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We consider the design and modeling of metasurfaces that couple energy from guided waves to
propagating wavefronts. To this purpose, we develop a comprehensive, multi-scale dipolar interpre-
tation for large arrays of complementary metamaterial elements embedded in a waveguide structure.
Within this modeling technique, the detailed electromagnetic response of each metamaterial element
is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper,
we present two methods to extract this effective polarizability. The first method invokes surface
equivalence principles, averaging over the effective surface currents and charges induced in the ele-
ment’s surface in order to obtain the effective dipole moments, from which the effective polarizability
can be inferred. The second method is based in the coupled mode theory, from which a direct re-
lationship between the effective polarizability and the amplitude coefficients of the scattered waves
can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface
elements (both 1D and 2D waveguides), finding excellent agreement between the two, as well as with
the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities
of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-
fed metasurface can be found self-consistently by including the interactions between polarizable
dipoles. The dipole description provides an effective perspective and computational framework for
engineering metasurface structures such as holograms, lenses, beam-forming arrays, among others.

I. INTRODUCTION

The metamaterial paradigm, in which an artificial
medium with desired scattering characteristics is assem-
bled, has had a profound impact across numerous scien-
tific fields, including electromagnetic [1–4], acoustic wave
phenomena [5–8], materials science [9], chemistry and
nanoscience [10–12]. In particular, electromagnetic meta-
materials research has provided a venue to tailor material
properties in ways not feasible with conventional materi-
als [13–15], opening the door to unique and often exotic
wave phenomena such as negative and near-zero refrac-
tive index materials [16–19], as well as unprecedented
devices, such as transformation optical structures and
invisibility cloaks [20] as well as superlenses [21–23].
The underlying philosophy of metamaterial paradigm

is that the behavior of waves propagating within a large
(many wavelengths) metamaterial composite medium
can be understood from the properties of constituent
elements—each subwavelength in dimensions—and their
mutual interactions. The advantage of this perspective
is that the properties of each of the constituent elements
can be determined exactly using a full-wave simulation
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over a relatively small and subwavelength domain. From
these simulations, effective constitutive parameters can
be retrieved, replacing the detailed current and field dis-
tributions within the small domain by just a few pa-
rameters such as the electric permittivity and magnetic
permeability [24]. The wave propagation properties of
the composite structure can then be modeled by solving
Maxwell’s equations directly, with effective constitutive
parameters replacing the actual metamaterial structures.
While the effective constitutive parameters obtained by
numerical retrieval methods must be applied with consid-
erable caution, retrieval methods have nevertheless been
used with success in the design of many metamaterial
structures [25–27]. Replacing the details of an artificial
medium with effective constitutive parameters facilitates
device simulations and optimization cycles, vastly reduc-
ing the computational requirements since the individual
elements are replaced by homogenized constitutive pa-
rameters [28]. Complex metamaterial devices have been
designed and demonstrated by this technique, including
the transformation optical structures that rely on pre-
cise variations in material properties throughout a vol-
ume [29–32].

Despite the compelling features of volumetric metama-
terials and their unique material properties, their appli-
cations have been limited. This limitation stems from
the fact that most intriguing properties of metamaterials
occur near the element’s resonance, which often impose
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bandwidth limitations and produce large resistive losses.
Thus, waves propagating through any significant volume
(even just a few wavelengths) of a volumetric metamate-
rial can be heavily attenuated. In addition, fabricating
metamaterial elements to control electric and magnetic
fields polarized in arbitrary directions, and assembling
such elements throughout a volume, remains a major im-
plementation challenge; typically, the properties of volu-
metric metamaterials have been demonstrated in highly
constrained formats and proof-of-concept prototypes.

The difficulties associated with volumetric metamate-
rials are considerably reduced for structures consisting
of just a single layer or a few layers of elements—also
known as metasurfaces [33–35]. Being easier to design,
model and implement [36–38], metasurfaces have rapidly
gained traction as a major subfield in metamaterials re-
search [39]. As quasi-optical devices [38], metasurfaces
provide control of reflection and transmission across the
spectrum [40], paving the way for advanced components
such as flat lenses[38, 41], thin polarizers[42, 43], spatial
or frequency filters [44], and holographic and diffractive
elements [30, 45, 46]. Used as coatings, metasurfaces can
control the absorbance and emissivity of a surface, and
thus have relevance to thermophotovoltaics [47], detec-
tors and sources [48–54]. Given the capabilities of meta-
surfaces to control waves, but without many of the lim-
itations of volumetric metamaterials, metasurfaces have
proven a good match for commercialization efforts, with
many serious applications now being pursued, includ-
ing satellite communications [55, 56], security screening
[57–60], novel microwave imaging techniques [61–63], and
radar [64, 65].

Following the same line of thought as volumetric meta-
materials, the scattering properties of a metasurface
are usually characterized by a set of effective surface
constitutive properties, which homogenize—or average
over—the properties of many identical, discrete, and pe-
riodic metamaterial elements [34, 66]. These effective
medium properties are related to the discontinuity of
the fields across the metasurface—approximated as hav-
ing infinitesimal thickness—and are encapsulated in a
set of generalized boundary conditions [41, 67–72]; of-
ten composed of a periodic arrangement of metamaterial
elements. However, there are many contexts where a ho-
mogenization description is not the most convenient or
the most accurate description of metasurfaces.

For infinitely large metasurfaces in free-space, a weak-
ness associated with homogenization techniques is that
the element size and periodic spacing between metama-
terial elements must be significantly subwavelength—a
condition not necessarily satisfied in many situations. An
element size of one-tenth to one-fifth of a wavelength is
typical for many metamaterial structures, which implies
the phase of the wave will have significant variation over
the volume containing the element. Such metamaterials
are said to exhibit spatial dispersion, adding complica-
tion to the homogenization description. While numer-
ical retrieval methods include spatial dispersion in the

effective constitutive parameters, the effective constitu-
tive parameters are valid only in the exact arrangement
simulated. For example, if these parameters are retrieved
from a simulation of a cubic cell with periodic boundary
conditions, they will only be specifically valid for that
medium, and not necessarily applicable when the same
element is placed in a different context—for example, in
a random or non-periodic arrangement[73].

This problem is more pronounced in the case of
waveguide-fed metasurface antennas, since the metasur-
face interacts with a guided wave in ways not easily cap-
tured with a simple homogenized description, therefore, a
modeling tool that accounts for the individual response of
each metamaterial element in the waveguide– instead of
an averaged surface property– is needed [74].Abandoning
homogenized periodic structures and approaching the
metamaterial design –in the more general sense of an
array of perturbations with arbitrary spacing and shap-
ing – has also gained traction, partially due to the extra
degrees of freedom aperiodic structures offer. In such
structures, interpreting metasurface as an array of indi-
vidual elements of metamaterials, instead of homogeniza-
tion techniques, can be more effective.[75–79]

To arrive at a more generally valid description of a
metamaterial while still avoiding a full-wave simulation
of the composite structure, we consider directly the prop-
erties of each metamaterial scattering element. The re-
sponse of such a metamaterial element can generally be
expressed in a series of induced electric and magnetic
multipoles, typically dominated by the dipole term. The
strength of the dipolar contribution is connected to an
effective polarizability, which represent the coupling be-
tween the total dipole moment and the incident field on
the element. To the extent that the higher order mul-
tipoles beyond the dipolar term can be neglected, the
scattering from a collection of equivalent dipoles provides
a near exact and computationally efficient model of the
metamaterial structure [80, 81].

Our aim here is to extend the dipole model as an an-
alytical tool for waveguide-fed metasurfaces. Unlike the
free-standing metasurface or volumetric metamaterial–
for which each metamaterial element can be reduced to
a free space dipole– an individual metamaterial element
patterned in a waveguide also interacts with the waveg-
uide structure. By assigning an effective polarizability to
a metamaterial element rather than treating the meta-
material or metasurface as a continuous medium with
constitutive parameters, it is possible to predict the over-
all response of the structure without any limitation on
the element’s periodicity or arrangement. The combina-
tion of polarizability extraction and the dipole represen-
tation forms an alternative, powerful modeling platform
for metasurfaces and metamaterials.

It is worth noting a complementary metamaterial ele-
ment, excited by a waveguide, leaks portion of the inci-
dent wave as radiation to free space. This leakage is remi-
niscent of Leaky-wave antennas [82–84]. However, unlike
LWAs, a metasurface antenna does not necessarily rely
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on forming a specific leaky mode, since their design does
not rely on a gradual change of the metamaterials geom-
etry nor their periodic arrangement. Indeed, this gener-
alization for metasurface antennas provides nearly total
control over the wavefront in a manner similar to phased
arrays [85] and other aperture antennas [86–88], but of-
ten with advantages not available in other formats [89–
93]. From another perspective, one may see waveguide-
fed metasurface apertures as leaky-wave antennas with
array of perturbations with arbitrary shape and spac-
ing. However, this notion for leaky-wave antennas is not
usually used in literature. As a result, we believe distin-
guishing between leaky-wave antennas and waveguide-fed
metasurfaces is necessary. Nonetheless, the framework
developed in this paper can be used to model and design
LWAs with periodic or arbitrary perturbations [94, 95].

Previous works on the polarizability extraction of arbi-
trary metamaterial elements have developed a technique
that assumes the element is part of an infinitely periodic
medium [96–98] and there is a plane wave incident on this
medium. The details of the periodic structure can then
be replaced by periodic boundary conditions, so that the
full-wave simulation domain extends only over a single
cell of the structure. An effective polarizability of the
element, which includes the contributions from all other
elements in the infinite array, can then be extracted from
the computed field or charge/current distributions. Fi-
nally, the intrinsic polarizability can be determined using
the Lorentz formula that relates the intrinsic and effec-
tive polarizabilities [98].

In this paper, we provide two novel methodologies to
perform the polarizability extraction when the element
is embedded in different waveguide structures. In Sec-
tion II we introduce the polarizability interpretation for
a metamaterial element embedded in a waveguide and
summarize the self-consistent dipole model for metasur-
faces. In Section III we apply the equivalence principle
to the waveguide-fed metamaterial, and derive integrals
relating the equivalent current densities to the effective
dipole moments. The results of the direct integration
method are used as the basis for comparison with the
second method we present in Section IV, in which the
polarizability is obtained using the scattering (S) param-
eters of the element when placed in a waveguide. Both
methods have been used in the context of numerical re-
trieval of effective constitutive parameters for volumet-
ric metamaterials, with the former method related to
field averaging [99], while the latter method related to
the well-known S-parameters retrieval method [25, 26].
In Section V we perform polarizability extractions for
different waveguide-fed metasurface geometries: circular
iris [100], elliptical iris [101, 102], iris-coupled patch an-
tenna [103] and the complementary electric inductive-
capacitive metamaterial resonator (cELC) [35, 104–106].
We extend the polarizability extraction method to two-
dimensional (2D-) waveguide structures in Section VI,
where the S-parameters cannot be used to retrieve polar-
izability. To address this problem, we outline an alterna-

tive method based on the mode expansion of cylindrical
waves propagating through the waveguide. This frame-
work is particularly advantageous for modeling and de-
signing planar structures [59, 62, 107, 108]. As a means of
confirming the accuracy of the dipole approximation, we
express the induced fields from a metamaterial element as
a multipole expansion, comparing the relative strengths
of the expansion coefficients. The result of this analysis
shows that, indeed, the dipole term dominates the re-
sponse, justifying the dipolar description and use of the
dipole model. We conclude by examining the potential
application of the polarizability extraction for different
metasurface-based devices. It is important to note that
we will present our technique in the context of electro-
magnetic metamaterials. However, concepts presented in
this paper can be easily extended to other types of wave.

II. SELF-CONSISTENT DIPOLE MODEL FOR

METASURFACES

Our conceptual picture of a waveguide-fed metasurface
is that of a collection of complementary metamaterial ele-
ments etched on a waveguide structure, that can be mod-
eled as a collection of polarizable dipoles, each of which
accounts for the scattering associated with the character-
istics of the metamaterial element. In other words, each
metamaterial element is reduced to an effective electric
dipole moment and an effective magnetic dipole moment,
p and m, which are proportional to the local electric or
magnetic field at the center of the element multiplied by
a coupling coefficient, termed the dynamic polarizability
[109]. It is referred to as “dynamic” since it describes the
element’s response due to a time-varying incident field.
A time-dependent electric field can induce solenoidal cur-
rents and thus can give rise to a magnetic polarization
in addition to the electric polarization. To properly take
into account the co- and cross-coupling of the electromag-
netic fields excited within the metamaterial element, the
dynamic polarizability should be represented as a tensor,
i.e. p = ¯̄αeeE

loc andm = ¯̄αmmHloc, whereHloc and Eloc

are the local electric and magnetic fields at the center of
the element.
When a dipole is placed in an environment, it emits

a field that interacts with the environment, as well as
the dipole itself. This phenomenon of self-interaction– or
radiation reaction–occurs even when a dipole radiates in
free space, where it exerts a force on itself that opposes
the oscillation of the dipole such that its amplitude de-
cays in time. This is the mechanism by which the dipole
loses energy in accordance with its radiation losses. The
self-interaction of a dipole is commonly represented by
the Green’s function at the location of the dipole, where
special care is taken due to singularity of Green’s func-
tions [98, 110]. If a dipole is placed in free space, then
a Taylor series expansion of the Green’s function shows
that Im{G(r0, r0)} = k3/6π [111, 112], and this yields
the radiation reaction to the polarizability of a dipole in
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free space

αmm =
α̃mm

1 + iα̃mmk3/6π
, (1)

where α̃m is the intrinsic polarizability of the element
– which depends on its geometry only–αm is the effec-
tive polarizability – which accounts for the fact that
the element is embedded in a particular environment,
and k is the free-space wavenumber. The expression in
Eq. (1) is often known in the literature as the radia-
tion reaction correction or the Sipe-Kranendonk relation
[111, 113, 114].
In the particular scenario that a dipole is placed in the

surface of a rectangular or planar waveguide (as it is the
case for our dipolar model for complementary metama-
terial elements), the dipoles fields interact with the walls
of the waveguide, and then return to exert a force that
interacts with the dipole. By means of the method of
images, the element embedded in a waveguide structure
can be seen as a dipole embedded in a lattice of dipoles
due to its self-images formed by the walls of the waveg-
uide. In this manner, the self-interaction of a dipole in a
waveguide environment can again be represented by the
Green’s function of the array, at the location of the dipole
[115–117].
The fact that the dipole is embedded in such lattice is

the physical phenomenon that differentiates intrinsic po-
larizability α̃ (if the dipole did not have any images) and
the effective polarizability α (accounting for the multiple
self-images of the dipole). In these scenarios, the image
dipoles induced due to the metallic walls of waveguide
structure and their mutual interaction with the dipole it-
self must be taken into account. This idea has been the
basis of previous works where the effective polarizabil-
ity of an element in an array is calculated based on the
intrinsic polarizability of a metamaterial element in free
space [101], and the detailed algebraic and mathemati-
cal computation of the interaction constant in the array
[96–98]. Rather than working through this complication,
we can instead apply a numerical polarizability extrac-
tion procedure using the waveguide modes, arriving at an
effective polarizability that also captures the waveguide
interactions. Toward this goal, we note that an effective
polarizability might be ascribed to any arrangement of
dipoles where there is sufficient symmetry in the system
and the incident field exciting all the dipole moments is
equal. Under these assumptions the total field incident
on the i−th dipole (arranged in ai locations) can be writ-
ten as the incident field plus the sum of the fields radiated
by all the dipoles in the space as

Hloc(ai) =
¯̃̄α−1
mmm(ai)

= H0(ai) +
∑

j

¯̄G(ai − aj)m(aj),
(2)

where ¯̃̄αmm is the intrinsic polarizability in its tensor

form, ¯̄G(ai −aj) represents the Green’s function and the

j = i terms in the sum represents the self-interaction of
the dipole. All the m(ai) terms may be collected leading
to

( ¯̃̄α−1
mm − ¯̄G(0))m(ai) = H0(ai) +

∑

j 6=i

¯̄G(ai − aj)m(aj).

(3)
Moreover, if it is known by the symmetry of the prob-

lem that m(aj) = m(ai) for all j, then the previous
equation may be written in the form

(¯̃̄α−1
mmδi,j −

∑

j

¯̄G(ai − aj))m(aj) = H0(ai). (4)

The quantity in parentheses becomes the effective po-
larizability ¯̄α (in its tensor form), and the infinite sum
per the Green’s function is defined as the interaction
constant, which changes according to the dipole array,
i.e. such definition of effective polarizability is nonlocal.
However, it is important to note that, while the effec-
tive polarizability changes depending on the environment
in which the metamaterial element is embedded, it does
not change with the incident field. For example, when
a single metamaterial element is embedded in a planar
waveguide–located at x0– its effective polarizability can
be found as α = m(x0)/H

0(x0) and this polarizability is
equal to the extracted polarizability when the element is
placed at any arbitrary location x1 in the planar waveg-
uide, despite the incident field exciting the element is
different, α = m(x1)/H

0(x1). However, this extracted
polarizability would be different if the same metamate-
rial element is placed in a rectangular waveguide, since
in this case, the environment is different, and thus the ef-
fective polarizability. Such definition for effective polar-
izability is in fact very useful for modeling and designing
of metasurface structures. The effective polarizability (as
in equation 4) captures the interaction of the metamate-
rial element with the environment. In this framework, we
only need the incident field to find the dipole representing
the element.
The polarizability extraction technique proposed in

this work should be performed for a single metamaterial
element in the absence of any other element. However,
when the entire metasurface is modeled -composed of nu-
merous metamaterial elements placed across the propa-
gation axis of the waveguide, the total dipole moment
(representing each element) will be given by solving the
matrix system

(¯̄α−1
mmδi,j −

∑

j 6=i

¯̄G(xi − xj))m(xj) = H0(xi), (5)

where the xi and xj locations are not necessarily in a
periodic arrangement. An equivalent expression can be
derived for the electric field. Examining the expression
in Eq. (5), it can be seen that these coupled equations
capture the interaction of the incident wave with each of
the metamaterial elements (through the j = 0 terms) as
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well as interaction between different elements (the sum-
mation term). The later terms account for distance cou-
plings between the metamaterial elements. In this work,
we have assumed the elements are far enough from each
other such that their coupling is only through the funda-
mental mode of the waveguide. However, in cases where
the elements are close to each other, they may also cou-
ple to each other through higher order modes (evanescent
modes). We would like to emphasize the framework pro-
posed in this work can also capture such interactions.
More specifically, since the Greens function can be ex-
pressed as the modal sum of the tensor product of eigen-
modes, the equation above can be recast to take into
account evanescent guided modes for the mutual interac-
tions. These mutual interactions and their role in perfor-
mance of metasurfaces will be studied in future works.

III. POLARIZABILITY EXTRACTION IN A

RECTANGULAR WAVEGUIDE: DIRECT

INTEGRATION

We start by considering an arbitrarily shaped iris
etched into the upper conducting surface of a rectangu-
lar waveguide, as shown in Fig.1. The coordinate system
is chosen so that the propagation direction is in the z-
direction; a corresponds to the width of the waveguide
along the x-axis, and b corresponds to the height along
the y-axis. The guided wave couples to the metamaterial
element, which radiates a portion of the incident wave
into the free space region. A common methodology to
solve the radiated field by such a structure is the sur-
face equivalence principle. This principle states that the
electric field on the boundary of a domain can be repre-
sented as a magnetic surface current Km = E× n̂, while
the magnetic field on the boundary can be represented
as an electric surface current Ke = n̂×H, where E and
H are the total fields on the surface of the domain, and
n̂ is the normal to the surface. Using Km and Ke and
the corresponding Green’s functions, one can determine
the field within the domain. Applying this principle to
the geometry of Fig. 1, we observe that the tangential
electric field is zero everywhere on the waveguide surface
except over the void regions defining the metamaterial
element or iris; if the iris is deeply subwavelength, then
the field scattered into the far-field may be approximated
merely by the first term of the multipole expansions of
Ke and Km. Hence, the dipole moments representing
the iris can be calculated as [118]

p = ǫ0n̂

∫

r · Etanda (6a)

m =
1

iµω

∫

n̂×Etanda. (6b)

The integration is performed over the surface of the iris,
n̂ = ŷ is the vector normal to the top surface, and Etan

corresponds to the tangential field at the surface of the
iris. It is worth noting the tangential magnetic field is

FIG. 1: Metamaterial element etched on a rectangular
waveguide. The waveguide is excited by the

fundamental mode TE10 and the metamaterial element
induces electric and magnetic currents.

not zero over the surface of waveguide; however, the tan-
gential magnetic field corresponds to an electric current
density parallel to a metallic wall, and by image theory
its effect can be ignored.

Since the effective dipole moments are proportional to
the incident fields E0,H0, we can define the effective po-
larizabilities as

p = ǫ0 ¯̄αeeE
0 m = ¯̄αmmH0. (7)

In the most general case, each iris can be described by
an electric polarizability tensor ¯̄αee and a magnetic po-
larizability tensor ¯̄αmm. These tensors are symmetric
and would thus normally have six unknown parameters,
each of which would need to be extracted from a full-
wave simulation. In free-space, these components can be
found by computing the scattered fields in all directions.
In the waveguide geometry considered here, such simu-
lations are not possible. Instead, we take advantage of
the geometry of the iris and the symmetry of the exci-
tation field into account. For example, when the sym-
metry axes of iris are coincident with the symmetry axes
of the waveguide, we can assume that the polarizability
tensor is diagonal. Further, the boundary conditions of
the waveguide require that the incident tangential elec-
tric field E0

x and E0
z and the normal component of the

magnetic field H0
y be equal to zero on the surface of the

waveguide. Therefore, the tensor components αex, αez ,
and αmy can never be excited, and hence we can assume
them to be zero. The polarizability tensors then reduce
to ¯̄αee = diag(0, αey , 0) and ¯̄αmm = diag(αmx, 0, αmz).
Hence, the polarizability extraction is simplified to find-
ing three unknowns (αey, αmx, αmz). One further un-
known can be removed if the iris is placed where the
magnetic field of the incident mode has a null in the z-
component. In that case, only αey and αmx are relevant
to the problem. By using Eq. (6) and Eq. (7) and the
previously described assumptions, the characteristic po-



6

larizabilities are

αey =

∫ ∫

(xEx + zEz)dxdz

E0
y

(8a)

αmx =
1

iµωH0
x

∫ ∫

Ezdxdz. (8b)

Equations (8) provide a simple method to calculate the
polarizability of an element from a full-wave simulation
of the fields of the element embedded in a waveguide
structure.

IV. POLARIZABILITY EXTRACTION IN A

RECTANGULAR WAVEGUIDE: SCATTERING

PARAMETERS

While calculating the polarizability of a metamaterial
element by means of Eq. (8) provides a physically ac-
curate characterization, the integration over the surface
of the element can be cumbersome to perform for all de-
sired frequency points and for arbitrary geometries. In
many instances, this integration may also be subject to
numerical inaccuracies due to singularities near edges or
coarse meshing, as it is especially the case for resonant
elements such as those examined in Section V. Instead
of the direct integration, in this section we consider the
extraction of the polarizabilities from the fields scattered
by the element into the waveguide. For this calculation,
we apply coupled mode theory to determine the coupling
of the element embedded in a waveguide to the forward
and backward scattered fields within the waveguide. The
fields inside the waveguide at any plane of constant z
(along the propagation direction) can be expanded as a
discrete sum of orthogonal modes. These modes are de-
fined as [118]

E+
n = (Ent(x, y) +Enz(x, y)) e

−iβnz (9a)

H+
n = (Hnt(x, y) +Hnz(x, y)) e

−iβnz (9b)

E−
n = (Ent(x, y) −Enz(x, y)) e

iβnz (9c)

H−
n = (−Hnt(x, y) +Hnz(x, y)) e

iβnz (9d)

where E−
n and E+

n are respectively the waveguide modes
traveling in the backwards and forwards directions. The
subscript “t” refers to the component of the fields that
are transverse to the direction of propagation, and βn

is the propagation constant of the nth mode. The mode
normalization used in Eq. (9) is defined from the integral
over the cross section of the waveguide, such that

∫

En ·Emda = δmn, (10)

where δmn is 1 for n = m and 0 otherwise. Furthermore,
the magnetic fields are normalized as

∫

Hn ·Hmda = δmn/Z
2
n, (11)

where the wave impedance Zn is defined as a normaliza-
tion constant for each mode as

Zn =
1

∫

En ×Hn · n̂da
. (12)

In Eq. (12) the integration is over the cross sectional
surface of the waveguide, i.e. the surface representing
Port 1 in Fig. 2.
Consider a metamaterial element placed at the cen-

ter of the top plate of the waveguide. We assume that
the incident field is the forward-propagating fundamental
mode—coming from Port 1 and de-embedded a distance
∆—with unit amplitude E0+, as shown in Fig. 2. When
the metamaterial element is present, it couples and scat-
ters to all modes. In addition, We have incorporated an
infinitely large plane on the top wall of the waveguide in
order to avoid border effects. While the element has a
finite size, for points inside the waveguide that are few
wavelengths away, the element is well-approximated as a
point scatterer placed at z=0 (location of the element).
In the absence of the metamaterial element, the total field
is simply the incident field, which is identical in both the
forward and backward directions. As a result, we express
the modal decomposition of the total (both incident and
scattered) fields into backwards propagating modes at
Port 1 (z = −∆) as

E− = E+
0 +

∑

n

A−
nE

−
n , (13)

where A−
n are the amplitudes of the modes scattered by

the element in the backwards direction, and n is the mode
number. Similarly, a modal decomposition of the fields
in the plane of z = +∆ into forward propagating modes
yields

E+ = E+
0 +

∑

n

A+
nE

+
n (14)

where A+
n are likewise the mode amplitude coefficients

of the scattered field by the element in the forward di-
rection, and the incident field E+

0 has been written as a
separate term. In these calculations, ∆ can be any dis-
tance as long as it is larger than the size of metamaterial
element.
We first consider a volume within the waveguide that

encompasses the metamaterial element (bounded by the
two ports). The incident field impinging on the element
will induce a set of fields that we denote as E and H.
Within the coupled mode formulation, these fields can
be related to the waveguide modes through Poynting’s
theorem, or

∇· (E×H(±)
n −E(±)

n ×H) = Je ·E
(±)
n −Jm ·H(±)

n . (15)

We integrate Eq. (15) over the volume V the portion of
the waveguide between the two ports, and applying the
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FIG. 2: Metamaterial element effectively acts as a
electric and magnetic dipole that scatters inside the

waveguide.

divergence theorem, Eq. (15) becomes

∫

S

(E×H(±)
n −E(±)

n ×H) · n̂da =

∫

V

Je · E
±
n − Jm ·H±

n dV (16)

where S is the closed surface that encloses V and n̂ is
an outwardly directed normal. Since the waveguide walls
are assumed to be perfectly conducting, the only nonzero
contributions to the surface integrals arise from the sur-
faces representing Port 1 and Port 2 (depicted in Fig.2),
and the surface of the metamaterial element. Since the
field E can be written as a fictitious magnetic surface
current through Km = E × n̂ and H can be related to
a fictitious electric surface current in the same way, then
the surface integral in Eq. (16) indicates the manner in
which the effective dipoles representing the metamaterial
element couple to each of the waveguide modes, as might
be expected from Lorentz reciprocity.

To obtain the amplitude coefficients A
(±)
n , we assume

there are no current sources in the volume, implying that
the volume integral in Eq. (16) vanishes. Substituting
the expansions of the fields in Eq. (14) and Eq. (13) into
Eq. (16) and using the orthogonality relations in Eq.
(10) and Eq. (11), we obtain the amplitude coefficients
as an overlap integral of the waveguide mode fields with
the total field taken over the surface of the iris. More
explicitly, the amplitude coefficients can be found as

A(±)
n =

Zn

2

∫

element

(E×H(∓)
n −E∓

n ×H) · nda. (17)

In an alternative approach, the electric field in the aper-
ture could be considered zero and replaced by an equiv-
alent electric and magnetic surface current, according to
the equivalence principle. In this case, the surface inte-
gral vanishes everywhere except over the surfaces of the
ports, but the volume integral over the metamaterial ele-
ment becomes a surface integral of the equivalent surface
currents Km = E× n̂ and Ke = −H× n̂. Using Eq. (13)

and Eq. (14) and invoking orthogonality, we obtain

A(±)
n =

Zn

2

∫

element

(Ke · E
(∓)
n −Km ·H(∓)

n )da. (18)

Since the metamaterial element is deeply subwavelength,
the fields of the waveguide modes can be expanded in a
Taylor series around the center of the element. The low-
est order term is constant over the surface of the element,
yielding

A(±)
n =

Zn

2

[

E(∓)
n (x0) ·

∫

element

Keda

−H(∓)
n (x0) ·

∫

element

Kmda

]

. (19)

As previously stated in Eq. (6), the two integrals in
Eq. (19) are proportional to the electric and magnetic
dipole moments, p andm. Therefore, the final expression
for the amplitude coefficients in terms of these dipole
moments is given by

A+
n =

iωZn

2

(

E−
n · p− µ0H

−
n ·m

)

(20a)

A−
n =

iωZn

2

(

E+
n · p− µ0H

+
n ·m

)

. (20b)

Equation (7) shows that the dipole moments are related
to the incident fields, which in turn can be expanded
in terms of eigenmodes. Since the incident field is the
fundamental mode, the polarizability is defined by

p = ǫ ¯̄αeeE+
0 (21a)

m = ¯̄αmmH+
0 . (21b)

Due to the symmetry of the fields in the rectangular
waveguide, the αmz component cannot be excited by the
z-component of the magnetic field. Hence, Eq. (20) re-
duces to two coupled equations with two unknowns: αey

and αmx, which can be recast as

A+
n =

iωZn

2

(

ǫαeyE
+
0yE

−
ny − µ0αmxH

+
0xH

−
nx

)

(22a)

A−
n =

iωZn

2

(

ǫαeyE
+
0yE

+
ny − µ0αmxH

+
0xH

+
nx

)

(22b)

Considering the orthogonality of the eigenmodes and the
symmetry properties of the electromagnetic fields—the
transverse components of the electric field are symmetric
under a flip of direction (i.e. E−

ny = E+
ny), while the

magnetic field is antisymmetric (i.e. H−
nx = −H+

nx)—we
can solve Eq. (22) in order to find the polarizabilities as

αey =
2

iωZn

(A+
0 +A−

0 )

ǫ(E+
0y)

2
(23a)

αmx =
2

iωZn

(A+
0 −A−

0 )

µ(H+
0x)

2
. (23b)
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For the fundamental mode (monomode propagation),
the normalized fields and impedance at the dipole loca-
tion are given by

|E+
0y|

2 =
4

ab
|H+

0x|
2 =

4β2
10

abZ2
0k

2
Z0 = ηk/β10 (24)

where η is the vacuum impedance. Furthermore, the am-
plitude coefficients A+

0 and A−
0 correspond to the ampli-

tude terms for the fundamental mode of the scattered
fields in the forward and backward directions. There-
fore they are directly related to the scattering parameters
with respect to each port: the reflected field, related to
A−

0 is proportional to the reflection coefficient i.e. S11,
while the transmitted field related to A+

0 is proportional
to the transmission coefficient S21 and the incident field
in the forward direction. More explicitly, these relation-
ships are expressed by

A−
0 = S11 A+

0 = S21 − 1. (25)

Taking into account Eq. (25) in conjunction with Eq.
(23) and Eq. (24) it is possible to find the final expression
for the polarizabilities as

αey =
−iabβ10

2k2
(A+

0 + A−
0 ) =

−iabβ10

2k2
(S21 + S11 − 1)

(26a)

αmx =
−iab

2β10
(A+

0 −A−
0 ) =

−iab

2β10
(S21 − S11 − 1). (26b)

Equation (26) provides the polarizabilities of any meta-
material element embedded in a rectangular waveguide
in terms of the scattering parameters, which can be
obtained from direct measurement or full-wave simula-
tion.This is a straightforward process well-known in lit-
erature [96]. Another important point to note is that we
have assumed ports which only excite/represent single
mode. This condition should be applied when simulating
these structures in numerical solvers. More importantly,
since it is cumbersome in experiment to excite purely the
fundamental mode, the ports should be placed at least
one wavelength away from the metamaterial element to
ensure the non-propagating higher order modes have de-
cayed. The equations in Eq. (26) are similar to the ex-
pressions found for the effective polarizabilities of meta-
material elements in periodic metasurfaces [96, 97]. This
relationship means that a single element in a rectangular
waveguide acts as a dipole whose response is equivalent
to the response of the element in a periodic metasurface.
The details of this equivalence will be discussed in a fu-
ture work.

V. SIMULATED RESULTS FOR THE

RECTANGULAR WAVEGUIDE

By using full-wave simulation, it is possible to extract
the effective polarizability of arbitrary metamaterial el-
ements patterned into rectangular waveguides from the

two different approaches described in Sections III and IV.
For both extraction techniques, a single full-wave sim-
ulation in CST Microwave Studio is performed assum-
ing a waveguide designed to operate over frequencies in
the X-band (8-12 GHz). The waveguide dimensions are
a = 21.94 mm, b = 5 mm, and L = 22.7 mm. We per-
form this simulation for several different metamaterial el-
ement geometries: circular iris, elliptical iris, iris-coupled
patch antenna, and the cELC resonator [35, 104, 105].
In addition to the methods described above, the dipole

moments of simple geometries, such as an elliptical iris
may be also obtained from the static dipole moments
of general ellipsoidal dielectric and permeable magnetic
bodies. Consider an elliptically shaped aperture with the
major axis along the x−direction and minor axis along
the z−direction. Let the major radius be l1 and minor
radius l2. In the static limit, the intrinsic polarizabilities
of such an elliptical iris (static case) are given by [101]

α̃mx =
4πl31e

2

3[E(e)−K(e)]
(27a)

α̃mz =
4πl31e

2(1 − e2)

3[E(e)− (1− e2)K(e)]
(27b)

α̃ey = −
4πl31(1− e2)

3E(e)
, (27c)

where e =
√

1− (l2/l1)2 (assuming l1 > l2) is the eccen-
tricity of the ellipse, and K(e) and E(e) are the complete
elliptic integrals of the first and second kind, respectively.
If e = 0 these expressions reduce to the static polarizabil-
ities of circular irises [118].
If instead of having a dipole in free space, the dipole

is placed just above an infinite ground plane, the dipole
radiates twice as much energy, and so the interaction con-
stant is Im{G(r0, r0)} = k3/3π. If the dipole is a comple-
mentary metamaterial element embedded in a waveguide
wall, then it will radiate both into the upper half space
and into the waveguide, and so the radiation reaction cor-
rection would need to take into account both scattered
fields. Considering that this correction must account for
half of the radiation in free-space, as in Eq. (1), and
half of the radiation inside the waveguide, as derived in
appendix A, the corrected polarizability has the form

αm =
α̃m

1 + iα̃m(k3/3π + k/ab)
, (28)

where a and b correspond to the rectangular waveguide
dimensions. Equation (28) has significant implications
on any polarizability extraction method that deals with
waveguide integrated metamaterial elements. For exam-
ple, if the static polarizability of an element is calculated
using Bethe theory (as discussed in Section V), then the
radiation reaction correction will be different depending
on whether that element is placed in a 2D waveguide or
a cavity, and so the proper interaction constant will need
to be applied in each environment.
Using these static expressions for the dynamic polar-

izability will violate conservation of energy since it lacks
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the radiation damping term of dynamic polarizability.
These expressions may be corrected by the radiation
term, as described in Eq. (28), assuming the real part
given in Eq. (27) in order to map from intrinsic to ef-
fective polarizability. Figure 3 shows the polarizability
of simple circular and elliptical irises computed using the
two methods described in this paper as well as the the-
oretical methods, denoted by Bethe Theory and given
by Eq. (27) in conjunction with Eq.(28). Equivalence

Principle plots correspond to the polarizability extracted
from Eq. (8) and Coupled Mode Theory plots correspond
to the polarizability extracted from Eq.(26).

As shown, excellent agreement between the analytical
expressions and the numerical extractions is obtained,
verifying the proposed methods. Since the circular iris
considered here does not possess a resonance, it is ex-
pected that the effective polarizabilities extracted numer-
ically are well-approximated by the theoretical expres-
sions. Next, we examine the case of an elliptical iris, as
shown in Fig.3b. The effective polarizabilities computed
using the two numerical extraction methods of previous
section exhibit excellent agreement. However, as the fre-
quency increases, the numerical extraction methods differ
from the analytical expression from Bethe Theory. This
is expected since the elliptical iris supports a resonance
over the frequency band of interest, which is not cap-
tured in the analytical expressions derived for the static
field. This case further highlights the need for a pre-
cise numerical method to compute the polarizability of a
metamaterial element.

It is worth noting that an elliptical iris etched in a
rectangular waveguide is well-known in the antenna en-
gineering community as the unit cell of a slotted waveg-
uide antenna (SWA). SWAs are particularly attractive
due to their advantages in terms of design simplicity,
weight, volume, power handling, directivity, and effi-
ciency [82, 84, 88, 89, 119]. SWAs rely on the gradual
leakage of the guided mode through the elliptical slots.
The metasurfaces considered throughout this paper also
share this feature, since they also leak energy from the
guided wave through the metamaterial elements. In other
words, the methodology developed in this paper can
also be applied to model and design leaky wave anten-
nas ,without any limitations on the radiation elements,
in contrast to conventional LWA designs methodologies
[94, 95].

While the circular and the elliptical irises may be an-
alyzed using analytical expressions for the polarizabil-
ities derived in the static limit, such closed-form ex-
pressions are not available for most metamaterial de-
signs. For example, an element of potential interest in
the design of metasurface antennas is the iris-fed patch,
shown in Fig.4a [56]. The inclusion of the metallic patch
above the iris enhances the resonant response of the
element, as exemplified by the narrower and stronger
resonant response. Another common metamaterial ele-
ment is the complementary electric LC resonator (cELC),
shown in Fig.4b, commonly used in metasurface antenna

a)

b)

a

b

L

x

y
z

R

a

b

L

x

y
z

l 

b)

FIG. 3: Effective Polarizability of small apertures. a)
Circular iris. Dimensions are R = 2 mm. b) Elliptical

iris. Dimensions are l1 = 5 mm and l2 = 0.5 mm.

designs[61]. The resonant response of the cELC is highly
susceptible to variations in its geometry [61, 104, 120].
For both elements, we observe excellent agreement be-
tween the two numerical methods: Equivalence Principle

based on equation Eq. (8), and Coupled Mode Theory,
based on equation Eq. (26), as shown in Fig. 3 and Fig.
4.

The geometry of metamaterial elements can be quite
complicated, such that the numerical integrals required
in Eq. (8) are likely to yield inaccuracies. For this rea-
son, the extraction based on computing the waveguide
scattering parameters is more reliable and easier to im-
plement. Moreover, the Coupled Mode Theory method
can also be used in measurements on fabricated samples.
It is worth noting that in all of the results presented in
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FIG. 4: Effective Polarizability of small apertures. a)
Iris-fed patch. For this example, The iris dimensions are

same as in Fig.3b, and the square patch size is
lp = 5 mm . b) cELC resonator. Its dimensions are

l1 = 5 mm and l2 = 5 mm. and its width is w = 1 mm

Fig.3 and Fig. 4 the electric polarizability is much smaller
than the magnetic polarizability—in fact, three orders of
magnitude smaller. This phenomenon is expected con-
sidering that the geometry under study corresponds to a
small opening in a metallic wall.

VI. POLARIZABILITY EXTRACTION IN A

PARALLEL PLATE WAVEGUIDE

In this section, we consider the case of a parallel plate
waveguide (2D-waveguide) and examine a metamaterial
element that is etched on the top wall. While the polar-

izability extraction method based on the Surface Equiv-
alence Principle holds for the 2D waveguide-fed element,
the nature of the Coupled Mode Theory changes sub-
stantially from the formulation in Section IV. We modify
this last method to be applicable to planar waveguide
systems. As previously described in section IV, a meta-
material element scattering into a waveguide can be de-
scribed in terms of a sum of waveguide modes. Because
the element is placed in the upper surface of the waveg-
uide, the boundary condition dictates the tangential elec-
tric field and the normal magnetic field to be zero and
the element can only couple to the transverse magnetic
(TM) modes. Since the natural symmetry of the system
is cylindrical, mode decomposition is simpler if we use
cylindrical coordinates (r, θ).

Setting the origin of the coordinate system to the cen-
ter of the metamaterial element, the z-components of the
scattered electric field—for the TM modes characterized
by the (m,n) indices— are given by

Esc
z,c =

βm

k
H(2)

n (βmr) cos(nθ) (29a)

Esc
z,s =

βm

k
H(2)

n (βmr) sin(nθ) (29b)

where the subscripts “c” and “s” refer to modes that
have angular dependence cos(nθ) and sin(nθ), respec-
tively. The propagation constant is given by βm =
√

k2 − (mπ/h)2, where h is the height of the waveguide.
Invoking the superposition principle, the total solution
for the z-component of the scattered electric field can be
expressed as

Ez =
∑

n

∑

m

As
mnE

mn
z,s +Ac

mnE
mn
z,c (30)

When h < π/k, only the m = 0 mode is propagating, and
in this case the electric field at all points where r ≫ h/π
is dominated by the m = 0 mode. Therefore we can
reduce Eq. (30) to

Ez =
∑

n

As
nE

0n
z,s +Ac

nE
0n
z,c. (31)

The m = 0 modes are given by

E0n
z,c = H(2)

n (kr) cos(nθ) (32a)

E0n
z,s = H(2)

n (kr) sin(nθ). (32b)

The amplitude coefficients, An, can be found from the
scattered electric field Ez using the orthogonality of the
{sin(θ), cos(θ)} basis. By integrating over a circle of ra-
dius r centered at the origin of the metamaterial element,
as shown in Fig.5, it is possible to define the amplitude
coefficients as
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L

Dipole Source

h

x
y

z

FIG. 5: Planar waveguide with a CELC etched at the
center. The traveling wave is excited by an electric

dipole oriented along the z−direction. The waveguide
dimensions are L = 100mm, h = 1.27mm. Dipole

Source Location 0.45L

As
n = lim

r→∞

1

πH2
n(kr)

∫ 2π

0

Ez(r, θ) sin(nθ)dθ (33a)

Ac
n = lim

r→∞

1

π(1 + δn0)H2
n(kr)

∫ 2π

0

Ez(r, θ) cos(nθ)dθ.

(33b)

To better illustrate the utility of Eq. (33), we consider
a lossless parallel plate waveguide, fed by a cylindrical
source oriented along the z−direction, as shown in Fig.
5. The source is placed far enough from the metamaterial
element to avoid evanescent coupling. The metamaterial
element is a cELC, with the same geometrical parameters
as the one used in the previous section. Since the full-
wave simulation domain represents the total field instead
of the scattered field, this structure is simulated with and
without the cELC, and the difference of the two simula-
tion results are taken to obtain the scattered field due to
the metamaterial element, such that Esc

z = Etot
z −E0

z at
the plane z = h/2. Once the scattered field is computed,
the integration outlined in Eq. (33) is performed to find
the amplitude coefficients. The integration radius is se-
lected electrically large enough so that the evanescent
modes have decayed —it is also ensured the integration
curve does not contain the cylindrical source.
Figure 6 shows the magnitude of the amplitude coef-

ficients for the scattered fields computed for the meta-
material element shown in Fig.5. To better illustrate
the physics behind these coefficients, we apply Poynting’s
theorem Eq. (15) which directly links the amplitude coef-
ficients to the dominant dipole moments of the metama-
terial element. In contrast to the rectangular waveguide
(1D-waveguide) examined in section IV, the amplitude
coefficients are not related to the scattering parameters,
but rather to the scattered fields, by means of Eq. (33).
Moreover, while the location of the metamaterial element
in the rectangular waveguide limits the calculation of a
single component of the magnetic polarizability, such lim-
itation disappears in the case of the planar waveguide.

0 2 4 6 8 10
10
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10
0

10
2

10
4

FIG. 6: Amplitude Coefficients of the scattered field Ez.
The scattered fields from the metamaterial element are

added to the incident field produced by an electric
current source.

The cylindrical wave propagating through the waveg-
uide may excite the two tangential components of the
magnetic polarizability, which leads to a more complete
characterization of the polarizability tensor. The scat-
tered fields generated by the metamaterial element can
be represented as the sum of the moments of the surface
current Jn

m multiplied by the different eigenmodes of the
scattered fields shown in Eq. (32). More explicitly, this
relationship is given by

Ez =
mxZ0k

2

4h
E01

z,s +
myZ0k

2

4h
E01

z,c +
−ipzk

2

4hǫ0
E00

z,c (34)

A direct mapping between Eq.(34) and Eq.(33) demon-
strates that the first three amplitude coefficients,
{Ac

0, A
c
1, A

s
2} are directly related to the three dominant

dipole moments as [110]

mx = As
1

4h

Z0k2
my = Ac

1

4h

Z0k2
pz = Ac

0

i4hǫ0
k2

. (35)

As shown in Fig. 6, the predominant amplitude mode
is As

1, which is directly associated with mx, while the
amplitude of the modes Ac

0 and Ac
1, associated with pz

and my, are significantly smaller—by two orders of mag-
nitude. The effective polarizabilities given the incident
wave due to the line source, can be directly obtained
from their corresponding dipole moments given in Eq.
(35) as

αp
zz = pz/E

0
z αm

xy = my/H
0
x αm

xx = mx/H
0
x. (36)

For clarification, the double indices on the polarizabil-
ities represent the entry in the polarizability tensor; for
example, αxy represents the component of the polariz-
ability that generates a dipole moment oriented in y, due
to the x component of the incident field. In order to
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FIG. 7: Effective magnetic polarizabilities calculated for
the ELC embedded in the planar waveguide. The

metamaterial element size is enlarged in the figure to
clarify its orientation with respect to the incident field.

find all three components of this tensor, it is necessary
to rotate the metamaterial element by π/2, and perform
the same extraction technique. The electric polarizability
and two of the components of the magnetic polarizabil-
ity tensor are thereby obtained and shown in Fig.7a. As
shown, excellent agreement for the magnetic polarizabili-
ties is obtained between the two numerical polarizability
extraction methods. For this particular example, note
that the polarizability αm

yy has a resonant response out
of the X-band, but its geometry can be modified such
that it has both resonances in the same band [120]. In
the case of the electric polarizability (Fig.7b), the nu-
merical values obtained are significantly smaller, which
makes it susceptible to numerical inaccuracies when the
integration in Eq. 33 is performed.

It is important to highlight in this example that the
term As

3 is associated with the quadrupole moment. This
term has been traditionally neglected in most metama-
terial design strategy. The example at hand provides
a useful framework to examine the contribution of the
quadrupole term and the error introduced by neglecting
it. To study the impact of the quadrupole term, we com-
pared the simulated scattered field (shown in Fig. 8 first
row) with its theoretical expression Eq. 31 up to only the
dipolar contribution, as shown in the second row of Fig.8.
We observe excellent agreement between the two rows,
confirming the assumption that the main contribution of
the scattered field is dipolar. The physical implications
of this result can be understood by calculating the dif-

ference between the scattered fields from a full-wave sim-
ulation and from the analytical expression in (Eq. 31).
As shown in the third row of Fig. 8, the error due to
assuming the dominant dipolar term is several orders of
magnitude smaller than the amplitude of the scattered
field, and the largest discrepancy is observed within the
close vicinity of the metamaterial element. This result,
in conjunction with the amplitude coefficients shown in
Fig.6 also demonstrates that most of the radiation is as-
sociated with the dipolar term and higher order modes
can be ignored. However, if the elements are placed at
distances where these higher order modes have not de-
cayed, these modes can alter the coupling between the
two meta atoms and change the total scattered fields in-
side the waveguide.

Another interesting point to highlight is that while
the geometric characteristics of the metamaterial ele-
ment used in Fig.4c and Fig. 5 are the same, its reso-
nant response as manifested by the effective polarizability
changes depending on the host waveguide, as can be ob-
served by comparing Fig.3d and Fig.7a. Therefore, the
overall electromagnetic response of a metamaterial ele-
ment embedded in a waveguide not only depends on its
intrinsic geometrical characteristics, but also depends on
the waveguide geometry where it is inserted.

VII. CONCLUSIONS

In this paper we have presented two comprehensive
methods for extracting the effective polarizabilities of
metamaterial elements patterned in 1D rectangular and
2D parallel plate waveguides. The first method consists
of direct extraction of the tangential components of the
scattered fields to find the effective dipole moment and
therefore its polarizability, while the second method con-
sists in using the S-parameters—along with the knowl-
edge of the normalized fields inside the waveguide—to
find the effective polarizabilities. Excellent agreement
between the two methods was demonstrated and its ap-
plicability in different types of waveguide structures is
discussed. We have also shown that the dipole modes
predominate the scattering from metamaterial elements,
since all higher-order multipole fields decay more rapidly
with distance. The concepts presented in this paper pave
the way for a simple and efficient approach to the anal-
ysis of metasurface antennas. The combination of po-
larizability extraction techniques with the dipole model
provides an inherently multiscale modeling tool that in-
terprets metasurfaces as array of dipoles with given po-
larizabilities, a powerful framework to design and charac-
terize metasurface structures without any limitation on
the element geometry or periodicity assumptions com-
mon to other homogenization techniques.
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FIG. 8: Real part of the scattered field Ez(V/m) at different frequencies. (Top row) Full-wave simulation in CST

Microwave Studio. (Middle Row) Analytic expression from Eq. 31 up to the dipolar term only. The difference is
shown in the bottom row.

Appendix A: Radiation Reaction inside a

Rectangular Waveguide

As described in Section II, the radiation reaction in
a rectangular waveguide can be found by taking the real
part of the surface integral of the Pointing’s vector S. Let
us consider again a thought experiment where two collo-
cated electric and magnetic dipole p and m are placed
at position r0,in an environment that is described by the
Green’s function G(r; r0). The surface integral of the
Poynting’s vector is given by

∫

S · da = iω(p∗ ·E− µ0m
∗ ·H) (A1)

where E and H correspond to the total fields inside the
waveguide. Evaluating such fields at the dipole’s location
we get

∫

S · da = iω(p∗ · E− µ0m
∗ ·H)

= iω(p∗ ·Gee(r0; r0) · p

−µ0m
∗ ·Gmm(r0; r0) ·m)

(A2)

Now, considering the real part of Eq.(A2) it is possible
to obtain a direct relationship between the total power
radiated and the imaginary components of the Green’s
functions as

Re

{
∫

S · da

}

= ω|p|2Im {Gee(r0; r0)}

−µ0ω|m|2Im {Gmm(r0; r0)}

(A3)

On the other hand, from the modal expansion of the fields
Eq. (13) and Eq. (14), the same integral shown in Eq.
(A1) results in

∫

S · da =
1

Zn

(|A+
n |

2 + |A−
n |

2). (A4)

where Zn, A
+
n and A−

n have been previously defined in
Section IV. By using the equations for the amplitude co-
efficients shown in Eq. (22) into Eq. (A4) we obtain

(|A+
n |

2+|A−
n |

2) =
ω2Z2

n

4
(|E+

n |2|p|2−µ0|H
+
n |2|m|2) (A5)

In addition, it was previously demonstrated that for the
fundamental mode, the fields E+

n and H+
n are normalized

by means of Eq. (24). Replacing the specific expressions
for the normalized fields, and equating Eq. (A2) and
Eq. (A4) we obtain a direct relationship between the
amplitude of the normalized modes and the imaginary
Green’s functions, which correspond to our ultimate goal
in this derivation. More explicitly,

ω|p|2Im {Gee(r0; r0)} − µ0ω|m|2Im {Gmm(r0; r0)}

=
ω2Z2

n

4
(|E+

n |2|p|2 − µ0|H
+
n |2|m|2)

(A6)
It can be observed that, in order to satisfy Eq. (A6)
the terms multiplying the magnitude of the dipole mo-
ments |p|2 and |m|2 must be equal. After some algebraic
derivation it is possible to conclude that

Im {Gee(r0; r0)} =
k2

βab
Im {Gmm(r0; r0)} =

k

ab
.

(A7)
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