10! 2.86×10! 6.25×10! 1.34×10!" 
Ω!!!!(1)
Ω!!!!(0)

 
1475 1955 2565 7002 8847 11116 

 
Table III Values for Ω!!!!(0),  Ω!!!! 1 , and the ratio Ω!!!!(1)/Ω!!!!(0) for 𝑁 = 𝐿! + 3. 
 

 
 
Fig. 14 The intermingling sizes of 𝐿! + 3 and 𝐿×(𝐿 + 1)+ 1 branches predicted with 
thermodynamics for 𝜙 = 0.20 𝑒𝑉 (inset  𝜙 = 0.24 𝑒𝑉 ) with δ = 0 at 300 K. 
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6D. Analysis of the cyclical variation of cluster diffusivity  
 
It is clear from Fig.5 that DN actually increases with increasing size N = Np + n, within 
each cycle n = 3, 4, 5,…, nmax where nmax = L for Np = L2 or (L-1)L recovers a perfect 
cluster. A local minimum (maximum) in DN occurs for the n = 3 (n = nmax +1). We 
suggest that the key feature controlling this behavior is a strong decrease with 
increasing n in the degeneracy of the ground state from a maximum for n = 3 to a 
minimum for n = nmax. The minimum is 1 for Np = L2, and 4 for Np = (L-1)L. A larger 
number of degenerate ground states means a higher probability that the cluster is in a 
configuration with multiple atoms removed from the corners and thus many kink sites 
which can trap diffusing edge atoms. This makes nucleation of a new outer edge more 
difficult, as the lifetime of isolated atoms is reduced), and also inhibits transfer atoms to 
complete that new outer edge. Consequently, DNp+n increases with increasing n. We 
remark that “oscillations” in DN versus N were observed in previous simulation studies 
[7,9]. However, the analysis was limited [9], e.g., perhaps giving a misimpression that 
perfect clusters N = Np diffuse slowest, and not recognizing that N = Np + 2 (as well as 
Np + 1) are facile. 

Finally, we emphasize the substantial computational challenge in obtaining 
precise values for DN particularly for N = Np + 3 or Np + 4. This is evident from Fig.11 
where one must sample over substantially longer time intervals δt to obtain the correct 
asymptotic value of DN. Lack of precision in analysis fails to produce the correct trend in 
DN within each cycle. To illustrate this issue, in Fig.15, we compare results obtained for 
DN(δt) with a large heδt = 12970 for φ = 0.20 eV and δ = 0 at 300 K (still well below he δtc 
= 105-106), which is however insufficiently large to recover the correct asymptotic 
behavior. Such analysis gives the misimpression that the slowest diffusion occurs not 
for N = Np + n with n = 3, but for somewhat larger n. 

 

  
 
Fig. 15. Illustration of analysis with diffusion coefficients not converged for 𝜙 = 0.2𝑒𝑉 
with δ  = 0 at 300 K for 31 ≤ 𝑁 ≤ 36. 
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7. CONCLUSIONS 
 
 Our precise KMC analysis of a tailored but effective model for cluster diffusion on 
metal(100) surfaces has revealed extraordinarily diverse behavior particularly for the 
regime of moderates sizes 9 ≤ N ≤ O(102). Perhaps unexpectedly, the slowest diffusion 
does not occur for perfect sizes N = Np = L2 or L(L+1) with unique square or near-
square ground state shapes, but rather for N = Np + 3.  However, the slowest short-time 
diffusivity does occur for perfect sizes. We are able to elucidate the distinct behavior of 
different branches (facile, perfect, and slow) in this regime, exploiting combinatorial 
analysis of the number of ground states, first excited states, etc. 

Also of interest is the intermingling and merging of these branches for larger N. 
Combinatorial analysis was also utilized to provide insight into the intermingling and 
merging points essentially by determining at what cluster size thermal fluctuations or 
excitations smeared the distinction between various branches.  As an aside, we note 
that another way to assess merging is based on the realization that the effective 
Arrhenius energy, Eeff, for cluster diffusion adopts a higher value, Eeff = Ee + 2φ + δ, for 
nucleation-mediated diffusion for moderate sizes than in the asymptotic regime of large 
sizes where Eeff = Ee + φ + δ. We have checked that for nucleation-mediated diffusion, 
the effective value of Eeff decreases with increasing N and is reduced to about Eeff = Ee 
+ 1.5φ + δ at the point where merging occurs. See SM [49]. 
 We have not presented a comparison with experimental data. However, our 
results are particularly valuable in revealing the complexity of behavior for moderate 
sizes and the potential shortcomings in extracting size scaling exponents from data over 
a limited size range. We plan to apply our modeling to analyze behavior for Ag clusters 
on Ag(100) where recent experimental analysis [3] has suggested somewhat lower 
exponent values from those determined previously [2] (but where in both cases the 
exponent is significantly below the classic value of β = 3/2). Also, with regard to 
experiment, we note that facile clusters of size N = Np + 1 should be susceptible to 
dissociation of the isolated edge atom in the special ground state configuration with this 
atom and a perfect core. However, this is only one of many iso-energetic ground states 
for larger N reducing this likelihood.  For N = Np + 2, there are no isolated edge atoms in 
the ground state, so this issue does not arise. 
 Finally, we note that basic features of results from our modeling should be more 
general than for cluster diffusion on metal(100) surfaces. Similar behavior is expected 
for metal(111) surfaces. The surprising feature that perfect clusters do not have the 
lowest diffusivity may even extend to supported 3D clusters. However, there are 
certainly other fundamental issues which remain to be addressed. For example, 
degeneracy of the ground state is important in explaining various basic features of 
behavior.  However, if one includes more lateral adatom interactions, degeneracies can 
be broken, so how does this change behavior from that of our basic model? 
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Appendix A: Exact analysis for the small cluster size regime N < 9 

Exploiting an exact master equations analysis discussed in the text, for dimers with 2 
linear configurations (rotated by 90°), one finds that [32] 
 
D2 = D2(δt) = (a2/2) hr so Eeff = Ee + δ.        (4) 
 
For trimers with 6 distinct configurations (2 linear and 4 bent), D3(δt) generally 
decreases with increasing δt to its asymptotic value [32] 
 
D3 = (a2/3) hr he / (hr + he) so 1/D3 = 3a-2(1/hr + 1/he).     (5) 
 
The latter expression confirms the obvious feature that both edge diffusion and corner 
rounding are required for long-range diffusion. In this case, one does not in general 
have perfect Arrhenius behavior except for δ = 0 where Eeff = Ee. However, in practice, 
for typical non-zero δ, one has that Eeff = Ee + δ. For tetramers with 19 distinct 
configurations, D4(δt) generally decreases with increasing δt to its asymptotic value 
 
D4 = hchr[6(he)3+38(he)2hr+35he(hr)2+6(hr)3]/[{18hc+hr}{(he)3+10(he)2hr +24he(hr)2+9(hr)3}]. 
 
            (6) 
 
As expected, this result shows that core breakup is essential for long-range cluster 
diffusion. For typical values of parameters with non-zero δ, the effective barrier is given 
by Eeff = Ee + φ + δ. 

Previous analysis [32] also exploited the possibility of simplified (dimensionally-
reduced) analysis in the limit as he → ∞, where various configurations convert infinitely 
quickly between each other and may be grouped into a smaller set of quasi-
configurations. For the trimer, there are two quasi-configurations (2 linear and a single 
quasi-bent configuration), and the above result reduces to D2 = (a2/3)hr. For tetramers, 
there are 5 quasi configurations, and the above result reduces to  
 
D4 = 6a2 hchr/[18hc+hr], so that 1/D4 = (a-2/6)(1/hc + 18/hr).     (7) 
 
Results are also available for pentamers. 
 
Appendix B: Estimating the number of kinks 𝒏𝒌 in cluster configurations 
 
Here, we obtain bounds on the number of kinks 𝑛! for various cluster configurations. 
The lower bound can readily be determined for specific cases, and is O(1). Thus, we 
focus on estimate the upper bound in this section. First, consider removing m1 atoms 
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from a single corner of an otherwise perfect rectangular cluster. The number of kinks, 
nk, is maximized if the atoms are removed to create a vacancy region as close as 
possible to a triangle with a 45° diagonal (corresponding to a perfect staircase of kinks 
each of height ‘a’). This can be achieved exactly if 𝑚! = 1+ 2+⋯+ 𝑛! − 1 =
!
!
𝑛!(𝑛! − 1), so that 𝑛! = 1+ 1+ 8𝑚! /2. 

 Next, consider removing mi atoms from the ith corner of a perfect rectangular 
cluster where m1 + m2 + m3 + m4 = m, and where m is less than either side length of the 
rectangle. Then, since the above expression for nk with atoms removed from a single 
corner increases sub-linearly with m1, it follows that the total number of kinks can be 
maximized by removing roughly equal numbers of kinks from all corners, i.e., m1 ≈ m2 ≈ 
m3 ≈ m4 ≈ m/4. Consequently, for an upper bound on the total number of kinks 𝑛!, we 
replace m1 by m/4 in the above expression and multiply by 4 to obtain                        
𝑛! ≤ 2 1+ 1+ 2𝑚 . Considering the quantities relevant for the analysis of Sec.4, we 
have that 𝑚 = 𝐿 for 𝑛!!,!(1), 𝑚 = 𝐿 − 1 for 𝑛!!!!,!(0), and 𝑚 = 𝐿 − 3 for 𝑛!!!!,!(0).  
 
Appendix C: Counting of iso-energetic cluster configurations 
 
In our representation of clusters as collections of atoms, themselves represented as 
contiguous red squares, the energy of the cluster corresponds to its perimeter length. 
Consider cluster shapes which are obtained by starting with a fully populated rectangle 
and then removing atoms from each corner of the cluster to form a simple “staircase” 
(i.e., steps at each corner are of one sign, not both). Then, the energy of these 
configurations is determined exactly by the perimeter length of the smallest rectangle 
inscribing these clusters (which corresponds to the original rectangle from which atoms 
were removed). This follows since the perimeter length of the inscribing rectangle and 
the actual cluster are equal. These observations will be useful in the following analysis. 

First, we consider ground state configurations which have the minimum perimeter 
length for the prescribed number, N, of atoms. For ground states, the inscribing 
rectangle is either a Li×Li square of occupied sites, or a near-square Li×(Li +1) or  
Li×(Li +2) rectangle. The unique ground state for N = L2 is inscribed by a square with Li = 
L. The ground states for N = L2 + m with 1 ≤ m ≤ L are inscribed by a Li×(Li +1) rectangle 
with Li = L. The ground states for N = L(L+1)+m with 1 ≤ m ≤ L are inscribed by Li×Li 
squares with Li = L+1 or by Li×(Li +2) rectangles with Li = L. Next, we consider nth 
excited state configurations where the perimeter length of the cluster is increased 
relative to the ground state by an amount 2n (in units of lattice constant a = 1). Thus, the 
size of the inscribing rectangle must also be increased. Specifically, the side lengths are 
increased by amounts nx and ny, where nx + ny = n to achieve the desired perimeter 
length. 
 Thus, to evaluate the number of convex iso-energetic nth excited state 
configurations of a size 𝑁 cluster, Ω!(𝑛), first one determining the different possible 
inscribing rectangles for the ground states. Second, one expands the side lengths of 
these rectangles by amounts nx and ny where nx + ny = n. Third, regarding all sites in 
this larger inscribing rectangle as initially populated, one considers all possible ways to 
remove the appropriate number of atoms from the four corners of the rectangle (making 
sure the cluster is touching all four edges of the rectangular frame), until the final 
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number of atoms matches the cluster size, N, which we are targeting. It is instructive to 
provide a few examples: (i) determination of Ω!!!! 0  requires counting different 
possible ways to remove L-3 atoms from an Lx(L+1) inscribing rectangle;                     
(ii) determination of Ω!! 1  requires counting different possible ways to remove L atoms 
from an Lx(L+1) inscribing rectangle; (iii) determination of Ω!!!! 1  requires counting 
different possible ways to remove L-3 atoms from Lx(L+2) and (L+1)x(L+1) inscribing 
rectangles. 

Now, we describe in detail a systematic procedure to count the number of ways 
of removing the appropriate number of atoms from the inscribing rectangle. We start by 
considering removal of m1 atoms from one fully populated corner. The number of 
possibilities is identical to the number of Young or Ferrers diagrams that represents 
integer partition of 𝑚. In number theory, this integer partition is traditionally denoted by 
𝑃(𝑚!) [51]. An example for m1 = 4 where P(m1 =4) = 5 is shown in Fig.16. 

 
 
Fig. 16. Number 𝑃 𝑚! = 4 = 5 of possible ways to remove 𝑚! = 4 atoms from a corner 
illustrated by Ferrers diagrams. Partitions of 4 into strings of integers indicate the 
number of atoms removed from each row starting with the top row. 
 

Next, we address the more complex challenge of counting the total number of 
configurations of the cluster, where one removes m1, m2, m3, and m4 atoms from each 
of the four corners of the inscribing rectangle, respectively, for a total of m atoms where 
m = m1 + m2 + m3 + m4. One constraint with this analysis is that removal of atoms from 
one corner does not interfere with removal from other corners, which requires that m is 
no larger than the side lengths of the inscribing rectangle. (We will comment further 
below on cases where this condition is not satisfied.) Subject to this constraint, the total 
number of configurations comes from considering the product of the corresponding 
integer partions, and then summing over all possible choices of mi consistent with the 
constraint on the sum (and finally adjusting for any overcounting).  

An example for Ω!! 1  is shown below where m = L atoms are removed from an 
inscribing Lx(L+1) rectangle. Here, one has 

 
Ω!! 1 = 2× 𝑃 𝑚! 𝑃 𝑚! 𝑃 𝑚! 𝑃 𝑚! − (𝑜𝑣𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔)!!!!!!!!!!!!!   
            (8) 



27 
 

= 2× 𝑃 𝑚! 𝑃 𝑚! −𝑚!

!!

!!!!

𝑃 𝑚! 𝑃 𝐿 −𝑚! −𝑚!

!!!!

!!!!

!

!!!!

− 𝑜𝑣𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 . 

 
In the second sum, mL (mR) gives the total number of atoms removed from the left 
(right) side on the inscribing rectangle, and ml (mr) give the number of atoms removed 
from one corner on the left (right) side. The factor of 2 comes from a 90° rotation of the 
𝐿×(𝐿 + 1) rectangle, correponding to another set of discrete states. Note that “over 
counting” in (8) includes the ground state being counted four times (𝑚! = 𝐿 𝑎𝑛𝑑 𝑚! =
0 𝑜𝑟 𝐿) 𝑜𝑟 (𝑚! = 0, 𝑚! = 0 𝑜𝑟 𝐿) . If one wishes consider just first excited states without 
any monomers, then it is also necessary to subtract 4x(4L-2) states where an atom is 
shifted from a corner of the LxL ground state configuration and placed on a side. One 
must also subtract 4L configurations with a monomer on the edge of a completely 
populated (L-1)x(L+1) rectangle.  

In addition, we have analyzed Ω!!!!(0) and Ω!!!!(0) where L-1 and L-3 atoms 
are removed from an Lx(L+1) inscribing rectangle, respectively. In these cases, the 
procedure described above is directly applicable. Finally, we have also analyzed  
Ω!!!!(1) where 2L-3 atoms are removed from Lx(L+2) or (L+1)x(L+1) inscribing 
rectangles. In this case, since the number of removed atoms significantly exceeds side 
lengths of the inscribing rectangle, significant modification is required from the 
formulation (8) used to obtain Ω!! 1  and other quantities mentioned above. 

Results reported in the text for Ω!! 1 , Ω!!!!(0), and Ω!!!!(0) include all states, 
i.e., those with monomers and those without. See the SM for corresponding results 
excluidng states with monomers. 
 
Appendix D: Counting of excited state configurations with one monomer 
 
In Sec. 5, we estimated number of configurations, Ω′!(𝑛), of clusters with N atoms 
corresponding to nth excited state which include a single monomer. In some cases, this 
analysis was simple, e.g., Ω′!!!! 0 = 4𝐿. However, analysis of other cases including 
Ω′!!(2) and Ω′!!!! 1  is non-trivial, and is thus described in more detailed below.  

To estimate Ω′!(𝑛), we first remove the monomer, and then count the number of 
states Ω!!!(𝑛 − 1 𝑜𝑟 𝑛), where the appropriate choice is discussed below. For the latter, 
we utilize the scheme introduced in Appendix C. Next, let 𝑛! denote the number of 
empty edge sites 𝑛! with only one neighbor, which could thus accommodate a 
monomer. Then it follows that 

 
Ω!! 𝑛 = 𝑛!×Ω!!! 𝑛 − 1 𝑜𝑟 𝑛 .    (9)  

 
To determine 𝑛!, we note that each kink roughly contributes two unit of perimeter, it 
follows that the total perimeter length for clusters of size N-1 in the (n-1)th excited state 
is given by the sum  𝑛! + 2𝑛!!!,! 𝑛 − 1 , where 𝑛!!!,! 𝑛 − 1  denotes the number of 
kinks in these clusters. See Appendix B.  

To determine Ω′!! 2 , we note that first excited states for clusters of size N = L2 
have configurations within a Lx(L+1) inscribing rectangle. For second excited states with 
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a single monomer, this monomer is located at the perimeter of a cluster of size L2-1 with 
no monomers, but still with an Lx(L+1) inscribing rectangle and which thus corresponds 
to a first excited state. See Fig.17 for an example. Thus, one has that 
 

Ω′!! 2 ≈ Ω!!!! 1 (4𝐿 + 2− 2𝑛!!!!,!(1)).   (10) 
 
To determine Ω′!!!! 1 , we note that ground states for clusters with size N = L2+1 have 
configurations  within a Lx(L+1) inscribing rectangle. For first excited states with a single 
monomer, this monomer is located at the perimeter of a cluster of size L2 with no 
monomers, but still with an Lx(L+1) inscribing rectangle. The latter thus also 
corresponds to a first excited state. In conclusion, one has that 

 
Ω′!!!! 1 ≈ Ω!! 1 (4𝐿 + 2− 2𝑛!!,!(1)).    (11) 

 
 

 
 
Fig.17. Example of an excited state with one monomer. 
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