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Abstract 

Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often 
dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and 
electronic function will be central to the design of new high-performance materials. In particular, it is necessary to 
quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-
principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to 
understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic 
properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with 
defects. We systematically investigate the sources of error associated with the GW approximation and the role of the 
underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic 
density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three 
unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the 
+1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state 
obtained from GW and DFT using the HSE approximate density functional, and find excellent agreement. This systematic 
study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors. 

 

I. Introduction 

The presence of defects strongly influences semiconductor electronic and optical properties1–3 and can significantly alter 
their optoelectronic device behavior. Defects can modify material properties, as with defect-mediated dopant diffusion4 or 
the formation of defect levels deep in the band gap, which behave as carrier trapping and recombination centers5 and 
facilitate undesirable low-energy photoluminescence in light-emitting materials6. In particular, native point defects are an 
important and pervasive class of semiconductor defects, which can occur in a variety of charge states and can dominate 
optoelectronic properties7,8. In order to understand their influence, it is necessary to determine the type and charge state of 
the defect, and how these features influence the atomic and electronic structure of the semiconductor. Although such 
properties can be probed via experimental techniques such as electron paramagnetic resonance, vibrational spectroscopy, 
capacitance, and photoluminescence measurements6, there are many situations where experiment alone has not been 
sufficient, necessitating theory and computation8–11. 

First-principles electronic structure methods, particularly density functional theory (DFT), have enabled the mapping of 
measurable quantities to a particular defect geometry and charge state in an unambiguous fashion, providing information 
complimentary to measurements. DFT-based studies have often focused on calculating defect formation energies for 
different charge states12,13; the predicted defect energetics, thermodynamic transition levels, and associated configuration 
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coordinate diagrams determined from such analyses have played an important role in understanding electrical and optical 
properties of important optoelectronic semiconductors such as Si14–17, GaAs18–25, and GaN5,26–33. These computational 
studies have provided a significant insight into defect identification, structural properties near defects, and the cause of 
low-energy luminescence in defective materials.  

In order to describe electron transport within defective semiconductors, it is additionally necessary to quantitatively 
describe trap states, i.e. the energy required to add or remove an electron from an electronic state associated with a given 
defect. Conventional electronic device modeling represents defects as simple trap-like models, with a given trap energy 
and lifetime associated with the defect state. The inclusion of a more sophisticated description of defects is required to 
understand how defects impact device performance and reliability. This will require the ability to determine from first-
principles the energy of the defect state relative to the valence and conduction band edges, and the associated time 
constants, as well as the development of new device simulation models that can effectively utilize this information34.  

Kohn-Sham DFT (KS-DFT) provides orbital energies that can approximate the defect state energy and lifetime. However, 
the orbital energies obtained within standard approximations to KS-DFT are not necessarily accurate when compared 
against physically observed addition and removal energies, in part due to the well-known self-interaction and derivative 
discontinuity errors35,36. To improve upon standard DFT, hybrid DFT functionals within generalized Kohn-Sham DFT, 
such as that of Heyd, Scuseria & Ernzerhof (HSE)37 have been utilized to predict accurate band gaps38. Additionally, it has 
been shown that by tuning the HSE functional to reproduce the experimental bulk band gaps, the defect transition 
energetics relative to the band gap edges can be more accurately predicted. Such a tuned HSE functional has provided 
increased insight into a number of different defects28,29,39–47. However, the physical justification for the tuning is 
unclear41,48,49 and there is no guarantee that both delocalized bulk-like and localized defect-type states will be treated with 
equal accuracy using this approach.  

Alternatively, many-body perturbation theory (MBPT) within the GW approximation can accurately predict band gaps 
and addition/removal energies for many materials classes from first principles with no empirical tuning of parameters50–52. 
The GW approximation, by including electron-electron interactions within first-order perturbation theory, provides a first-
principles approach that does not suffer from self-interaction or derivative discontinuity errors, and treats bulk and defect 
states at the same level of accuracy. However, the GW approximation can come at a significant computational cost 
depending upon the details of the particular implementation, and thus this technique has been applied to relatively few 
with-defect solids compared to strictly DFT-based approaches. The GW approach has been successfully applied to 
defects, resulting in better agreement with experiment than DFT for defect formation energies53, thermodynamic transition 
levels54–57, and photoluminescence lines54. In purely theoretical studies, application of the GW approach to defects has 
provided significant insight into the role of many-body interactions on defect energies58–63. 

In this study, we apply the GW approximation to quantitatively determine the energy of defect states associated with a 
charged nitrogen vacancy in bulk GaN as a prototypical defective system, and carefully compare with the results of DFT-
HSE. GaN is known to grow with significant defect concentrations that degrade its performance in optoelectronic 
applications43,64, and as such has been widely studied both computationally and experimentally5,6,10,65. Point defects such 
as nitrogen vacancies are expected to significantly degrade device performance5 by introducing mid-gap states that behave 
as carrier trapping and recombination centers and result in undesirable low-energy photoluminescence6. Measurements 
have shed light on the energy of the trap state associated with point defects within GaN10,66,67; however relatively few have 
been unambiguously mapped to a particular defect geometry and charge state. While many point defects and complexes 
within GaN have been studied, no in depth analysis of the nature of the defect state has been presented. 

We investigate, for the first time, the electronic structure of defective wurtzite GaN containing the nitrogen vacancy point 
defect in the 1+ charge state ( 1+

NV ) within the GW approximation. Importantly, we systematically investigate the role of 



 

 3 

geometry and defect-defect interactions on predicted defect energies. We determine that GW and DFT-HSE agree very 
well in terms of the character of the defect state and its energy. Analysis of the computed electronic density of states 
(DOS) reveals that there is one occupied s-like and three unoccupied p-like states localized near the defect, with energies 
close to the band edges of GaN, and that there are a number of orbitals of a hybrid bulk- and defect-like character that 
modify the DOS compared with the pristine bulk. Moreover, we determine the error associated with different 
approximations, including the underlying structure of the GaN. For the pristine bulk, different geometry optimization 
techniques utilizing different DFT functionals result in predicted band gaps that can vary by as much as 0.8 eV. With the 
presence of the defect, the relative defect energy with respect to band edges is also strongly influenced by the underlying 
geometry by up to 0.2 eV. Our systematic study provides a more complete understanding of how to obtain quantitative 
defect energy states in bulk semiconductors. 

II. Computational Details 

II.1 Geometry Optimization of Pristine and With-Defect Structures 

The structure of the pristine wurtzite bulk structure and the with-defect supercell were optimized within DFT using two 
different density functionals, the local density approximation (LDA)68 and the Heyd-Scuseria-Ernzerhof (HSE)37,69. The 
pristine bulk GaN geometry was optimized by relaxing the atomic positions, lattice constants, and crystal shape. To 
describe an isolated defect within the bulk, we 1) created an n x n x m supercell; 2) re-optimized the bulk geometry within 
this supercell; 3) removed a nitrogen atom from the supercell such that the vacancy created is as symmetric as possible 
with respect to the supercell geometry; 4) removed one electron from the system in order to simulate the +1 charge state; 
and 5) optimized atomic positions in the presence of the defect. For charged defects, a compensating background charge 
was applied in order to avoid a divergent Coulomb energy for the periodically repeated supercell70.  

DFT-HSE calculations were performed using the VASP package71,72, while DFT-LDA calculations were performed using 
the Quantum Espresso software package73. Bulk unit cell (supercell) geometries were optimized with a Brillouin zone 
sampling of 8x8x8 (2x2x2), which was found sufficient to converge the total energy to less than 1 meV/atom, with a force 
threshold of 0.03 eV/Å for the LDA calculation and 0.05 eV/Å for the HSE calculation. To lessen computational cost, we 
explicitly treated 3 and 5 electrons as valence for Ga and N, respectively. For VASP calculations, projector augmented 
wave (PAW) potentials described the core and nuclei74, with a planewave cutoff of 31 Ry, while LDA calculations within 
the Quantum Espresso software package were performed with the core and nuclei of atoms described by Troullier-Martins 
norm-conserving pseudopotentials75, with non-linear core correction (NLCC)76 applied to compensate for lack of core 
electrons in Ga. The cutoff radii were 1.9, 2.0 and 2.8 a.u. for the s, p and d-channels respectively, for the Ga 
pseudopotential, and 1.3 and 1.6 a.u. for the s and p-channels respectively, for N. A planewave energy cutoff of 220 Ry 
was used for geometry optimization, converging the total energies to less than 1meV/atom, while 60 Ry was used for 
obtaining the electronic energies, sufficient to converge Kohn-Sham energies to less than 21 meV/atom. 

TABLE I. Comparison of calculated lattice constants, band gap, and valence band width (VBW) predicted using two different Ga 
pseudopotentials. The 3-electron pseudopotential uses the non-linear core correction (NLCC). The GW calculation uses the static 
remainder method for the quasiparticle energies77. 

No. of electrons in 
Pseudopotential 

Planewave 
cutoff  

Lattice constant  Band 
gap  

VBW  GW band 
gap  

GW 
VBW 

  
a c     

 (Ry) (Å) (Å) (eV) (eV) (eV) (eV) 
3 60 3.16 5.15 2.2 7.2 3.7 7.8 

21 500 3.15 5.14 2.1 7.4 3.7 7.7 
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We tested the 3-valence electron Ga pseudopotential against one with 21 electrons as valence and found excellent 
agreement in predicted properties as shown in Table I . Here, the predicted fundamental gap using the two 
pseudopotentials agrees to 0.1 eV for both DFT-LDA and GW with an LDA starting point. Table I also shows the valence 
band width (VBW), the accuracy of which has been shown to be correlated with the experimental formation energy of 
with-defect structures48. The good agreement of the VBW to 0.1 eV further justifies our use of the 3-valence Ga 
pseudopotential.  

The fraction of exact exchange used for the HSE functional was tuned in order to reproduce the experimental pristine bulk 
band gap78 and fixed for the defect studies, as is a standard approach for defect-based studies62. We found that the fraction 
of exact exchange necessary to match the experimental value of 3.5 eV79 is 30%, and as such, this functional will be 
labeled HSE30%. When the structure of GaN was fixed to that optimized by DFT-LDA, we determined that the original 
HSE06 [37] functional reproduced the band gap.  

For our final calculations, the predicted bulk modulus is 199 GPa for HSE30% and 225 GPa for LDA, in good agreement 
with the experimental value of 210 GPa80. Furthermore, we predict geometries of the with-defect structure in good 
agreement with previous studies81. After introduction of the 1+

NV  defect and subsequent relaxation, both DFT-HSE30% 

and DFT-LDA predict that Ga-N bond lengths in the immediate vicinity of the defect are decreased, while the Ga-Ga 
spacing near the vacancy is increased by approximately 0.8% (1.1%) using the LDA (HSE30%) functional. During the 
geometry relaxation processes, the point-group symmetry of the supercell maintained its 3-fold 𝐶!! symmetry when 
optimizing with the LDA and HSE06 functionals; however, it was reduced to 𝐶! point group symmetry when optimizing 
with HSE30%. 

II.2  Quasiparticle Energies from the GW approximation 

We calculate the quasiparticle energies for the bulk and with-defect supercells within the GW approximation82 as 
implemented in the BerkeleyGW software package83. In all GW calculations, we take a standard 0 0GW  approach where 

the starting orbitals and eigenvalues for GW are taken from LDA and a correction applied to the energies only. We 
compute the static dielectric function within the random phase approximation (RPA)52 and utilize the generalized 
plasmon-pole model (GPP) of Hybertsen and Louie83 to extend the dielectric function to finite frequency. For the Ga 
pseudopotential, the non-linear core correction (NLCC) to the quasiparticle energies is set to zero as described in 
Reference84. This approach will be labeled “GW” for the remainder of the paper. 

To generate the starting point for GW calculations in a supercell, a (0.5 0.5 0.5) shifted 2x2x2 k-point mesh and a plane-
wave cutoff energy of 60 Ry were used as described in Section III.2.B. In order to generate an accurate density of states 
that properly describes the bulk as well as the defect states, we interpolate resulting eigenvalues onto a 4x4x4 k-point 
mesh. Additionally, as described in previous studies77,83,85,86, the GW eigenvalues are strongly dependent on the energy of 
the highest unoccupied state used to build the dielectric function and self-energy and the dielectric function cutoff, two 
parameters that are inter-dependent. We performed a GW convergence study on pristine bulk GaN in order to determine 
these two parameters and kept them constant for the with-defect supercells. We determined that the quasiparticle energies 
and band gap are converged to less than 0.1 eV with a dielectric function cutoff of 20 Ry and a highest empty state energy 
of 5.1 Ry87. The number of unoccupied states that correspond to this energy were 74 for the pristine bulk unit cell and 
1900, 3600, 11,000 for the 3x3x4, 4x4x3, and 6x6x4 with-defect supercells respectively. We utilized the static remainder 
method77 to improve the rate of convergence with empty bands.   



 

 5 

III. Results 

III.1 The Accuracy of Computational Approaches for Pristine Bulk  

The calculated band structure for pristine bulk wurtzite GaN within DFT-LDA, DFT-HSE, and the GW approximation is 
shown in Fig. 1. As expected, the band gap is predicted to be at the 𝛤-point for all levels of theory considered. DFT-LDA 
underestimates the gap at 2.1 eV while a GW correction leads to a predicted gap of 3.8 eV, close to the measured value of 
3.5 eV79, and to DFT-HSE30%, which has been tuned to match the experimental gap. The valence band widths agree 
between GW and HSE30% to 0.1 eV, at 7.6 eV and 7.5 eV, respectively. Overall, GW and HSE30% agree well in the 
predicted features of the band structure though there is a slight discrepancy in the predicted fundamental gap.  

This discrepancy can be understood as due to the influence of the underlying geometry on the electronic structure as 
shown in Table II. For completeness, we include results from DFT-HSE06 (with 25% exact exchange37), as well as the 
Perdew, Burke, Erzenhoff (PBE) functional88, both computed within the VASP package with computational parameters as 
described in Section II. As shown in Table II, the DFT functional used to optimize the lattice geometry can lead to errors 
of 0.3-2% in the lattice vectors, resulting in significant shift of the predicted band gaps (up to 0.8 eV) at the level of GW. 
As expected, the LDA functional underestimates bond-lengths while PBE overestimates bond-lengths; this geometry 
results in an overestimated (underestimated) band gap predicted by GW using the LDA (PBE) geometries. On the other 
hand, HSE06 and HSE30% geometries, which are in much better agreement with experiment, result in predicted GW 
band gaps very close to experiment. The sensitivity of the predicted band gap to bond-length can be understood as an 
electrostatic effect; the introduction of strain on a piezoelectric material such as GaN results in a change in the gap as 
described by the deformation potential89. 

 

 

FIG. 1. The Predicted band structure for bulk wurtzite GaN within the DFT-LDA, DFT-HSE30%, and the GW approximation. The 
valence band maximum is shifted to zero for all plots. 

As shown in Table II, if geometries are kept constant, GW and HSE06 agree quite well (to 0.2-0.3 eV). At the HSE30% 
geometry, where the lattice vectors agree best with experiment, GW predicts the experimental gap of 3.5 eV and agrees 
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exactly with HSE30%. This result indicates that, given the correct geometry, both GW and DFT using a tuned HSE 
functional provide an accurate description of the electronic structure of bulk GaN.  

III.2 Determining Quantitatively Accurate Defect Energy States 

There are significant challenges associated with defining the energy states (trap states) associated with the charged defect 
with respect to the bulk band edges. Here, we investigate two main challenges: the classification of defect and bulk states 
and minimization of defect-defect interactions. 

A. Classification of the Defect State 

We determine the character of the Kohn-Sham DFT orbitals by quantitative and visual examination of the charge density 
associated with each orbital.1 Both DFT-LDA and DFT-HSE30% agree qualitatively as to the nature of the Kohn-Sham 
orbitals. These orbitals fall into three groups as shown in Fig. 2: 1) localized, defect-centered states [Fig. 2(a-b)]; 2) states 
that are hybrids between defect and bulk-like states [Fig. 2(c)]; and 3) states associated with sp-type Ga-N bonding in the 
bulk [Fig. 2(d)]. We define the defect state energy as that corresponding to the states classified by Fig. 2(a-b) because 
such localized states will behave as traps for carriers. However, it is important to note the presence of the hybrid states in 
Fig. 2(c), which suggest there is interaction of bulk electrons with the defect, which has not generally been accounted for. 

TABLE II. Comparison of GW- and DFT-HSE06-predicted band gaps for bulk wurtzite GaN, with lattice vectors computed using 
different DFT functionals. 

Functional used 
for Geometry 
Optimization 

Lattice 
Constant 

 Pristine Bulk  
Band Gap 

 
 Electronic Structure 

Method 
a c  DFT-HSE06 GW 

 
(Å) (Å)  (eV) (eV) 

DFT-PBE 3.25 5.28  2.8 3.0 
DFT-LDA 3.16 5.15  3.5 3.8 
DFT-HSE06 3.21 5.21  3.2 3.4 
DFT-HSE30% 3.20 5.20  3.2 3.5 
Experiment 3.19 5.19           3.5a 

a Reference79.  

For each structure, there are typically four defect-centered orbitals: one occupied s-like state in the valence band, with a 
spherically symmetric charge distribution strongly localized near the vacancy [Fig. 2(a)]; and three unoccupied p-like 
states, possessing two roughly symmetric main lobes at nearest-neighbor Ga atoms of the vacancy and separated by a 
nodal plane at the vacancy site [Fig. 2(b)]. Such a character to defect orbitals has been predicted previously for this 

                                                

 

1  We note here that while the Kohn-Sham orbitals are fictitious, they are often used to represent quasiparticle 
eigenstates102, and as long as they are good representation of the quasiparticle eigenstate, the GW approximation will 
provide accurate quasiparticle energies.52 
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vacancy12 and is consistent with a Hydrogenic model of the defect state. A fourth p-like state is present in the conduction 
band at some k-points; its presence is due to hybridization of bulk and defect states.  

 

FIG. 2. Sample electronic charge density distributions predicted for bulk GaN with one 
1+
NV  defect. (a) s-like defect-

centered; (b) p-like defect-centered; (c) bulk-defect hybrid; and (d) bulk-like orbitals. The k-point of all orbitals shown is 
(0.375, 0.625, 0.875) in crystal coordinates. 

In order to create a systematic definition of the localized defect state, we developed Equation (1) to quantify the spatial 
extent of each orbital as the average distance of the electron density from the defect, 

 

3

3

( )

( )

dr

dr

ρ

ρ

−
= ∫

∫
dr r r

r
r

. (1) 

Here, rd  is the position of the vacancy, 𝜌 is the charge density, and the integral is taken over the entire supercell volume. 

Using Equation (1), we classified, in an automated fashion, the spatial extent of the thousands of energy states that were 
calculated. To confirm this classification we also visually inspected the charge density for orbitals near the band gap (with 
orbitals plotted at an isosurface enclosing 50% of the total density).  
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The charge distribution of the defect state is slightly more delocalized with use of DFT-LDA for geometry optimization or 
electronic structure calculation. This observation along with the apparent over-binding present in the LDA-predicted 
lattice constants is consistent with the tendency of the LDA functional to delocalize the charge density and overbind 
atoms relative to hybrid functionals90. The calculated value for r  is on average 3.8-4.0 Å for the LDA-optimized 

geometry and 3.2-3.4 Å for the HSE30%-optimized geometry for the occupied s-type state, and 3.1-3.3 Å for both 
geometries for the lowest energy unoccupied p-type state (labeled p1), as presented in Table III. For comparison, the 
average r for bulk-like states is approximately 7 Å, making it relatively straightforward to identify the defect orbitals 

from r . This analysis enables us to predict defect states that agreed with visual inspection every time.  

TABLE III. Average value of the defect orbital spatial extent, r  computed from Eq. 1 for both the occupied s-like and the lowest 

energy unoccupied p-like defect state (p1). For each combination of geometry and DFT functional, the averages are based on 
approximately 64 orbitals. 

Functional used 
for Geometry 
Optimization 

Electronic 
Structure 
Method 

Occupied  
s-type 
State 
r   

Unoccupied 
p-1  

State 
r   

[Å] [Å] 
LDA LDA 4.0 3.2 
LDA HSE06 3.4 3.1 

HSE30% LDA 3.8 3.3 
HSE30% HSE30% 3.2 3.3 

 

B. Minimization of Defect-Defect Interactions  

GaN has a relatively weak dielectric screening (𝜖!,! = 4.9; 𝜖!,! = 9.1 as calculated by DFT-HSE30%) and therefore, the 
screening length in response to external electronic perturbations will be large. Hence, it is to be expected that the 
interaction of the defect with its periodic image will be significant, particularly for the case of the charged defect of the 
present study. To understand and minimize defect-defect interactions, we calculate the quasiparticle energy of the highest 
occupied and lowest unoccupied defect states for increasing supercell size using the GW method. We considered three n x 
n x m supercell sizes, with {(n,m) = (3,2); (4,3); (6;4)} as shown in Fig. 3(a). The smallest (greatest) distance between 
periodic images of the defect varies from 9.7 Å (10.6 Å) to 12.8 Å (15.6 Å) to 19.5 Å (21.1 Å) for (3,2), (4,3), and (6,4) 
respectively. Due to the computational cost associated with the largest supercell considered, these calculations are 
performed using a 1x1x1 Γ-centered k-point grid. As shown in Fig. 3(b), as the supercell size is increased from (3,2) to 
(6,4), the energy of the defect state converges to 0.1 eV for the one occupied and lowest unoccupied defect state and 0.2 
eV for the higher-lying unoccupied defect states. Therefore, our final calculations use the 191-atom, 4 x 4 x 3 supercell. 
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FIG. 3. (a)-(c) The GaN supercells containing one single charged N vacancy considered in this work. The number of replicated unit 
cells and associated number of atoms in parentheses are respectively (a) 3x3x2 (71 atoms), (b) 4x4x3 (191 atoms) and (c) 6x6x4 (575 
atoms). The perspective is perpendicular to the crystallographic c axis. (d) The GW-calculated quasiparticle defect energies with 
respect to these supercell sizes, including charged supercell electrostatic correction of Eq. 2. 

To further reduce the error of our calculations, we correct for the long-ranged charged defect-defect interactions, which 
has been noted in previous DFT-based studies91. We address these interactions by 1) a judicious choice of k-point mesh 
and 2) application of an electrostatic correction to defect-state eigenvalues.  

The dependence of defect-defect interactions on the k-point mesh was first noted in the foundational work by Makov and 
Payne92. Using a tight binding argument, it was shown that interactions are largest at the Γ-point (k=0) and reduced for k-
points away from Γ due to hybridization of the defect orbital. In this work, we utilize a 4x4x4 k-point grid shifted away 
from the Γ-point by (0.5 0.5 0.5). As explained in Section II, a 2x2x2 shifted grid is sufficient to converge the total energy 
to 1 meV/atom; however, we find that a denser k-point grid of 4x4x4 is necessary to describe the bulk-like states. 
Therefore, we utilize a 4x4x4 shifted grid for HSE calculations and interpolate the GW eigenvalues from a 2x2x2 to a 
4x4x4 shifted grid using the Delaunay interpolation implemented in the BerkeleyGW package93. 

In addition, all defect state energies as defined by Fig. 2(a-b) were corrected for spurious electrostatic effects using 
Equation (2)59,94 as implemented in the SXDEFECTALIGN software95, 

 d,corr
2

corrE
q

= −Ú , (2) 

where corrE  is the total electrostatic energy correction proposed by Freysoldt, Neugebauer and Van de Walle96,97 and q is 

the charge state of the defect. This procedure is necessary to correct for the errors in defect state energies due to the 
charged defect interacting with its periodic replicas, as well as the compensating background charge used in our DFT 
calculations59,60,94. 

Although the correction defined above greatly reduces the defect-defect interactions in the supercell, we find additional 
defect-defect interactions as evidenced by the k-point dispersion present in the defect state energy. It is expected that an 
isolated defect state will be dispersion-less (i.e., its energy will not vary with change in k-points). However, for the 4x4x3 
supercell, we do find a dispersion of approximately 0.1 eV for the s-like defect state and 0.3 eV for the individual p-like 
states at both the DFT-HSE and GW level as shown in Table IV, suggesting defect-defect hybridization even with a 
shifted k-grid.  
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TABLE IV. The energy dispersion of the defect state for a 4x4x3 GaN supercell containing one 1+
NV . The occupied s-like defect state, 

minimum energy unoccupied and maximum energy unoccupied p-like defect states, referred to as p-1 and p-3 respectively, are shown 
for different geometries and levels of theory. The dispersion for a particular defect state is determined as the energy variation of that 
state over 64 k-points.  

Functional used for  
Geometry 

Optimization 

Electronic 
Structure 
Method 

Defect State Dispersion 
[eV] 

s-like p-1 p-3 

LDA GW 0.08 0.37 0.29 
LDA DFT HSE06 0.13 0.26 0.23 

HSE30% GW 0.11 0.27 0.30 

HSE30% DFT HSE30% 0.16 0.27 0.26 
 

In order to eliminate this error on the predicted defect state or trap energy, we define the energy as a weighted average 
over k-points using Equation (3)94,  

 
( )C

N dC N
d

NN

w E N
E

w
=∑

∑
, (3) 

where N runs over all k-points, Nw  is the associated k-point weight, and C
dE  is the energy of a particular defect state 

(e.g. occupied s-like). Equation (3) provides an accurate description of the defect state within DFT-LDA, for which we 
can check against the larger supercell size. The DFT-LDA dispersion is 0.1-0.3 eV for the 4x4x3 supercell, similar to GW 
and DFT-HSE, and is reduced to ~0.01 eV for the 6x6x4 supercell, indicating the presence of residual defect-defect 
interactions for the smaller supercell. However, averaging as with Equation (3) results in both occupied and unoccupied 
defect state energies that agree to 0.01 eV between 4x4x3 and 6x6x4 supercells, indicating that the average energy state is 
well-described by this procedure. 

III.3. Role of the Underlying Geometry and Level of Theory on Predicted 1+
NV  Trap State Energies 

To better understand how quantitatively accurate defect state energies may be obtained, we investigate the role of 
underlying approximations on the predicted defect energy states. Fig. 4 shows the density of states (DOS) associated with 
the pristine and with-defect structure within the GW and DFT-HSE30% approximations, with geometry optimization via 
either DFT-LDA or DFT-HSE30%87. Here, we compare to the pristine bulk using the same k-point density and 
computational parameters as the with-defect studies. 

All four calculations qualitatively agree in the general features of the defect structure: the introduction of the defect results 
in low-energy localized states; one occupied state contained within the valence band and a series of unoccupied states that 
constitute a peak in the DOS very near in energy to the bulk conduction band minimum. There is a k-point dispersion of 
~0.1 eV for the occupied and 0.3-0.4 eV for the unoccupied defect states, which, as noted in Section III.2, is due to the 
defect-defect interactions of the periodic supercell. With three p-like states, this results in a spread of defect energies on 
the order 0.4-0.5 eV (prior to broadening) within the conduction band as shown in the insets of Fig. 4. Additionally, 
comparison of bulk and with-defect DOS suggests that our computational parameters are sufficient to describe bulk-like 
states accurately. For all four panels, the two DOS plots coincide closely at energies approximately 1 eV above the 
conduction band edge.  
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FIG. 4. The calculated density of states for pristine and with-𝑽𝑵!𝟏 bulk GaN for (a) GW, DFT-LDA geometry (b) DFT-HSE06, DFT-
LDA geometry, (c) GW, DFT-HSE30% geometry and (d) DFT-HSE30%, DFT-HSE30% geometry. For b), DFT-HSE06 predicts the 
experimental band gap and was therefore used. The VBM of all bulk DOS datasets are shifted to zero and the quasiparticle and KS-
DFT eigenvalues are broadened by a Gaussian function of width 0.2 eV.  Black vertical lines show the energies of defect states. 

Importantly, as was found for the pristine bulk, the predicted defect state energies agree well for DFT-HSE and GW, as 
long as the geometry is kept constant (comparison of Figs. 4(a) and 4(b) or Figs. 4(c) and 4(d). The density of valence 
states agree very well between the two structures and the density of conduction states agree in shape and peak positions to 
~0.1 eV beyond the first defect-centered peak. With change in geometry however, the bulk band gap is modified and 
defect energies are shifted with respect to band edges (comparison of Figs. 4a and 4c or Figs. 4b and 4d). In particular, 
with a DFT-LDA-optimized geometry, the unoccupied defect states are at or below the bulk conduction band minimum 
(Figs. 4a and 4b), while the HSE30%-optimized geometry results in unoccupied defect states that are well within the 
conduction band by a few 0.1 eV.    
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III.4. Quantitatively Accurate Defect State Energies: Summary of Results 

A. The trap state energy 

We summarize the results of our calculations in Fig. 5 with schematic band-diagrams that illustrate the predicted trap state 
energy associated with each defect, computed via Eq. (3), and its position with respect to the band-edges. All levels of 
theory predict that the states associated with the defects are low-lying (close to the band edges). However, the exact 
position with respect to band edges can vary by as much as 0.2 eV with different approximations, with most of the 
discrepancy due to different geometries. With DFT-LDA-optimized geometry, GW predicts that the s-like occupied state 
is 0.3 eV below the VBM and the lowest energy p-like unoccupied state is at 0.02 eV below the CBM. With the DFT-
HSE30%-optimized geometry, this position changes to 0.2 eV below the VBM for the occupied state and 0.2 eV above 
the CBM for the lowest energy unoccupied state. As was found for the bulk, when the geometry is fixed, GW and DFT-
HSE30% agree on average to within 0.05 eV or better in predicted energetics. We note here that our predictions regarding 
trap state energies do not include the effects of geometry relaxation. 

 
FIG. 5. The calculated defect state energy for both the occupied s-like unoccupied p-like defect state relative to the VBM and CBM, 
respectively determined using (a) GW with DFT-LDA geometry, (b)  DFT-HSE06 with DFT-LDA geometry, (c) GW with DFT-
HSE30% geometry and (d) DFT-HSE30% with DFT- HSE30% geometry.  

The change in the predicted trap state energy with geometry can result in very different conclusions about electron 
transport within this structure. With use of the DFT-LDA geometry, the prediction of trap-state energies at the bottom of 
the conduction band, the defect would play a more destructive role, as a carrier trapping and scattering center, whereas a 
state 0.2 eV above the conduction band predicted when utilizing the DFT-HSE geometry is sufficiently high in energy (>> 
kBT) such that it would be benign towards carriers. Since HSE30% results in the best agreement of geometry with 
experiment for pristine bulk, we expect that this geometry will provide the best description of the defect state and that the 
1+
NV  defect will not act as a trap to carriers in GaN. We note that the defect state energies predicted via the analysis of 

quasiparticle energies agree qualitatively with thermodynamic transition energy levels predicted by previous 
studies12,39,65,98–100. Specifically, the thermodynamic transition level ε(+1/0) , which corresponds to our calculated lowest 

energy p-type state, is predicted to be slightly below (~0.5 eV) to slightly above (~0.2 eV) the conduction-band 
minimum65,100. Exact agreement is not to be expected since we calculate the energies associated with addition and removal 
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of electrons from the defect, and the thermodynamic transition levels describe the phase transition energies between 
different charged states. However, since both analyses do describe energetics associated with charging a defect, we expect 
and find qualitative agreement. 

B. Error Bars Associated with GW Calculation 

Our study has shown that analysis of the quasiparticle spectrum associated with a defective crystal provides a rich set of 
information such as the energy states associated with multiple defect states, their position with respect to band edges, and 
defect-defect interactions for closely spaced defects. However, these properties, particularly the energy states, are difficult 
to converge. Our thorough analysis of computational methods and approximations provides an estimate of the error bars 
associated with these defect-focused calculations.  

Assuming a low defect density in the bulk, the largest source of error in our calculations is introduced by the use of a 
periodically repeating supercell, which results in defect-defect interactions, as evidenced by the large defect energy state 
dispersion. In this work, with a 191-atom, 4x4x3 supercell, the error ranges from 0.1 eV for the occupied to 0.3 eV for the 
unoccupied defect states. However, as noted in Section III.1.B, the error associated with the average value of the 
calculated defect state is one order of magnitude smaller. The calculated dispersion suggests that there is hybridization of 
the defect states with their periodic images, particularly the p-type unoccupied orbitals. Thus, at an average separation 
between defect and its periodic image along all directions of 13.7 Å in our system, we anticipate significant delocalization 
of the defect states such that there is density overlap between neighboring states and hybridization. This suggests that 
there may be additionally errors associated with the point-charge-like electrostatic correction for defect interactions that 
we utilize in Equation (2).  

Additional sources of error include the GW convergence error which is estimated to be negligible here at ~0.01 eV, due to 
the convergence of our parameters, and the error introduced by the limited supercell size (excluding dispersion) which we 
calculate to be ~ 0.1- 0.2 eV depending on the defect state. Lastly, the underlying geometry can introduce errors of tenths 
of eVs, as is the case for the bulk band gap.  

Importantly, our calculations also indicate that tuned DFT-HSE agrees to better than 0.1 eV with the GW approximation, 
suggesting that tuning the fraction of Hartree-Fock exchange for the bulk provides a balance of exchange and correlation 
that is accurate when comparing to accurate electron-electron interactions determined via many-body perturbation theory.  

IV. Conclusions 

In conclusion, we have applied first-principles theory to quantitatively describe the energy states associated with the +1 
charged nitrogen vacancy within bulk GaN as a prototypical defective material. We developed a rigorous approach for 
describing and classifying the defect state and by analysis of the accuracy of our calculations, estimated an error of a few 
tenths of eV in predicting energy states with respect to band edges. We predict that both Kohn-Sham eigenvalues obtained 
from tuned DFT-HSE and quasiparticle energies obtained from the GW approximation agree well in the predicted value 
of occupied and unoccupied defect state energies, with both indicating that the +1 charged N-vacancy will not act as a trap 
state for carriers. Additionally, we predict that the level of theory with which the atomic structure is optimized strongly 
impacts the predicted eigenvalues, due to the ionic nature of the Ga-N bond. For the pristine bulk, tuned DFT-HSE results 
in the best agreement of geometry with experiment; therefore, we consider the best estimate for the defect energy states 
are those from the DFT-HSE geometry placing the occupied defect state at 0.2 eV below the VBM and the lowest energy 
unoccupied defect state at 0.2 eV above the CBM for this particular vacancy. We propose that a quasiparticle analysis of 
defect energy states will provide new understanding of the energetics associated with defects and complement existing 
approaches to calculate thermodynamic transition levels. 
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