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We use a three-pulse ultrafast optical spectroscopy to study the relaxation processes in a frus-
trated Mott insulator Na2IrO3. By being able to independently produce the out-of-equilibrium
bound states (excitons) of doublons and holons with the first pulse and suppress the underlying
antiferromagnetic order with the second one, we were able to elucidate the relaxation mechanism of
quasiparticles in this system. By observing the difference in the exciton dynamics in the magnetically
ordered and disordered phases we found that the mass of this quasiparticle is mostly determined by
its interaction with the surrounding spins.
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The notion that any generic interacting many-body
system near equilibrium can be described by a number
of non-interacting excitations dubbed quasiparticles lies
at the heart of modern condensed matter physics [1].
This approach is extremely powerful and can be used to
describe almost any many-body system known to date.
However the exact character of the resulting quasipar-
ticles can be very different from the properties of the
original electrons and lattice ions. A notable example is
the problem of a doped Mott insulator [2, 3]. Here an
additional hole (or electron) cannot be thought of as a
simple Bloch wave since, while propagating, it inevitably
scrambles the surrounding magnetic order [3, 4]. The re-
sult is the so-called “separation of spin and charge degrees
of freedom” in the original holes and electrons [5]. The
charge is carried away by spinless quasiparticles called
“holons” (positively charged) and “doublons”(negative)
and the spin by neutral “spinons” [6]. In addition, strong
correlations also affect the mass of a holon (doublon)
making it much heavier as compared to a bare hole (ex-
tra electron). Intuitively this happens because in order
for a holon or doublon to hop to the next lattice site it
needs to wait for the spins to recover after the previous
hop (because holon/doublon is a quasiparticle) [4, 7–11].
The waiting time is determined by spin-spin interactions
which are typically much weaker than orbital interac-
tions, therefore the effective mass of holons and doublons
becomes much larger compared to bare electron mass[3].

There is a strong experimental evidence that spin-
charge separation takes place in actual materials [12].
On the other hand it is less clear if the correlations
in Mott insulators indeed renormalize the quasiparti-
cle mass. The challenge here is that although conven-
tional equilibrium techniques can observe enhanced car-
rier mass in materials known to be strongly correlated
[13], being based on linear response they can tell very
little on the origin of the observed mass enhancement.
Analogously the value of the proton mass was known for
a long time, however it took developing Quantum Chro-
modynamics (QCD) to understand its origin [14, 15].

Despite the intuitive appeal, the considerations in the
previous paragraph heavily rely on the ideas specific
to the Mott insulating state. On the other hand the
mass enhancement by itself can arise due to a variety of
other unrelated reasons including the more conventional
polaronic effects [16] (which might also be relevant for
cuprates [17, 18]) or even simple single-particle band ef-
fects [19]. In order to establish that a particular mecha-
nism is indeed responsible for the given equilibrium prop-
erties (such as the effective mass) one necessarily needs
to go beyond static linear response probes. One way is to
study the behavior of the system away from equilibrium
on appropriate timescales with an ability to control each
relevant degree of freedom (charge, spin, lattice, etc) in-
dividually on appropriate timescales.

In this paper we use time resolved optical spectroscopy
to determine the mechanism behind the quasiparticle
mass renormalization in a frustrated Mott insulator. We
study the behavior of the Hubbard exciton in Na2IrO3

which is a magnetically frustrated Mott system [20–22].
Previously it was found that at low temperatures the
non-equilibrium charge excitations in it behave as dou-
blons and holons [24–26] which can form bound states
(“Hubbard excitons”, HE) [27]. In the magnetically dis-
ordered state these are more or less conventional excitons
held together by Coulomb attraction. In contrast in the
ordered low temperature phase (antiferromagnetic) the
spins form a “string” between constituent doublons and
holons [24] (the string is a quasi-1D region of reorga-
nized spin ordering that connects doublons and holons
reflecting their fractional nature [3, 5, 6]. See insets to
Fig.3a and Ref.[24]). By using a time resolved technique
developed for this work we can suppress the magnetic or-
dering at any stage of relaxation of HE and observe that
the presence of the string slows down the relaxation dy-
namics of HE which signals an increase in its mass. This
is expected if we accept that the spin string should also
perturb the spin order as HE moves. Therefore we con-
clude that the mass of the Hubbard exciton is predom-
inantly determined by the strong correlations between
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FIG. 1: A schematic illustration of the experiment. Top: a
cartoon of the three pulse (“pump-push-probe”) process: dou-
blons and holons are first created in an ordered state (AFM)
with the pump pulse. Then order is melted and new disor-
dered state (PM) is created by the push pulse arriving after
some controllable time delay after the pump pulse. Doublons
and holons form bound states in both AFM and PM, how-
ever in PM they are held together by Coulomb attraction only
while in AFM there is a spin string connecting them which
is responsible for enhanced mass of the bound state in AFM.
Bottom: sketch of the band structure of Na2IrO3 [23] com-
paring it with the energy of the pump (h̄ω = 1.5eV ) and the
push (h̄ω = 590meV ) pulse energies.

charge and spin degrees of freedom.

In a conventional pump-probe method the sample is
excited by a short laser pulse called the pump and then
a time delayed second pulse called the probe is sent to
measure the non-equilibrium reflectivity of the sample.
In this way it is possible to infer the details of the in-
teractions within the system that determine its relax-
ation dynamics [28]. An upgraded time resolved pump
probe system used in this work features two separate laser
pump pulses with appropriately chosen wavelengths. The
first pulse (“pump”, h̄ω = 1.55 eV ) is used to create
excited doublons and holons which quickly form non-
equilibrium HEs (but don’t recombine during the course
of experiment due to selection rules [24, 29]). The sec-
ond pumping pulse (“push”, h̄ω = 0.6 eV ) is minimally
coupled to electronic degrees of freedom as its energy is
not sufficient to excite new electrons from the Jeff = 3/2
band [30] (see Fig.1) and the intraband excitations in
the Jeff = 1/2 bands are suppressed due to their narrow
character (W � h̄ω) [31]. The push pulse thus predom-
inantly generates bosonic excitations and as such can be
used to instantaneously destroy the magnetic order by
melting it at any stage of HE relaxation. This can hap-
pen through a number of channels such as multi-phonon

near infrared absorption [32] or impulsive stimulated ra-
man scattering [33–37].

For the double-pump-probe (pump-push-probe) exper-
iments we used an amplified laser system operating at
the center wavelength of 790nm and the repetition rate
of 30 kHz whose output was used for optical paramet-
ric amplification (OPA) and white light supercontinuum
(WLS) generation in a sapphire crystal to produce var-
ious pulses: 790nm (1.55 eV , fundamental) with a spot
size 0.6mm FWHM for the pump pulse; 2100nm (0.6 eV ,
OPA) with a spot size 250µm FWHM for the “push”;
and 907nm (1.38 eV , WLS) with a spot size 150µm
FWHM for probing, non-degenerate with pump to min-
imize noise coming from pump scattering. In all exper-
iments reported in the main text the pump fluence and
total power were chosen such that the measurements are
performed in the low fluence regime, where the signal dy-
namics is independent of pump fluence [24, 37]. Single
crystals of Na2IrO3 were grown using a self-flux method
from off-stoichiometric quantities of IrO2 and Na2CO3.
Similar technical details were described elsewhere [38–
40]. Samples were cleaved ex situ before every measure-
ment to expose fresh surface and placed under vacuum
within a few minutes.

Just as equilibrium optical conductivity data is used
to interpret single-pump-probe experiments we will in-
terpret the double-pump-probe (pump-push-probe) data
presented in this paper relying on the analysis of the reg-
ular single-pump-probe experiment on Na2IrO3 reported
in [24]. The summary of the relevant conclusions of [24] is
as follows: 1) The transient optical response of Na2IrO3

has a qualitatively different behavior below and above
the ordering temperature TN = 15K. In particular for
temperatures T < TN the signal is independent of tem-
perature and is a monotonous function of time that can
be fit with a single exponential while for T > TN the tran-
sient signal is non-monotonous with an extremum whose
position is approaching the origin with increasing tem-
perature. This indicates that the relaxation dynamics in
Na2IrO3 is determined by magnetism as opposed to other
possible channels such as electron-lattice interactions. 2)
The slow low temperature signal is due entirely to bound
states of doublons and holons (“Hubbard excitons”, HE)
while the high temperature signal is a mixture of the re-
sponse from HE and the doublon-holon “plasma”.

Fig.2 shows a series of traces obtained at a base tem-
perature of T = 5K for various time delays between the
pump (1.55 eV ) and push (0.6 eV ) pulses organized such
that the push pulse is placed at the zero of the t-axis.
The push pulse fluence here is 0.1mJ/cm2. By compar-
ing the behavior of the signal before and after the push
pulse one can see that although the push pulse is caus-
ing visible kinks, the relaxation rate of the signal is not
affected. Since the effect of the push pulse is only to in-
crease the temperature of the medium, this observation
is consistent with the general behavior of Na2IrO3 sam-
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FIG. 2: Three pulse data with a weak push pulse insuffi-
cient to melt the magnetic order (see text) taken at T =
5K.Φpush = 100µJ/cm2, Φpump = 4µJ/cm2. The push pulse
is at 0ps; solid red lines: fits to a single exponential decay
with the same time constant everywhere. Inset: logarithm of
the signal before push pulse (blue) and the logarithm of the
difference between the lowest (pump-push delay ∆t = −40ps)
and highest (∆t = −5ps) curves (red). As can be seen, a weak
push pulse does not affect the relaxation dynamics.

ples reported in [24]. Indeed, provided the power of the
push pulse is not enough to “melt” the order by increas-
ing the local temperature above TN , the relaxation time
constant will not be affected.

A significantly different behavior can be observed for
more intense push pulses. In Fig.3a we show a set of
traces also obtained at T = 5K for push pulse fluence of
0.5mJ/cm2 organized similarly to Fig.2. The first thing
to notice is that unlike Fig.2 there is a pronounced quali-
tative change in the time dependence caused by the push
pulse. In particular, comparing the after-push (right)
segment of the traces with the transient pump probe re-
sponses above TN in [24] one can estimate that the push
pulse is heating the system to about T ≈ 30K. Im-
portantly, a close inspection of the behavior of the sig-
nal right after the push pulse reveals that the immedi-
ate effect of the push pulse amounts only to a vertical
shift of the signal for all traces independent of the pump-
push delay (notice that ∆1 = ∆2 in Fig.3b) which should
be attributed to the production of additional “parasitic”
electronic excitations by the push pulse. The creation of
these excitations is most probably due to the limitations
of the localized Jeff = 1/2 moment picture of magnetism
in Na2IrO3 by the push pulse [30]. They would be im-
possible had the local moments picture been prescise [41].
But aside from the overall shift the fact that the differ-
ence between different traces remains unchanged across
the push pulse strongly suggests that the configuration

of pump-induced electronic excitations that was present
before the arrival of the push pulse is not altered by it.
Thus we conclude that the push pulse meets our require-
ments as a perturbation mainly causing an instantaneous
increase in temperature while minimally interfering with
the electronic configuration prior to it.

In light of the above, the data presented in Fig.3 can
be interpreted as follows: the pump pulse is creating dou-
blons and holons which quickly form bound states. The
subsequent dynamics can be viewed as the relaxation of
HEs as a whole (the internal kinetic energy is dissipated
rapidly on a few picosecond timescale), gradually releas-
ing the excess of their kinetic energy via emission of mag-
netic excitations. When the push pulse arrives it melts
the magnetic order but keeps the pre-push electronic con-
figuration (including the non-equilibrium states of HEs)
intact. The doublon-holon bound states are also known
to exist above TN [24, 27], therefore it is reasonable to
think that the excitons “survive” the push pulse main-
taining their kinetic energy, except that their structure
changes from a bound state with a spin string (left inset
to Fig.3a) to conventional bound state held together by
Coulomb potential (right inset to Fig.3a).

Fig.3c shows the main finding of this work. The top
(blue) curve in this logarithmic plot is the time depen-
dence of the signal before push pulse showing the dynam-
ics of the HE in the ordered phase. The lower (red) curve
is the relaxation of the exciton in the push-induced dis-
ordered state produced after the push pulse. To produce
the second curve we take difference between two traces
with different pump-push delays and thus corresponding
to Hubbard excitons at different stage of relaxation (we
use traces from Fig.3b). By doing a subtraction we are
getting rid of irrelevant components in the signal, includ-
ing the contribution of the parasitic electrons which does
not depend on the state of pre-push excitons, and re-
trieve the information on the HE relaxation. Note that
both curves are linear in a semi-log plot and therefore are
compatible with the simple relaxation picture adopted
below. The conclusion from this figure is that a bound
state without a spin string is relaxing much faster than
the one with it.

The showings of Fig.3c can be interpreted by noting
that the rate of relaxation of a non-equilibrium quasipar-
ticle moving in a Mott insulator is directly proportional
to its hopping integral teff. Indeed, every hopping process
is associated with an emission of a spin excitation [3, 11],
therefore the more often the particle hops in a unit time
(proportional to teff) the more quickly it loses its exces-
sive energy. Since, as mentioned above the presence of
a spin string significantly reduces the effective hopping
integral of HE, the relaxation rate of an exciton in the
ordered state is very slow [42]. In contrast eliminating the
magnetic order makes the exciton lighter and the relax-
ation towards the quasi-equilibrium state happens much
faster. An alternative way to look at this is to note that
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FIG. 3: a) Three-pulse traces with a strong push pulse (Φpush = 500µJ/cm2, Φpump = 2.5µJ/cm2) at t = 0ps taken at a base
temperature of T = 5K. The push pulse is heating the system above TN (see text); b) Zoom into region shaded in gray in (a)
with only two traces with pump-push delay ∆t = −40 ps (blue) and ∆t = −5 ps (purple) shown for clarity. As can be seen
the “memory” of the electronic system is not erased by the push pulse as the vertical difference proportional to the deviation
from equilibrium is same before and after the push pulse. On the other hand this vertical difference decays much faster after
the push pulse indicating that the excitons lose energy (not recombination) faster at T > TN . This indicates that the mass
of the Hubbard exciton in the disordered state (left inset to (a)) is smaller than that of in the ordered state (right inset to
(a)) due to the presence of a spin string (highlighted with a dashed line); c) the logarithm of the signal before the push pulse
(blue) and of the difference between the signals with ∆t = −40ps and ∆t = −5ps delays between the pump and push pulses
(purple) indicating that the relaxation process can be described as simple exponential decay in both cases justifying the simple
relaxation picture adopted in the text.

the presence of the string puts additional restrictions on
the possible motions of doublons and holons therefore
hindering the relaxation process. This shows that the
enhanced total mass of a Hubbard exciton in the ordered
state is indeed coming as a result of interaction with the
magnetic medium around it.

In conclusion we have used a novel three-pulse “pump-
push-probe” technique to address the issue of the behav-
ior of quasiparticles moving in a frustrated Mott insula-
tor. Applying different perturbations preferentially cou-
pled to electronic and magnetic degrees of freedom in a
time resolved manner we were able to trace the relaxation
of the kinetic energy of the Hubbard excitons as a whole
in both the magnetically ordered and disordered phases.
We stress that this is fundamentally different from do-
ing regular pump probe measurements at different static
temperatures. Typically the relaxation of a correlated
system is a complicated process and tracing the contri-
bution of different degrees of freedom is often impossible.
Here we are able to intervene in the process at any stage
of development and use this knowledge to extract the de-
tails of the relevant sub-process. We observe that in the
ordered phase the effective mass of Hubbard excitons is
much larger as compared to the disordered state due to

the presence of a spin string in the first case. This pro-
vides a direct experimental evidence of the theoretical
notion that the mass of a quasiparticle in a frustrated
Mott insulator has a predominantly “magnetic” origin.
Interestingly, there is a parallel phenomenon in high en-
ergy physics, namely the fact that the majority of the
mass of hadrons is coming not from the masses of con-
stituent quarks but from the energy of the gluon field
holding them together [15]. This is especially curious
given that the spin-string mediated attraction between
the doublon and holon is a direct analog of the quark
confinement in QCD [43, 44].
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