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Weyl semimetals possess low energy excitations which act as monopoles of Berry curvature in
momentum space. These emergent monopoles are at the heart of the many novel transport properties
that Weyl semimetals exhibit. The singular nature of the Berry curvature around the nodal points in
Weyl semimetals allows for the possibility of large anomalous transport coefficients in zero applied
magnetic field. Recently a new class, termed type-II Weyl semimetals, has been demonstrated
in a variety of materials, where the Weyl nodes are tilted. We present here a theoretical study of
anomalous transport in this new class of Weyl semimetals. We find that the parameter governing the
tilt of these type-II Weyl points is intimately related to the zero field transverse transport properties.
We also find that the temperature dependence of the chemical potential plays an important role in
determining how the transport coefficients can effectively probe the Berry curvature of the type-II
Weyl points. In particular, we find that the transverse thermoelectric transport coefficient LET

xy is
strongly enhanced with the tilt of the type-II Weyl nodes and with increasing temperature. We also
discuss the experimental implications of our work for time-reversal breaking type-II Weyl semimetals.

I. INTRODUCTION

Topological Weyl semimetals have sparked tremendous
recent interest in condensed matter physics1–3. These
materials host low energy excitations with massless, lin-
ear dispersions, known as Weyl fermions4. A Weyl node
is a monopole of Berry curvature, which acts as a mag-
netic field in momentum space. Weyl nodes must come in
pairs of opposite chirality5 and the sign of their monopole
charge corresponds to their chirality. A direct conse-
quence of the topological nature of the bulk Berry curva-
ture in Weyl semimetals is the presence of topologically
protected Fermi arcs that reside in the surface Brillouin
zone and form open contours of states6. The bulk Weyl
fermions and the surface Fermi arcs provide the key sig-
natures of Weyl semimetals and are responsible for their
many novel features.

Weyl fermions have been predicted in a variety of
condensed matter systems6–11 and were first experi-
mentally realized in the transition metal monopnic-
tides, where signatures of the bulk nodes and the sur-
face Fermi arcs were detected by angle-resolved pho-
toemission spectroscopy12–16. Shortly after their dis-
covery, a new class of Weyl semimetals, called type-II
Weyl semimetals, was predicted17–20 and experimentally
discovered21–24 in the transition metal dichalcogenides
MoTe2 and WTe2. Subsequently, a number of other ex-
amples of this new class of Weyl semimetals have been
discovered25–29. In type-II Weyl semimetals, the Weyl
nodes are tilted and therefore have a finite density of
electrons and holes at the Weyl energy.

The bulk Berry curvature of Weyl fermions is known
to result in a plethora of unique transport phenomena in
Weyl semimetals. In parallel magnetic and electric fields,
Weyl semimetals exhibit negative longitudinal magne-
toresistance as a result of the chiral anomaly30–36. The
surface Fermi arcs also lead to a remarkable mixed real-

and momentum-space channel of charge transport37–40

and have also been predicted to lead to a novel mech-
anism for entropy transport41. In bulk thermoelectric
transport, Weyl semimetals have been predicted to have
a number of distinct signatures42–45, most notably a
Nernst thermopower at zero applied magnetic field in
time-reversal breaking Weyl semimetals43. Recent exper-
iments have shown extraordinary thermoelectric proper-
ties of NbP, including a large Nernst effect46 and evidence
for a mixed axial-gravitational anomaly47.

Although there have been some preliminary predic-
tions of transport in type-II Weyl semimetals18,48–50, it
remains comparatively less well-understood. There have
been signatures of the chiral anomaly in WTe1.98

51 as
well as evidence of viscous electronic and thermal trans-
port in the type-II Weyl semimetal WP2

52. There are
also strong candidates for type-II time-reversal break-
ing Weyl semimetals29,53 and two such candidates Mn3Sn
and Mn3Ge have shown tantalizing signatures of a large
anomalous Hall effect54–56. Furthermore, experimental
signatures of the anomalous Nernst effect and anomalous
thermal Hall effect have also been detected in Mn3Sn57.

Although ferromagnetic metals are known to pos-
sess anomalous transport coefficients in zero field58–60,
Mn3(Ge,Sn) is instead a weakly canted antiferromagnet.
It has been suggested that the real-space magnetic tex-
ture can account for a large anomalous Hall effect in
Mn3Ge if the spins are non-coplanar61, however experi-
ments have shown that the Mn3(Ge,Sn) system does pos-
sess a large anomalous Hall effect in the planar magnetic
phase with a Hall coefficient that is much larger than
its weakly canted moment would suggest54. Thus many
puzzles remain.

Motivated in part by some of these experimental puz-
zles, we study anomalous transport in a lattice model of
a time-reversal breaking Weyl semimetal62. The model
we use allows for tuning through the type-I to type-II
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transition as well as between different type-II phases with
distinct Fermi surface connectivities. Although the Berry
curvature of a Weyl node is independent of its type, the
occupation of states immediately surrounding the Weyl
nodes is strongly dependent on the precise Fermiology of
the material. Furthermore, the chemical potential in low
density systems, such as semimetals, is a strong function
of temperature46,63. A detailed understanding of the in-
terplay between the tilt of the nodes, the connectivity
of the Fermi pockets, and the temperature dependence
of the chemical potential is required for a complete the-
oretical picture of anomalous transport in type-II Weyl
semimetals.

One of the central results of our work is the strong en-
hancement of the transverse thermoelectric transport co-
efficient LETxy with temperature and with increasing nodal
tilt. This term is zero in the strictly type-I limit, but we
find that by increasing the tilt of the Weyl nodes in the
type-II regime, LETxy increases due to the change in the
net Berry curvature of occupied states. We also find that
LETxy is sensitive to many of the Lifshitz transitions that
occur throughout the type-II Weyl semimetal regime.
This has broad implications for the possible utilization
of Weyl semimetals in thermoelectric applications.

The remainder of this paper is organized as follows.
In section II we present a time-reversal breaking model
for a type-II Weyl semimetal that allows for tuning be-
tween various Fermi pocket connectivities. We discuss
how the chemical potential depends on temperature for
this model. In section III, we investigate how the topolog-
ical features determine anomalous transverse transport
coefficients in the type-I and type-II regimes, including
the cross-over between them. For the model described
in section II, we calculate the anomalous Hall coefficient,
the anomalous transverse thermoelectric coefficient, and
the thermal Hall coefficient. In section IV, we discuss our
results and conclude with experimental implications.

II. MODEL

In the continuum limit, a type-II Weyl node can be
described by the following Hamiltonian

ĤW = γkzσ̂0 + χ~vF
(
k− kW

)
· σ, (1)

where σ0 is the 2 × 2 identity matrix, σ is the vector of
Pauli matrices, γ describes the tilt of the node, kW is the
momentum of the node, vF is the Fermi velocity, taken
to be a constant, and χ is the chirality of the node. The
type-I to type-II transition for this continuum model oc-
curs at γ = ~vF . For γ = 0, the continuum model above
has proven to be profoundly useful in understanding the
properties of type-I Weyl semimetals. However, in the
type-II case, this continuum model is manifestly unphys-
ical. For γ > ~vF , Eqn. (1) describes an electron and a
hole pocket that are unbounded and never close at large
k. Since various aspects of type-II Weyl semimetals are

strongly dependent on the nature of the extended Fermi
pockets surrounding the nodes62, it is necessary to in-
stead consider a lattice model.

In order to avoid the difficulties noted above caused
by the unbounded Fermi pockets of continuum models for
type-II Weyl semimetals, we consider the following model
for a time-reversal symmetry breaking system with two
Weyl nodes:

Ĥ = γ(cos(kza)− cos(k0a))σ̂0 − 2t sin(kxa)σ̂1

− 2t sin(kya)σ̂2 −
[
2tz
(

cos(kza)− cos(k0a)
)

+m(2−cos(kxa)−cos(kya))+γz(cos(3kza)−cos(3k0a))
]
σ̂3

(2)

where σ0 is the 2×2 identity matrix, σ̂j is the j-th Pauli
matrix, a is the lattice spacing, t, m, γz and tz are hop-
ping amplitudes, k0 sets the node separation, and γ sets
the tilt of the Weyl nodes. This model supports two sets
of electron and hole pockets, with each Weyl point being
comprised of a separate pair of electron and hole pock-
ets. The type-I to type-II Lifshitz transition happens at
γ = 2tz − 3γz.

A. Lifshitz transitions

In Fig. 1, we plot the energy band structure given
by Eqn. (2) for the parameters m = 3t, tz = t, k0a =
π/2, and γz = 0.5t for several values of γ. For these
model parameters, the type-I to type-II transition occurs
at γ = 0.5t. The Fermi surfaces of the initial type-II
band structure are shown in Fig. 1f, where we see a pair
of electron pockets (red) and hole pockets (blue) meeting
at a pair of Weyl points. As γ increases, each of these
pockets grow in size.

There is also a second set of topological Lifshitz tran-
sitions where the separate electron and hole pockets each
merge into a single pocket. In Fig. 1g, we see that the
electron pockets have merged across the kz = π plane at
γ ≈ 2t and a hole pocket within the electron pocket also
forms for a small range of parameters within the electron
pocket. For the model parameters above, the hole pock-
ets similarly merge into a single Fermi pocket across the
kz = 0 plane at γ ≈ 2.5t. The resulting band structure
deeper in the type-II limit is shown in Fig. 1h. The tun-
ability of this model between these four different regimes
makes it the minimal model to understand type-II Weyl
semimetals. We will show how each regime has its own
signature in anomalous transport.

B. Berry curvature

We can rewrite the Hamiltonian in Eqn. (2) as Ĥ =
d0(k)σ̂0 + d(k) · σ and upon doing so we can calculate
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FIG. 1. Cuts through the band structure given by the Hamiltonian in Eqn. (2). In (a-d), we show energy versus kz cuts for
kx = ky = 0. Here we have chosen m = 3t; tz = t; k0a = π/2; γz = 0.5t for γ = 0 (a), γ = 1.2t (b), γ = 2t (c), and γ = 2.8t
(d). In (e-h), we show constant energy cuts for the band structure defined by Eqn. (2). (a) and (e) are in the type-I limit;
(b) and (f) are in the type-II limit with distinct pockets making up each nodes; (c) and (g) are in the type-II limit after the
electron pockets have merged; and (d) and (h) are in the type-II regime where the Weyl nodes share only a single electron and
single hole pocket. Thus, as γ is increased we can see the successive Lifshitz transitions described in the text.

the Berry curvature of the n-th band through64

Ωn,i(k) = εijl(−1)n
d ·
(
∂kjd× ∂kld

)
2|d|3

, (3)

where εijl is the perfectly antisymmetric tensor. The
Berry curvature plays a central role in the theory of
anomalous transport. The parameter γ which determines
the tilt, and therefore the type of the Weyl nodes, is em-
bedded in d0(k), which does not enter Eqn. (3). We note
that due to the extended nature of the pockets in type-
II Weyl semimetals, the anomalous transport coefficients
are strongly dependent on the details of the Fermiology.

We can better understand the interplay between band
Fermiology and the Berry curvature by introducing what
we call the net Berry curvature defined by

Ωnet
z (E) =

∑
n

∫
dS

(2π)3
Ωn,z(k)

|∇kE|
, (4)

where E is the energy and the integral in Eqn. (4) is over
surfaces of constant energy in the Brillouin zone. We
plot Ωnet

z (E) as a function of energy for various values
of γ in Fig. 2a-d for the model given by Eqn. (2). We
see that, for γ = 0, Ωnet

z (E) is a strictly odd function of
energy. However, as γ increases, Ωnet

z (E) has the same
sign for positive and negative energies close to E = 0. As
the electron pockets merge in Fig. 2c,g,k, we see that
the net Berry curvature peaks. This interplay of Berry
curvature and node tilt has a strong effect on zero-field

transverse transport.

C. Temperature dependence of the chemical
potential

In metals with high densities of electrons at degenerate
temperatures, the chemical potential is nearly constant
with respect to temperature. However, in low density
semimetals, it has been shown that the chemical poten-
tial has a strong temperature dependence at experimen-
tally relevant temperatures46,63. For the lattice model
in Eqn. (2), we calculate the temperature dependence
of the chemical potential by self-consistently solving for
µ(T ) for fixed density:

n =

∫ ∞
−∞

dE g(E)

1 + e
E−µ(T )
kBT

, (5)

where n is the density, T is the temperature and g(E) is
the density of states found through

g(E) = − 1

π

∑
n

Im

[∫
d3k

(2π)3
Gn(k, E)

]
, (6)

where Gn(k, E) is the Green function of the n-th band.

For isolated type-I Weyl points, the minimum of g(E)
will generically occur at the Weyl points46 due to the
symmetry of the particle and hole bands. This results
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FIG. 2. Each column corresponds to a particular γ with: γ = 0 (a, e, i), γ = 1.2t (b, f, j), γ = 2t (c, g, k), and γ = 2.8t (d, h,
l). (a-d) show the net Berry curvature in the z-direction Ωnet

z (E) defined by Eqn. (4). We see that for nonzero γ, the net Berry
curvature around the nodes is of the same sign. (e-h) the density of states for m = 3t, tz = t, k0a = π/2, and γz = 0.5t, for
different values of the tilt parameter. (i-l) illustrates the temperature dependence of the chemical potential, µ(T ). Each plot
shows three separate values of EF : EF = 0 (blue), EF = 0.1 (green), and EF = 0.2 (red). We see that for smaller values of γ,
g(E) has a minimum close to the Weyl energy E = 0, but for larger values of γ, this minimum shifts far from the nodes. This
has a strong effect on the shift of the chemical potential with temperature.

in the chemical potential shifting to the Weyl points
with increasing temperature in type-I Weyl semimetals.
However, in general, the hole and electron pockets are
not symmetric about the Weyl energy in type-II Weyl
semimetals, and the minimum of g(E) will occur above
or below the Weyl nodes. In Fig. 2e-h we plot the density
of states g(E) of the model in Eqn. (2) for several values
of the tilt parameter γ at energies around the node en-
ergy. For γ = 0, we see the density of states is minimum
at the Weyl energy. However, for larger values of γ, in
the type-II regime, the tilt of the Weyl cones breaks par-
ticle hole symmetry and shifts the minimum of g(E) away
from the Weyl energy. In the large γ limit where both the
electron and hole pockets merge (Fig. 2h), the minimum
of the density of states shifts far from the Weyl energy.
In Fig. 2i-l we show how the chemical potential evolves
with temperature for each value of γ. For low values of γ
in Fig. 2i and 2j, we see that the chemical potential shifts
to the Weyl energy roughly on a temperature scale of the

distance EF is away from the energy for which g(E) is
minimized. However, as the nodes become increasingly
tilted, the temperature scale over which µ(T ) shifts be-
comes much larger than the relevant scales in transport
that we will consider.

D. Definition of transport coefficients

From Onsager’s generalized transport equations65, we
have (

Je

Jq

)
=

(
LEE LET

LTE LTT

)
·
(

E
−∇T

)
, (7)

where Je is the charge current density, Jq is the heat
current density, E is the electric field and ∇T is the ap-
plied temperature gradient. In general, the transport
coefficients in Eqn. (7) must be obtained by solving
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for the non-equilibrium distribution function using the
Boltzmann formalism. However, in the absence of an
applied magnetic field, the situation simplifies dramati-
cally. In this case, the modified velocity of the n-th band
is found to be

ṙn = vn(k) +
e

~
(
E×Ωn(k)

)
, (8)

where vn(k) ≡ 1
~∇kEn(k) is the usual group velocity and

where
e

~
(
E×Ωn(k)

)
is the anomalous velocity due to the

Berry curvature66. The Berry curvature is sufficient to
generate nonzero transverse transport coefficients LEExy ,

LETxy , and LTTxy in the presence of zero external magnetic
field. We consider the effects in type-II Weyl semimetals
on each of these coefficients below. For the remainder of
this paper, we will only consider the case of zero magnetic
field.

III. ANOMALOUS TRANSPORT

In this section, we consider anomalous transport in
a two band lattice model for the type-II time reversal
breaking Weyl semimetal described in Section II. We cal-
culate the anomalous Hall coefficient LEExy , the anoma-

lous transverse thermoelectric coefficient LETxy , and the

anomalous thermal Hall coefficient LTTxy .

A. Anomalous Hall Effect

The anomalous Hall effect has long been studied in the
context of Weyl semimetals. For a time-reversal break-
ing Weyl semimetal, it was shown that the anomalous
Hall conductivity LEExy was directly proportional to the

net separation between Weyl nodes67. In the presence of
Berry curvature, we have seen that the equations of mo-
tion are modified and as a result59,66,68,69, the anomalous
Hall coefficient takes the following form

LEExy =
e2

~
∑
n

∫
d3k

(2π)3
Ωn,z(k)f0(k), (9)

where f0(k) =
(

1 + e
E(k)−µ
kBT

)−1
is the equilibrium Fermi-

Dirac distribution. Since f0(k) only depends on k
through the energy E , we can write Eqn. (9) in terms
of Ωnet

z (E) in the following way

LEExy =
e2

~

∫
dE Ωnet

z (E)f0(E). (10)

The anomalous Hall coefficient in Eqn. (9) integrates
the Berry curvature over all filled states. In the un-tilted
regime (γ = 0), Eqn. (2) will have particle-hole sym-
metry and since, from Eqn. (3), the Berry curvature is
opposite in sign but equal in magnitude at a particular

point k for two bands. Therefore, equal energy Fermi sur-
faces at positive and negative energies will have opposite
net integrated Berry curvature Ωnet

z (E). Hence, at γ = 0
and EF = 0, the filled states all contribute to one sign of
LEExy . As the tilt γ is increased, the Fermi surfaces be-
come increasingly asymmetric, and the distributions of
Ωn,z(k) over the occupied states undergoes substantial
change, as shown in Fig. 2a-d.

In Fig. 3a, we plot the anomalous Hall coefficient LEExy
as a function of the tilt parameter γ for several fixed
temperatures at EF = 0. Other than a small increase in
LEExy for γ < 1.5t for small temperatures, we note that
the curves are substantially similar. We can understand
the increase of LEExy by noting that the asymmetry in
the Berry curvature distribution enhances the Hall coeffi-
cient for small temperatures but that this effect is washed
out as the temperature increases and the Fermi function
broadens. When the separate electron pockets compris-
ing the Weyl nodes merge into a single electron pocket
at γ = 2t, we see that the Hall coefficient uniformly de-
creases for all temperatures.

In Fig. 3d, we show the temperature dependence of the
anomalous Hall coefficient LEExy as a function of tempera-
ture for fixed γ = 1.2t for various Fermi energies EF . We
see that for EF = 0, LEExy decreases monotonically as a
function of temperature. This is because as the tempera-
ture is raised, the Fermi function broadens and electronic
states with the opposite sign of Ωn,z(k) begin to become
occupied. This is true for the type-I case as well. How-
ever, for EF 6= 0, the Hall coefficient will in general be
lower than its EF = 0 value at T ≈ 0. For EF > 0 in Fig.
3d, we see that LEExy attains a maximum at T > 0. This
is due to the movement of the chemical potential with
temperature (see Fig. 2i-l). As the chemical potential
crosses the Weyl energy, a maximum is attained in the
anomalous Hall coefficient as a function of temperature.
This effect is seen to a lesser extent in the type-I case,
however there are two distinct differences in the type-II
regime:

(i) In the type-I case, µ(T ) always shifts to the node
energy. However, in the type-II case, the minimum of
the density of states g(E) occurs generically at a different
energy, causing µ(T ) to cross the Weyl energy rather than
approach it asymptotically. This leads to a sharper rise
of LEExy with temperature.

(ii) Due to the higher density of states around the nodes,
where the Berry curvature is stronger, the anomalous
Hall coefficient is more sensitive to the shift of the chem-
ical potential.

At higher temperatures, the chemical potential reaches
the energy where the density of states is minimized and
the temperature dependence of LEExy is uniform across
each value of EF . Although here we have only shown
the results for a single value of γ, the broad conclusions
that we have drawn remain true. There is a peak in
temperature where µ(T ) crosses the node energy. In the
type-II regime, this increase over the T = 0 value is, in
general, greater than that in the type-I regime for other
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(f)	(e)	

(b)	

FIG. 3. In (a-c), we plot each anomalous transport coefficient LEE
xy , LET

xy , and LTT
xy for the Hamiltonian given by Eqn. (2) with

parameters m = 3t, tz = t, k0a = π/2, and γz = 0.5t, as a function of γ for the following temperatures: T = 0.05t (purple),
T = 0.1t (blue), T = 0.15t (green), and T = 0.2t (red). In (d-f), we show LEE

xy , LET
xy , and LTT

xy for the same values as in
(a)-(c), with γ = 1.2t, plotted as functions of temperature for various Fermi energies: EF = 0 (black), EF = 0.1t (magenta),
and EF = 0.2t (blue).

similar model parameters. However, we note that for
values of γ such that the electron (or the hole pockets)
have merged, the temperature dependence becomes much
weaker.

B. Anomalous Thermoelectric Effect

In the presence of Berry curvature, the electronic
wavefunction acquires an orbital magnetization that
is responsible for nontrivial anomalous thermoelectric
properties70. It is found that in this case, the anoma-
lous transverse thermoelectric coefficient is given by

LETxy =
kBe

~
∑
n

∫
d3k

(2π)3
Ωn,z(k)s(k), (11)

where s(k) is the electronic entropy given by

s(k) = −f0(k) ln(f0(k))−(1−f0(k)) ln(1−f0(k)), (12)

and where f0(k) is the equilibrium Fermi-Dirac distribu-
tion defined above. The entropy, as defined in Eqn. (12),
is sharply peaked around µ(T ). Therefore, unlike the
anomalous Hall coefficient, the anomalous thermoelectric
coefficient LETxy is only sensitive to the Berry curvature

around the chemical potential. As in the case of LEExy
above, we can also write Eqn. (11) in terms of Ωnet

z (E)
since s(k) is also only a function of momentum through
the energy. Doing so, we obtain

LETxy =
kBe

~

∫
dE Ωnet

z (E)s(E). (13)

The tilt γ of the model for a type-II Weyl semimetal
can lead to a change in the distribution of net Berry cur-
vature that is large enough to flip the sign of Ωnet

z (E)
above or below the Weyl node in energy, for energies
small compared with the bandwidth E � t, as shown
in Fig. 2b-d. Hence, at energies just above and below
the Weyl energy, Ωnet

z (E) has the same sign for a tilted
Weyl cone. This leads to a large enhancement of the
anomalous thermoelectric coefficient for energies around
the node. We see this in Fig. 3b, where LETxy is plot-
ted as a function of γ for various temperatures. In the
type-I case, LETxy is small in magnitude and positive in
sign. After the Lifshitz transition to the type-II regime
at γ = 0.5t, we see a change in sign of LETxy and substan-
tial increase in its magnitude. This is precisely because
Ωnet
z (E) has the same sign and a large value. The anoma-

lous thermoelectric coefficient LETxy attains a maximum at
γ ≈ 2.3t after the electron pockets have merged and just
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as the hole pockets are about to merge (with increasing
γ). Hence, we see that measurable quantities, such as
the Nernst effect, which depend on LETxy may be quite
sensitive to Lifshitz transitions between various regimes
of Fermi pocket connectivity in type-II Weyl semimetals.

In Fig. 3e, we plot the anomalous thermoelectric co-
efficient LETxy as a function of temperature for various
Fermi energies EF at γ = 1.2t. Here we see that there is
an increase with temperature in the magnitude of LETxy
for small T . This occurs because, as the entropy s(k)
broadens, LETxy is enhanced from the entropy including a
larger range of energies in the integral in Eqn. (11). At a
temperature on the order of the energy for which the den-
sity of states g(E) attains its minimum, LETxy reaches its
maximum absolute value. For Fermi energies EF farther
from the node energy, we see that the maximum absolute
value of LETxy increases. This occurs for the same reason
as in the anomalous Hall coefficient above; for a type-
II Weyl semimetal the chemical potential µ(T ) will pass
over the Weyl energy where Ωnet

z (E) is enhanced.

Finally, we also note that since the Berry curvature
is symmetric in magnitude but opposite in sign for an
un-tilted type-I Weyl node, as shown in Fig. 2a, at ex-
actly EF = 0, LETxy must vanish. Hence, at precisely

EF = 0, LETxy can only take a nonzero value for a type-II
Weyl semimetal where the shifted occupation of states
can lead to a nonzero net Berry curvature when Eqn.
(11) is evaluated at the node energy.

C. Anomalous Thermal Hall Effect

As in the anomalous transverse thermoelectric effect
above, similar effects of orbital magnetization in the pres-
ence of Berry curvature also lead to an anomalous ther-
mal Hall effect in the absence of magnetic field71–73. In
the presence of Berry curvature, the anomalous thermal
Hall coefficient is given by

LTTxy =
k2BT

~
∑
n

∫
d3k

(2π)3
Ωn,z(k)

(
π2

3
+

(E − µ)2

(kBT )2
f0(k)

−ln

(
1 + e

− E−µ(T )
kBT

)
+ 2Li2

(
1− f0(k)

))
,

(14)

where f0(k) is again the equilibrium Fermi-Dirac distri-
bution and where Lim(z) is the polylogarithm function
of order m defined by

Lim(z) =

∞∑
k=1

zk

km
. (15)

Recognizing that, aside from Ωn,z(k), the integrand of
Eqn. (14) only depends on the energy, we can write

LTTxy =
k2BT

~

∫
dE Ωnet

z (E)

(
π2

3
+

(E − µ)2

(kBT )2
f0(E)

−ln

(
1 + e

− E−µ(T )
kBT

)
+ 2Li2

(
1− f0(E)

)) (16)

Like the anomalous Hall coefficient, the anomalous
thermal Hall coefficient defined by Eqn. (14) integrates
over many states below the chemical potential. How-
ever, unlike the simple Fermi distribution f0(k), the ker-
nel of the integrand multiplying Ωn,z(k) in Eqn. (14)
has a broader inflection point at E = µ(T ) than f0(k)
and hence, LTTxy is sensitive to Berry curvature over a

wider range than LEExy . In Fig. 3c, we plot LTTxy as a
function of γ and we see that it is quite similar with the
anomalous Hall coefficient plotted in Fig. 3a. However,
we note that the anomalous thermal Hall coefficient in-
creases with increasing γ for all temperatures up to the
Lifshitz transition where the electron pockets merge. We
also see that after the Fermi pockets do merge, the de-
crease of LTTxy is less rapid than LEExy with increasing γ.

We also note that the temperature dependence of LTTxy
is increasing rather than decreasing as in LEExy at large

T . Finally, the dependence of LTTxy on EF is essentially
negligible due to the broadened kernel in the integrand
in Eqn. (14).

IV. RELATION TO MEASURABLE
QUANTITIES

In the previous section, we studied transverse trans-
port in zero magnetic field and calculated the transport
coefficients LEExy , LETxy , and LTTxy . From Eqn. (7), we im-

mediately recognize LEExx as simply the electrical conduc-
tivity. Unders isothermal conditions, the Nernst effect is
defined by

αxyz =
Ey
−∇xT

, (17)

under the conditions

Jx = Jy = 0 (18)

and

∇yT = 0. (19)

From Eqn. (7), we can find αxyz to be given by

αxyz =
Ey
−∇xT

=
LEExx L

ET
xy − LEExy LETxx

(LEExx )2 + (LEExy )2
. (20)
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Sensitive only to states near µ Enhanced by γ Enhanced with T EF dependence

LEExy No No For T . EF Yes

LETxy Yes Yes For T . EF Yes

LTTxy No No Yes No

TABLE I. Summary of properties of anomalous transport coefficients in type II Weyl semimetals.

We note that Eqn. (20) depends not only on the trans-
verse coefficients LEExy and LETxy , but also the longitudinal

coefficients LEExx and LETxx . We can find the transverse
thermal conductivity to be

κxy = LTTxy −T
(
(LETxy )2 − (LETxx )2)

)
LEExy + 2LEExx L

ET
xy L

ET
xx

(LEExx )2 + (LEExy )2
.

(21)
Similar to the Nernst thermopower given above, we note
that the thermal conductivity κxy depends on LTTxy as
well as the second, explicitly temperature dependent
term which we recognize as the ambipolar thermal con-
ductivity that originates from a Seebeck effect generated
by a Peltier current. Thus we expect the effects of the
nodal tilt to be strongly reflected in each of anomalous
Hall transport, the anomalous Nernst thermopower, and
in the anomalous thermal Hall effect.

So far, we have only considered the transverse trans-
port coefficients in zero applied external magnetic field.

However, in general, each Lαβij will be nonzero. Fur-
thermore all transverse coefficients will have additional
contributions at nonzero applied magnetic field. Full ex-
pressions for the transport coefficients of lattice models
for Weyl semimetals can be found in Ref.43. All con-
tributions other than the anomalous terms discussed in
the previous section will depend explicitly on the trans-
port scattering time. From Matthiessen’s rule, the scat-
tering rate from independent processes can be written
as a sum of the scattering rates of each process. We
expect that impurity scattering, electron-electron scat-
tering, and phonon-induced scattering will all play a
role in general. The various contributions to the scat-
tering time in Weyl semimetals has been investigated
previously74–77, however the nature of scattering in type-
II Weyl semimetals remains an open problem. We have
limited the scope of our work to the Berry curvature in-
duced anomalous transport and so we leave the effects of
scattering for future investigations.

V. DISCUSSION AND CONCLUSION

We have calculated how the anomalous transport co-
efficients reveal signatures of type-II Weyl semimetals.
Our results are summarized in Table I. In particular, the
anomalous transverse thermoelectric coefficient LETxy is
greatly enhanced by tilting the Weyl nodes. However, we
have also seen that even deeper in the type-II phase, the
various anomalous coefficients are sensitive to changes

in Fermi surface topology even quite far from the Weyl
nodes. Each of LEExy and LTTxy show a marked decrease

in magnitude as the electron pockets merge, while LETxy
peaks just after they merge and LETxy decreases for γ large
enough that the hole pockets similarly merge.

Previous calculations have shown62 that tuning
through the various Lifshitz transitions within the type-II
Weyl semimetal phase is associated with changing con-
nectivities of the topological Fermi arcs. The bulk Fermi
surface Berry curvature is deeply linked to the topol-
ogy of the bulk band structure, and it is enlightening to
see the anomalous transport coefficients reflect this bulk-
boundary correspondence. In some inversion-breaking
Weyl semimetals28, it has been shown that strain may
be possible to tune between a type-I to type-II phase
transition. Although this has not yet been demonstrated
in a time-reversal breaking Weyl semimetal, it should be
possible in principle. This would allow for an experi-
mental verification of our results as well as allowing for
deeper explorations of connections between anomalous
transport and changes in Fermi arc topology. We note
that the coefficients that we have calculated in this work
are manifestly independent of scattering time. However,
the experimentally measurable quantities, such as the
Nernst thermopower, will necessarily involve the longitu-
dinal transport coefficients, such as LEExx and LETxx which
depend on scattering times.

We have also seen that the temperature dependence of
the anomalous transport coefficients is quite distinct for
each of LEExy , LETxy , and LTTxy . The temperature depen-
dence of the chemical potential has already been demon-
strated to lie at the heart of the ordinary Nernst ther-
mopower in the Weyl semimetal NbP46. However, similar
effects in zero field anomalous transport have remained,
until this point, unexplored. We have demonstrated that,
through the location of the Fermi energy EF , the temper-
ature at which LEExy attains its maximum can be tuned,
as can the strength of the anomalous thermoelectric co-
efficient LETxy .

The generation of a transverse response to an applied
electric field or thermal gradient unifies the zoo of the
various Hall effects. The ability to generate such a re-
sponse in the absence of an externally applied magnetic
field opens the door to a wide variety of technologi-
cal applications. Weyl semimetals have been predicted
to generate various anomalous transport phenomena in
zero field due to their Berry curvature. However, the
lack of experimental realizations of time-reversal break-
ing Weyl semimetals have stymied their application. Re-
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cently it has been proposed that time-reversal breaking
Weyl semimetal candidates are type-II in nature. Our
calculations serve not only to guide future experiments
but also demonstrate that through changing various ex-
perimentally accessible properties, it may be possible to
tune the anomalous transport coefficients in type-II weyl
semimetal to an extent not possible in the type-I case.
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C. Felser, and S. S. P. Parkin, Science Advances 2, 1501870
(2016).

57 X. Li, L. Xu, L. Ding, J. Wang, M. Shen, X. Lu, Z. Zhu,
and K. Behnia, (2016), arXiv:1612.06128.

58 M. Onoda and N. Nagaosa, Journal of the Physical Society
of Japan 71, 19 (2002).

59 N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).

60 S. J. Watzman, R. A. Duine, Y. Tserkovnyak, S. R. Boona,
H. Jin, A. Prakash, Y. Zheng, and J. P. Heremans, Phys.
Rev. B 94, 144407 (2016).

61 J. Kbler and C. Felser, EPL (Europhysics Letters) 108,
67001 (2014).

62 T. M. McCormick, I. Kimchi, and N. Trivedi, Phys. Rev.
B 95, 075133 (2017).

63 Y. Wu, N. H. Jo, M. Ochi, L. Huang, D. Mou, S. L. Bud’ko,
P. C. Canfield, N. Trivedi, R. Arita, and A. Kaminski,
Phys. Rev. Lett. 115, 166602 (2015).

64 A. Bernevig and T. L. Hughes, Topological Insulators and
Topological Superconductors (Princeton, 2013).

65 T. C. Harman and J. M. Honig, Thermoelectric and Ther-
momagnetic Effects and Applications (Macgraw-Hill, New
York, 1967).

66 D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82,
1959 (2010).

67 K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84,
075129 (2011).

68 R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154
(1954).

69 J. M. Luttinger, Phys. Rev. 112, 739 (1958).
70 D. Xiao, Y. Yao, Z. Fang, and Q. Niu, Phys. Rev. Lett.

97, 026603 (2006).
71 D. L. Bergman and V. Oganesyan, Phys. Rev. Lett. 104,

066601 (2010).
72 T. Yokoyama and S. Murakami, Phys. Rev. B 83, 161407

(2011).
73 T. Qin, Q. Niu, and J. Shi, Phys. Rev. Lett. 107, 236601

(2011).
74 S. Das Sarma, E. H. Hwang, and H. Min, Phys. Rev. B

91, 035201 (2015).
75 J. H. Pixley, Y.-Z. Chou, P. Goswami, D. A. Huse,

R. Nandkishore, L. Radzihovsky, and S. Das Sarma, Phys.
Rev. B 95, 235101 (2017).

76 D. Culcer, A. Sekine, and A. H. MacDonald, Phys. Rev.
B 96, 035106 (2017).

77 A. Sekine, D. Culcer, and A. H. MacDonald, (2017),
arXiv:1706.01200v2.


