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Pairing from dynamically screened Coulomb repulsion in bismuth
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Recently, Prakash et. al. have discovered bulk superconductivity in single crystals of bismuth,
which is a semi metal with extremely low carrier density. At such low density, we argue that
conventional electron-phonon coupling is too weak to be responsible for the binding of electrons
into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction
generated on the scale of the collective plasma modes. We model the electronic states in bismuth
to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller
velocity. We find a weak coupling instability, which is greatly enhanced by the presence of the hole
pocket. Therefore, we argue that bismuth is the first material to exhibit superconductivity driven
by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find
that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix
element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the
s-wave channel without breaking time-reversal symmetry.

I. INTRODUCTION

BCS theory explains how superconductivity emerges
from a local electron-phonon coupling, and leads to the
well known expression for the transition temperature

Tc = ΘD exp [−1/ρ V0] . (1)

Here ρ is the density of states per spin at the Fermi en-
ergy, ΘD is the Debye temperature and V0 is the phonon
mediated interaction. In metals the local electron-
phonon coupling is, indeed, the most important one [1].

However, as pointed out first by Gurevich, Larkin and
Firsov (GLF) [2], this theory runs into a serious prob-
lem when considering superconductivity in dilute metal-
lic systems, such as doped semiconductors and semimet-
als. The reason is that in three dimensions the density
of states, ρ, decreases to zero as the density of carriers is
decreased. GLF have concluded that in non-ionic crys-
tals the lowest possible density for superconductivity is
nGLF ∼ 1019cm−3 [3]. For ionic crystals, on the other
hand, they proposed that coupling to the long range po-
larization of the longitudinal optical phonon, within the
random-phase-approximation (RPA), may lead to super-
conductivity at densities much lower than nGLF . It is,
however, important to note that the frequency of the lon-
gitudinal mode must still be much smaller than the Fermi
energy, ωL � εF , such that the Coulomb repulsion may
be renormalized.

Indeed, most known superconductors with a density
below the limit n < nGLF are ionic compounds [4].
Examples are the topological half-Heusler semimetals
YPtBi, LuPtBi, LaPtBi with densities as low as n =
2× 1018cm−3 [5–8] and SrTiO3 with a density as low as
n = 5× 1017cm−3 [9–12].

The recent discovery of superconductivity in bis-
muth [13], however, is in direct contradiction to the GLF
theory. On the one hand the density of carriers, which is
n = 3× 1017 cm3, is well below the bound (for a detailed
discussion on the irrelevance of phonons and other local
interactions to superconductivity see Appendix D). On

the other hand bismuth is a single element crystal, and
therefore has no polar phonon modes. Thus, the puzzle
is: What is the source for long range attractive interac-
tion which allows such a low density system to become
superconducting?

The discovery of high-Tc superconductivity has raised
the possibility of pairing in lightly doped Mott insula-
tors due to strong correlations effect. However, in Bi the
bands are predominantly wide 6p bands and strong cor-
relation is not expected. (For an alternative viewpoint
on pairing from strong correlation effects see Ref. [14]).
There remain two possible sources for long-ranged at-
tractive interactions: (i) Soft critical fluctuations coming
from a nearby critical point (the critical point maybe as-
sociated with an instability of the Fermi gas or a struc-
tural transition of the ions in the crystal) [15–18]. (ii)
The second possibility is collective plasma modes [19–
24], which mediate a long ranged attraction. Since there
is no experimental evidence of a nearby critical point we
focus, in this paper, on the latter. The plasmonic modes
are longitudinal collective modes, which are related to
longitudinal phonon modes in a polar crystal. Therefore
they are, in principle, compatible with the GLF theory.
The plasma modes set the energy scale for the retardation
(frequency dependent) effect of the screened Coulomb in-
teraction leading to effective attractive pairing channels.

Takada [19] was the first to apply the GLF theory
to study the possibility of plasmonic superconductivity.
He concluded that a superconducting instability can oc-
cur if the coupling is strong, i.e. rs > 1 (where rs is
proportional to the ratio between Coulomb interaction
and kinetic energies). In this limit the plasma frequency
is typically higher than the Fermi energy. Thus, both
Eliashberg theory and the RPA are out of their limits
of validity. For this reason there has been a lot of con-
troversy in the literature whether or not this instability
exists even in theory [21, 22, 24–26].

In this work we focus on the limit of weak coupling [27]
where RPA is a good approximation. Our goal is to
understand the origin of superconductivity in bismuth,
where the measured plasma frequency is smaller than the
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Fermi energy [28], indicating that indeed rs < 1. We de-
rive the Eliashberg equation which is used to compute
Tc numerically in an isotropic Dirac semi-metal band
structure, which approximates that of bismuth. It in-
cludes three Dirac-electronic pockets and one parabolic-
hole pocket [29–31], where the Dirac velocity is signifi-
cantly larger than the Fermi velocity of the holes.

We find, in contrast to Takada [19, 23], that there ex-
ists a weak coupling instability towards superconductiv-
ity and discuss the possibility that this instability extends
to arbitrarily weak coupling. By calculating Tc with and
without the hole pocket we show that the holes drasti-
cally enhances Tc in the weak coupling limit. Our results
indicate that Bi may be the first example of weak cou-
pling superconductivity driven by retardation effects of
Coulomb repulsion alone, without the help of phonons.
We also note that in this case the isotope effect should
be completely absent, as the mass of the bismuth atoms
plays no role in the theory.

It is also important to note that in the case of bismuth,
where there are multiple Fermi surfaces with different
Fermi velocities, there may exist an additional collective
mode: the so called acoustic plasmon [32–36]. This mode
has been considered as a possible mechanism for attrac-
tive interactions and superconductivity in semi-metals
already a long time ago [33, 37–41]. Such a mode can
contribute greatly to superconductivity when the veloc-
ity ratio is very large (in this limit the slower band be-
comes equivalent to the ”jelly” in the ”jellium” model
and the acoustic plasmon is just the acoustic phonon).
However, we show that for realistic parameters in bis-
muth a weak coupling instability occurs even in the limit
where this mode does not exist, and therefore we argue
that the acoustic plasmon is not an essential ingredient
for superconductivity in this material. Nevertheless, we
find that the hole band tends to enhance the transition
temperature.

Finally, in Bi strong spin-orbit coupling leads to nearly
massless Dirac conduction bands. Anderson [42] pointed
out that in the presence of spin-orbit-coupling, one pairs
time reversed eigenstates rather than opposite spins, such
that the s-wave pairing BCS theory and Eq. (1) remain
valid. We find that in the case where the paired states
reside on a Dirac cone, this conclusion is violated due
to a matrix element effect, as recently found in quadratic
band touching semi-metals [43]. For more details see Ap-
pendix E.

II. BAND STRUCTURE OF BISMUTH

We start by quickly reviewing the single particle dis-
persion of the electron and hole bands. Bismuth has
rhombohedral crystal structure, which belongs to the
point group symmetry class D5

3d (R3̄m) [30]. Strong
spin-orbit coupling leads to three electronic pockets cen-
tered at the three L-points and one hole pocket revolving
around the T -point. Each one of the electron pockets is

descried by a Dirac Hamiltonian [29]

He(k) = [vzkzσ
z + v⊥ (kxσ

x + kyσ
y)] sx + ∆bgs

z , (2)

where z denotes the direction along the Γ−L line, and the
parameters appear in Table. I. Here σi and si are Pauli
matrices (we use the same notation as Wolff [29] for the
band notation). Bismuth is time reversal and inversion
symmetric. In this basis the symmetries are implemented
by T = i σy sz and P = sz, respectively. The Hamil-
tonian (2) is diagonalized by the unitary transforma-
tion Λ(k), i.e. Λ†(k)He(k)Λ(k) = diag {εk, εk,−εk,−εk}.
Here εk =

√
(vzkz)

2
+ v2
⊥(k2

x + k2
y) + ∆2

bg.

The hole band is located around the T -point (i.e. the
trigonal direction). Here the gap between the conduction
and valence bands is much larger than the chemical po-
tential, and therefore the dispersion of these carriers is
essentially parabolic

Hh(k) =
k2
z

2Mz
+
k2
x + k2

y

2M⊥
, (3)

where the z-direction points along the trigonal direction,
Mz = 0.72me and M⊥ = 0.07me [31].

The anisotropy in bismuth is fairly large and may have
important implications. However, in this work, we will
be interested in addressing the puzzles regarding the ap-
pearance of superconductivity in bismuth. Thus, for the
sake of simplicity, we will approximate the band structure
to be isotropic. The isotropic approximation is obtained

by considering a mean velocity v =
(
v2
⊥vz

)1/3
for the

Dirac electrons and a mean mass term M = (M⊥Mz)
1/3

for the parabolic holes. This is formally equivalent to
redefying the coordinates [31] and importantly preserves
the density of states at the Fermi level.

The parameters considered in this work for the electron
and hole bands appear in Table I.

III. THE DYNAMICALLY SCREENED
COULOMB INTERACTION

We consider the effects of the long-ranged Coulomb
interaction

V (iω, q) =
4πe2

ε(iω, q)q2
. (4)

where ω is a bosonic Matsubara frequency and the di-
electric constant is given by

ε(iω, q) = ε∞ −
4πe2

q2
[Πe(iω, q) + Πh(iω, q)] . (5)

Here ε∞ is the static dielectric constant coming, mainly,
from low momentum interband transitions. Πe,h are the
intraband polarizations of the electrons and holes, respec-
tively, which are calculated within the random-phase-
approximation (RPA) [see Eqs. (24,25) in Appendix A].
Note that here we have neglected the polarization due to
interpocket transitions, since it is only important at high
momentum.
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TABLE I. List of parameters used in this work.

Parameter Notation Value Reference
Density n 3× 1017 cm−3 [30, 44]
Total plasma frequency ωp 17 meV [28]

Total Thomas-Fermi momentum κTF
√
Nq2TF +Q2

TF

Static dielectric constant ε∞ 30 (isotropic approx.) see Eq. (8)

Unit cell volume Vuc 64 Å3 [30]
Debye temperature ΘD 118K [45]
Transition temperature Tc 0.5 mK [13]
Number of electronic pockets N 3 [30, 44]
Electron Fermi energy εF 30 meV [28, 30, 44]
Dirac velocities v⊥ , vz 8.1× 105 , 6.6× 104 m/sec [31, 44]

Average electronic velocity v =
(
v2⊥vz

)1/3
3.5× 105 m/sec

Dirac mass ∆bg 7.5 meV [29, 31, 44]
Average electron Fermi momentum kF 1.4× 108 m−1 [31, 44]
Electron density of states (per pocket per spin) ρ 9.2× 1018 eV−1 cm−3

Electron plasma frequency wp
√

4πe22Nρv2/3ε

Electron Thomas-Fermi momentum qTF
√

4πe22Nρ/ε
Hole Fermi energy EF 8.6 meV
Hole masses M⊥ ,Mz 0.07 , 0.72 me [30, 31, 44]

Average hole mass M =
(
M2
⊥Mz

)1/3
0.15 me

Average hole Fermi momentum KF 1.85× 108 m−1 [31, 44]
Average hole Fermi velocity VF 1.4× 105 m/sec
Hole density of states (per spin) R 3.5× 1019 eV−1 cm−3

Hole plasma frequency Wp

√
4πe22RV 2

F /3ε

Hole Thomas-Fermi momentum QTF
√

4πe22R/ε

A. Collective modes

As explained, in this paper we focus on the possibility
that electronic pairing in bismuth comes from the collec-
tive electronic modes, which set the scale of retardation
effects and open new pairing channels. The collective
modes are given by the zeros of the dielectric function (5).
In bismuth there is a significant difference between the
Fermi velocity of the holes and electrons. This leads to
the appearance of two longitudinal plasma modes [32, 34]:

1. The gapped plasmon

The first pole is the standard plasmon, which describes
a collective compression mode of total charge. It is ob-
tained in the limit ω � vq, VF q. In this case both the
polarizations of the electrons and the holes in Eq. (5) are
in the dynamic regime ε(iω, q) ≈ ε∞

(
1 + ω2

p/ω
2
)
, where

ωp =
√
N w2

p +W 2
p is the total plasma frequency,

wp ≡
vqTF√

3
; qTF ≡

√
8πe2ρ

ε∞
=

√
4α

π
kF , (6)

Wp ≡
VFQTF√

3
; QTF ≡

√
8πe2R

ε∞
=

√
4αδ2

k

πδv
kF

are the plasma frequencies and Thomas-Fermi momenta
of the electrons and holes, respectively, N is the number
of electron pockets, ρ = k2

F /2π
2v and R = K2

F /2π
2VF

are the electron and hole density of states per spin and
pocket, δk = KF /kF and δv = VF /v. Thus the total
plasma frequency, ωp, and the total Thomas-Fermi mo-

mentum, κTF =
√
Nq2

TF +Q2
TF can be written as

ωp = wp

√
N + δ2

kδv ; κTF = qTF

√
N + δ2

k/δv . (7)

The parameter

α =
e2

ε∞v
(8)

is the effective fine structure constant, which appropri-
ately quantifies the coupling strength in a Dirac disper-
sion. Plugging in the average velocity in Table I we
find that α = 6.2/ε∞. The corresponding plasma fre-
quency taken from Eqs. (6 and 7), is given by ωp =
2.9 vkF /

√
ε∞. To fix the plasma frequency to be equal

to the experimental measurement (ωp = 18 meV) we set
ε∞ = 30 [28], which corresponds to α = 0.2. We note
that there is uncertainty in this value because it depends
strongly on the assumption of isotropic bands. In reality
ε∞ is estiamted to be higher [46] and it is not clear what
is the effective coupling strength in the highly anisotropic
bands.
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FIG. 1. Schematic representation of the collective modes in
bismuth in the limit of small q. The two shaded regions (blue
and red) mark the particle continuum of the electrons and
holes, respectively. The onset of these regions occurs at the
lines defined by ω = vq and ω = VF q, respectively. The solid
black line is the gapped plasma mode, which at q = qc & ωp/v
enters the particle hole continuum of the electron pockets and
becomes over damped. The acoustic plasmon (black dotted
line) disperses linearly, ω = uq, and lies in the particle-hole
continuum of the electrons. When the ratio between the ve-
locities is small δv = VF /v � 1 this mode is weakly damped
and can mediate superconductivity. On the other hand as
the ratio δv increases, at a certain value of δv < 1, the acous-
tic plasmon pole disappears (see Fig. 2). The inset shows
the schematic band structure in bismuth with three slightly
doped Dirac pockets and a single hole pocket with larger mass
and smaller velocity.

The dispersion of the plasmon mode is schematically
presented in fig. 1 (solid black line). As can be seen at
q > 0 the mode weakly disperses, until at qc ∼ ωp/v
it crosses into the p-h continuum of the electron pock-
ets (marked by the shaded blue region in the figure)
where it becomes over damped. Therefore, there is a
limitation on the phase space for scattering by plasmons,
which becomes more important at weak coupling, where
qc < 2kF . The phase space constraint has important
implications on superconductivity since it reduces the
strength of the attractive interaction coming from the
plasmon mode (For more details on the limited phase
space of the plasmon see Appendix B).

2. The acoustic plasmon

The second pole is the acoustic plasmon [32, 35, 36]
observed at lower frequency vq > ω & VF q. This mode
describes an out-of-phase compression of the two charged
fluids, which does not affect any modulation in the total
charge. As a result it is neutral and is thus acoustic,
similar to the zero sound mode of a neutral Fermi liquid.
The main difference compared to a neutral Fermi liquid

is, however, that the mode is damped because it lies in
the p-h continuum of the electrons.

Here we also point out that in the limit of VF � v,
the hole serves as positive charge background and the
model becomes the ”jellium” model. In this case the
acoustic plasmon becomes the sound wave of the jellium
liquid [47]. The usual BCS theory of the exchange of the
acoustic phonon then applies, where the acoustic plas-
mon takes the place of the phonon. We will see later
that Bi is far from this limit.

To obtain the linear dispersion of the acoustic plasmon
we seek the zeroes of (5) near ω, q → 0 which are given
by the equation

f(z) = − ν

δv
f(z/δv) (9)

where z = ω/vq and f(z) = z
2 log

(
z+1
z−1

)
− 1. The so-

lution of equation (9), denoted by z = z0, depends on
two parameters: ν ≡ δ2

k/N and δv (see discussion below
Eq. (6) for definitions). If there exists a solution it is
always in the regime z < 1 and thus the l.h.s of Eq. (9)
contributes a non-trivial imaginary part, which leads to
damping of the mode reflected by Imz0 < 0. The general
solution can thus be written as

ω = uq = (u1 − iu2)q (10)

where u = vz0 and u1,2 are real positive numbers.
By solve Eq. (9) numerically we find that there exists

a solution of the form (10), however, not for any δv <
1. Namely, for a given value of ν there is a δv, above
which, the physical solution of equation (9) disappears.
For example, in Fig. 2 we plot the numerical solution
of Eq. (9) using the realistic values from Table I (giving
ν ≈ 0.55). We find that the solution exists only for δv <
0.45. Since the realistic parameters in Table I correspond
to δv ≈ 0.4, the acoustic plasmon pole exists within our
isotropic approximation, but is close to the critical value
for its disappearance. We also find that it is only weakly
damped in the whole range where it exists.

To gain more intuition on this mode we can also solve
for the acoustic plasmon in the limit of νδv → 0, where
the solution gives the known result [34]

u =

√
νvVF

3
− iπνVF

12
(11)

This corresponds to the limit of VF /v → 0 in Fig. 2,
where the real part goes to zero like

√
VF , while the imag-

inary part goes to zero linearly. We can also obtain the
effective electron coupling to the acoustic mode in this
limit by expanding the interaction (4) in the vicinity of
the mode

V (ω, q) ≈ 4πe2

ε∞Nq2
TF

[
1− (u1q)

2

(uq)2 − ω2

]
(12)

As noted earlier, this gives the same result as in the ex-
change of acoustic phonons in the jellium model, where
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FIG. 2. Numerical solution of the complex pole of the acous-
tic plasmon, z0 vs. the velocity ratio, δv = VF /v, obtained
from numerically solving Eq. (9) and using ν = 0.55 [which
corresponds to realistic parameters in Table I]. (a) The real
part of the solution, which gives the velocity of the acoustic
plasmon in units of v. The dashed magenta line is the the ap-
proximate expression (11). The red shaded region denotes the
on set of the p-h- continuum of the holes. As can be seen for
a constant ν increasing VF /v causes the pole to run into the
p-h continuum of the holes where the solution is lost (marked
by the black dot). (b) The imaginary part corresponding to
the damping rate of the acoustic plasmon. We find that this
mode is always weakly damped. The magenta dashed line is
the approximate expression (11).

the dimensionless coupling constant is given by λ =
ρV (ω = 0) ≈ 1/2N .

It is important to note that in what follows we do not
use the approximate form Eq. (12) to estimate Tc, or in
any other place in our calculations. We use the full RPA
vertex Eqs. (4, 5) which is dealt with numerically.

IV. SUPERCONDUCTIVITY

We now turn to discuss the possible pairing instabil-
ities due the collective modes of the electronic fluid in
bismuth. The frequency of these modes is higher than
the corresponding Fermi energy of the holes and there-
fore we focus on superconducting instabilities driven by
the electron pockets, which have a higher Fermi energy.
Thus the important role of the hole band in this model
comes from its contribution to the RPA polarization (5).

To investigate the instability due to the interaction
(4) we utilize the linearized Eliashberg equation (For a

detailed derivation see Appendix C)

∆̂(iω,k) = − Tc
L3

∑
ω′,k′

Mk,k′∆̂(iω′,k′)Mk′,k

ω′2 + [ε(k′)]
2 V (iω−iω′,k′−k)

(13)

where ∆̂(iω, k) is a 2×2 matrix representing the order pa-
rameter in the two-dimensional basis of occupied bands.

The main difference between standard Eliashberg the-
ory and Eq. (13) is the appearance of the rotation matri-
cesMk,k′ , which project into the band basis of the two oc-
cupied bands, and thus adds non-trivial momentum form
factors due to spin-orbit coupling. For simplicity, here,
we assume s-wave pairing, i.e. ∆̂(iω,k) = ∆(iω, k)1.
In this case, tracing over both sides of Eq. (13) the gap
equation assumes the form

∆(iω, k) = (14)

− Tc
2L3

∑
ω′,k′

Tr
[
Mk,k′Mk′,k

]
∆(iω′, k′)

ω′2 + [ε(k′)]
2 V (iω − iω′,k′ − k)

where

1

2
Tr
[
Mk,k′Mk′,k

]
=

1

2

(
1 +

v2k · k′ + ∆2
bg

εkεk′

)
(15)

This additional form factor is a consequence of spin-orbit
coupling in the Dirac bands and comes from the transfor-
mation of the density operator to the Bloch-band basis
(see Appendix C).

We also note that the form factor (15) can potentially
reduce Tc in the s-wave channel without breaking time-
reversal symmetry or modifying the density of states at
the Fermi level. For more details on this see Appendix
E.

A. s-wave superconductivity from the dynamically
screened Coulomb interaction

Let us now turn to the main focus of the current work
and consider the specific case of the screened Coulomb
interaction (4). As mentioned we consider, for simplicity,
s-wave pairing, in which case the linearized Eliashberg
equation (13) reduces to the form

Φ(iω, k) =
∑
ω′

∫
dk′Kω,ω

′

k,k′ Φ(iω′, k′) . (16)

where Φ(iω,k) = ∆(iω,k)/∆(0, kF ) The value of Tc is
obtained by finding an eigenvector of the kernel

Kω,ω
′

k,k′ ≡ −
ρTc
εF

Vs(iω − iω′, k, k′)
(ω′/εF )

2
+ (εk′/εF − 1)

2 (17)

which has unity eigenvalue. Here ρ = k2
F /2π

2v is the
density of states per spin and pocket and

Vs(iω−iω′, k, k′) ≡ (18)

1

2

∫ 1

−1

ds
1 + s

2
V
(
iω − iω′,

√
k2 + k′2 − 2kk′s

)
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is the interaction averaged over the solid angle between
k and k′ [including the form form factor (15) taken in
the limit vkF � ∆bg].

To make a comparison with standard Eliashberg the-
ory (see for example Ref. [48]) we artificially decom-
pose the interaction into two parts (note that we per-
form the calculation with the full vertex function (18),
and this decomposition is only for the sake of discussion)
ρVs(iω, k, k

′) = µ(k, k′)− λ(iω, k, k′) . where

µ(k, k′) = lim
ω→∞

ρVs(iω, k, k
′) (19)

is the instantaneous Coulomb repulsion and

λ(iω, k, k′) = ρVs(iω, ω
′, k)− µ(k, k′) (20)

is the retarded attractive interaction coming from the
collective modes of the electron gas. In Fig. 3 we plot
the attractive part (solid lines) of the interaction (20)
normalized by the fine structure constant α for different
values of |k − k′| (using the parameters in Table I. The
repulsive part (19), corresponding to the same values of
|k − k′|, and also normalized by α is plotted for com-
parison (dashed lines with corresponding colors). Here
the integration over solid angle in Eq. (18) is performed
numerically.

It is important to note that the total potential (18)
is repulsive for any Matsubara frequency ω. This is
the same in the conventional electron-phonon coupling,
where it is crucial to renormalize the high-frequency re-
pulsion, µ, to a much smaller µ∗, such that an effective
attraction is obtained.

Let us now compare the interaction terms Eqs. (19,
20), which originate from the electronic polarization (5),
with the case of phonon mediated interactions. First,
we note that the interaction diverges logarithmically as
k approaches k′, as opposed to the phonon case where it
is typically a constant. Thus, despite the weak coupling
constant (α < 1) the attractive term can reach reason-
ably high values. This is crucial for superconductivity in
the low density limit.

Second, the difference between the repulsion, µ(k, k′),
and the zero frequency limit of the attraction, λ(0, k, k′),
is weakly dependent on |k − k′| and is very small (it
is given by the angular average (18) over the statically
screened Coulomb interaction). This implies that at
small |k − k′| the strength of the retarded attraction
coming from λ(iω, k, k′) is almost as strong as the in-
stantaneous repulsion µ(k, k′). In this scenario, even a
small renormalization of the instantaneous repulsion at
frequencies higher than the plasma frequency is sufficient
to generate attraction. On the other hand, as opposed
to phonon superconductivity, the plasma frequency, ωp,
is of the same order as the Fermi energy, εF . Thus there
is a very small window of energies between εF and ωp
where this renormalization may occur.

It is also important to note that in the weak coupling
limit the form form factor (15) suppresses the repulsion
(19) more than it does to the attraction (20), and thus

FIG. 3. The attractive part (20) of the interaction (18) nor-
malized by α vs. frequency in units of the plasma frequency,
for different values of |k − k′| near the Fermi energy and for
the parameters in Table I. The dashed lines represent the in-
stantaneous repulsive part (19) for comparison and follow the
same color coding.

contributes to superconductivity. This is because the at-
tractive part is mainly coming form the plasmon pole
which exhibits a 1/q2 divergence. It is dominated by
small q scattering (i.e. k ' k′) and, in that limit the
matrix element in Eq. (15) becomes unity and does not
suppress the coupling constant. On the other hand the
screened repulsion coming from larger q gets suppressed
due to the angular dependence of (15).

B. Details of the numerical solution

We solve Eq. (16) numerically. First we dis-
cretize the momentum integral into 2Wk points k ∈
{k−Wk

, . . . , kWk
}, which are distributed around the

Fermi momentum. kWk
= kF + Λ is the high momen-

tum cutoff and Λ is taken to be Λ = 2kF . We note that
the value obtained for Tc is very weakly affected by the
value of the momentum cutoff which can also be set to be
equal to or smaller than kF . What is however a crucial
parameter is the density of points near the Fermi sur-
face. We control the density of points using a power law
distribution of points around k = kF

|ki − kF |
1

1+β − |ki−1 − kF |
1

1+β =
Λ

1
1+β

Wk

where β is the exponent defining the divergence of the
density of points near the kF (β = 0 corresponds to a
uniform distribution):

pk =
|k − kF |−β

(1 + β)
.

Here pk is the density of points. Similarly, we define a
set of Matsubara frequencies ω ∈ {ω0, . . . , ωWω

}, where
ω0 = πT is the lowest Matsubara frequency and the rest
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of the points are distributed according to

ω
1

1+γ

i − ω
1

1+γ

i−1 =
(D εF )

1
1+γ

Wω

where γ = 1/3 is the divergence exponent for the di-
vergence of Matsubara frequencies around zero pω =
ω−γ/(1 + γ) and D defines the cutoff in units of the
fermionic Fermi energy.

To obtain the transition temperature we reshape the
kernel in Eq. (17) into a (2WkWω × 2WkWω) and solve
for the eigensystem of this matrix [23]. Tc corresponds
to the point where the largest positive eigenvalue reaches
unity.

In Fig.[4.a] we plot a typical eigenvector obtained from
diagonlization of the kernel (17) as a function of fre-
quency and momentum, using β = 2, γ = 0.5, Wk = 20,
Wω = 16, Λ = kF /2, D = 5, T = 300 mK and α = 1.
In the bottom part of Fig.[4.b] we plot the same eigen-
vector vs. momentum for different frequencies. At high
frequency the gap function is negative and changes sign
as the frequency is reduced, consistent with Anderson-
Morel [1] type picture. However, as pointed out by
Takada (e.g. [23]), in this case the finite-frequency nega-
tive part of the solution, is sharply peaked at k = kF and
is much larger than the positive part at the lowest Mat-
subara frequency ω = πT . In the top panel of of Fig.[4.b]
we show a closeup of the bottom panel showing that at
small frequency the eigenvector becomes positive.

C. The transition temperature

In Fig. 5 we plot the transition temperature, Tc, vs.
the fine-structure constant, α, for three different values
of β = 0.5, 1 and 2. For comparison, the smallest dis-
tance between points corresponding to these values of
β is min |ki/kF − 1| = 0.013, 0.0025 and 0.0001, respec-
tively. To generate this plot we used Wω = 16, Wk = 14,
γ = 0.5, Λ = kF and D = 5.

We find that at higher values of α, Tc roughly follows
an exponential form Tc = B e−A/α (The exponential form
is plotted for comparison with A = 1.9 and B = 4K, see
dashed line). However, at lower values of α, Tc sharply
drops to zero at a value which depends on the density
of points near k = kF , β. Naively, this implies that
there is a minimal α for superconductivity. However,
since increasing the density of points near k = kF , β,
which is not a physical parameter, enhances the regime
where the exponential decay is observed, we argue that
it is also possible that the superconducting instability
exists for any small α. Numerically, however, we can
not obtain a solution at an arbitrarily low α. Using the
values of A = 1.9 and B = 4K, we find that the measured
Tc = 0.5mK in bismuth is obtained for α = 0.2, which is
consistent with our earlier estimate [see discussion below
(8)].

Here it is important to compare our results to the work
of Takada [23], which predicts a minimal rs for super-

(a)

(b)

FIG. 4. (a) The eigenvector solution of Eq. (16) as a function
of momentum and frequency for β = 2, γ = 0.5, Wk = 20,
Wω = 16, Λ = kF /2, D = 5, T = 300 mK and α = 1. (b)
Bottom: The same solution as a function of momentum for
different frequencies (increasing from top to bottom; the low-
est curve is ω = 4εF ). Top: Closeup on the lowest frequencies,
exhibiting a peak near k = kF . The dashed red line marks
zero, showing that the gap at ω = 0 is positive and changes
sign as the frequency is increased. Also note that it may
change sign as a function of momentum.

conductivity despite integrating up to a very high cutoff,
D > 500. The value of β = 0.5 corresponds to the small-
est density of points that Takada used in his work, which
captures accurately the strong coupling limit but not the
weak coupling one (as shown in Fig. 5). Therefore we
argue that his minimal rs for superconductivity is an ar-
tifact of the density of points that he chose. We also note
as opposed to Ref. [23], here there is also the heavy hole
band, which as we shall see, greatly enhances Tc in the
weak coupling limit.

Finally, we point out that here we have not used any
phenomenological parameter such as the parameter de-



8

β = 0.5
β = 1
β = 2

T
c 

[m
K

]

0 0.5 1 1.5 2
α

10-1

101

103

A e-B/α

D = 5

FIG. 5. The transition temperature Tc as a function of the
fine structure constant α for three different density of points
β = 0.5, 1 and 2 (corresponding to deep blue, light blue and
cyan, respectively) and using D = 5, Wk = 14, Wω = 16 and

γ = 0.5. The red (dashed) line is a fit using Tc = e−B/α, with
A = 4K and B = 1.9 for comparison. The yellow corresponds
to α = 0.2 and Tc = 0.5 mK. Plugging α = 0.2 in Eq. (6) gives
ωp = 18meV, which is very close to the experimental value
[28].

T
c 

[m
K

]

2 4 6 8 10
D

10-1

101

103

β = 2
α = 0.75

FIG. 6. The transition temperature vs. the cutoff D. In this
plot we used α = 0.75, Wk = 14, Wω = 16, γ = 0.5 and
β = 2.

scribing the renormalization of the Coulomb repulsion
in conventional Eliashberg theory, µ∗ [48]. However, we
have used a high energy cutoff Ω = DεF . We find that
we always need to use D > 1 (i.e. to integrate to energies
higher than εF ) to find an instability. Since the processes
taken into account in the Eliashberg theory (16) are not
necessarily the most dominant contributions in this limit,
D should be regarded as an (implicit) phenomenological
parameter, equivalent to µ∗. To get a better understand-
ing of its effect on Tc we plot the transition temperature
as a function of D in Fig. 6. Here we have used α = 0.75,
Wk = 14, Wω = 16, β = 2 and γ = 0.5. As can be seen,
increasing the cutoff D enhances Tc exponentially.

β = 2

T
c 

[m
K

]

0 0.5 1 1.5 2
α

10-1

101

103 D = 5

3 x el & holes

3 x el

1 x el

FIG. 7. The transition temperature Tc vs. the fine structure
coupling constant, α for three different cases: (i) with three
electron pockets (N = 3) and the hole pocket, (ii) only the
three electron pockets and (iii) just a single electron pocket
(N = 1).

V. DISCUSSION

We now turn to discuss the results. In the previous
section we have presented evidence for a weak instability.
To understand the role of the multiple bands in bismuth
on superconductivity we plot the transition temperature,
Tc, vs. the fine-structure constant, α, for three different
cases (see Fig. 7): (i) with three electron pockets and the
single hole pocket, (ii) only three electron pockets and
(iii) only, a single electron pocket. By comparing the
three, we find that in the weak coupling limit the hole
band enhances Tc, much more than the multiplicity of
electron bands does. On the other hand, for high α the
transition temperature reduces as we increase the number
of bands.

The strong influence of the holes at weak coupling may
come from the existence of the additional acoustic plas-
mon mode [33, 37–41]. To investigate the role of the
acoustic plasmon we calculate the dependence of Tc on
the velocity ratio δv = VF /v in Fig. 8. We find that
the transition temperature decreases with increasing δv.
However, as shown in Fig. 2. (a) above a critical value
of δv = 0.45, the solution of the acoustic plasmon no
longer exists. Nonetheless, the dependence of the transi-
tion temperature on δv is smooth, and no special feature
is observed at that point. Therefore, we conclude that
the acoustic plasmon is not the main driving force in the
large enhancement of Tc at weak coupling (shown Fig. 7).

The origin of this large enhancement becomes clear
when considering the averaged interaction of (18) in the
static limit. In Fig. 9 we plot the interaction (18) for δv =
0.4, 0.01, 10−4 and for the case where there is no hole
band. As can be seen the main difference between the
curves is the saturation value in the static limit, which
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103

101

10-1

0.2 0.4 0.6 0.8 1

α = 0.75 D = 5 β = 2

VF / v

T
c 
[m

K
]

FIG. 8. The transition temperature, Tc, vs. the velocity
ratio δv = VF /v for α = 0.75, β = 2 and D = 5. The red
dot represents the value of δv = 0.4 which corresponds to the
parameters in Table I. The black dot corresponds to the point
where the acoustic plasmon pole disappears (see Fig. 2. a).

can be estimated to

ρVs(0, k, k
′) =

q2
TF

8k2
F

log

[(
1− κ2

TF

4k2
F

)
log

(
1 +

4k2
F

κ2
TF

)
− 1

]
(21)

This value monotonically decreases with increasing κTF
[defined in Eq. (7)]. Whereas the high frequency limit
is the same in all cases. This implies that in all four
cases the instantaneous repulsion (19) is the same. On
the other hand, by definition, when the the saturation
value at low frequency is larger it implies that (20) is
smaller. Thus, in the case where there is no hole band
the saturation value is higher because the contribution of
the hole band to κTF is vanishing, i.e. QTF = 0, which
implies that the overall attractive interaction is weaker.

The reason the hole band is so much more effective in
this enhancement than the electrons (see Fig. 7) is that at
small δv the holes greatly enhance κTF while almost not
modifying the total plasma frequency ωp ∝

√
N + δ2

kδv
[see Eq. (6, 7)]. As we have already established, larger
κTF , implies greater attraction. However, it is also cru-
cial that the hole band does not enhance the plasma fre-
quency. The reason is that when the plasma frequency
is enhanced it reduces the range of frequencies between
the cutoff Ω = DεF and ωp where the repulsive part (19)
can be renormalized.

As mentioned earlier, in the limit δv � 1 the acoustic
plasmon becomes the acoustic phonon in the ”jellium”
model. We can see clearly the retardation effect below
the scale of the acoustic plasmon frequency. Note that
for the realistic value of velocity ratio, δv = 0.4, no such
separation of scales is visible.

A. Experimental consequences

So far we have argued that the attractive interaction in
bismuth is generated only from the dynamically screened

FIG. 9. The averaged interaction (18) vs. frequency for three
values of δv = VF /v = 0.4, 0.01, 10−4 and the case where
the hole band is absent. Here we took |k − k′| = 0.25kF . As
can be seen Tc goes down smoothly with increasing δv around
this point. In the case of δv = 0.01 and 10−4 the retardation
effect of the acoustic plasmon i clearly seen at ω ∼ 0.1 and
10−2 ωp, respectively.

Coulomb interaction. In this section we discuss the ex-
perimental consequences of this prediction.

First, we note that the mass of the bismuth atom did
not play any role in our theory. Therefore, the obser-
vation of any isotope effect will falsify our theory. It
is important to note that measuring the isotope effect
in bismuth is challenging due to the large atomic mass.
The four stable isotopes of bismuth are Bi207, Bi208, Bi209

and Bi210m, which allows a variation of more than 1 % in
the mass. The accuracy of the measurements is close to
this value and hopefully a conclusive measurement can
be done.

Another possible effect is the appearance of a resonant
spectral feature in the tunneling density of states above
the superconducting gap [49]. This is the fingerprint of
a resonant plasmon excited by the tunneling electron,
and will therefore appear at the plasma frequency [27]
and is expected to change when going through the transi-
tion. Such a feature has been observed in optical infra-red
reflectivity measurements performed at higher tempera-
tures [28], signaling the strong electron-plasmon coupling
in bismuth.

Finally, according to our predictions the density of
states of the holes enhances Tc. It would be interesting
to see whether the application of uniaxial strain, which
enhances the hole mass, can enhance Tc.

VI. CONCLUSIONS

We have studied superconductivity in Bismuth. We ar-
gued that at low carrier concentration only long-ranged
interactions are capable of causing such an instability.
In the absence of any experimental evidence of a crit-
ical point we investigated the more likely scenario in
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which the dynamically screened Coulomb repulsion gives
rise to an effective retarded attraction on the energy
scale of the longitudinal plasma oscillations. We used
an approximate isotropic band structure and the random
phase approximation for the screened Coulomb interac-
tion. Within these approximations we found that there
is a weak coupling instability.

The transition temperature is greatly enhanced by the
existence of a heavy hole band. We showed that this en-
hancement is due to the large mass of the holes, which al-
lows for an enhancement of the static screening (Thomas-
Fermi) without enhancing the plasma frequency. We
showed that Tc is not dramatically decreased when the
acoustic plasma mode is absent. Therefore, we concluded
that it is not the main contributor to attractive interac-
tions in bismuth.

Interestingly, we found that the superconducting insta-
bility found by Takada [23] can be extended to lower cou-
pling strength by enhancing the density of mesh points
near the Fermi surface. However, we still observed a
minimal coupling strength for the instability. Thus, an
interesting question that remains open, but is much mo-
tivated by our study, is whether an instability exists at
arbitrarily weak coupling?

In this work we have focused on s-wave superconduc-
tivity. However, as pointed out by Refs. [15, 16, 23, 24]
when the attractive interaction is long ranged (small q
scattering) the coupling strength in the higher angular
momentum channels is comparable to the s-wave chan-
nel. In this scenario the symmetry of the order parameter
is mainly dictated by the short ranged interactions which
are not captured by Eq. (4). Therefore, we conclude that
one can not rule pairing of higher angular momentum
channels in bismuth.

Another interesting product of our work is that we find
that when rotating the band basis to the Dirac bands and
projecting to the occupied states an additional form form
factor appears in the Eliashberg equation. This form fac-
tor aids superconductivity by suppressing the repulsion
(19). Interestingly, we have also shown that this fac-
tor can affect Tc in the s-wave channel without breaking
time-reversal symmetry, depending on the ratio between

the Dirac energy and the mass gap, vkF /∆bg. Therefore,
the case of a Dirac cone goes beyond what was consid-
ered by Anderson in his original theory [42] and opens
the question, what is the effect of disorder in the Dirac
mass, and other Dirac bilinears, on superconductivity in
semimetals?

The same Anderson’s theorem, concerning the effect
of disorder on Tc, also does not hold in this case because
of the strong 1/q2 dependance of the attractive interac-
tion. The reason here is that disorder strongly effects
small angle scattering, causing smearing of the scatter-
ing amplitude over a wider window of momenta. Thus,
even the s-wave channel can be significantly affected by
chemical potential disorder. Therefore, we point out that
the influence of disorder on the transition temperature
in plasmonic superconductors is not the same as in con-
ventional superconductivity, and therefore should not be
used to infer the symmetry of the gap without further
study.
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A. ELECTRON AND HOLE POLARIZATIONS

In this section we write the explicit formula for the
electron and hole polarization appearing in the dielectric
function Eq. (5). These polarizations are calculated from
the standard formulae

Πe(iω, q) = − 1

2Ω

∑
k

nF (εk)− nF (εk+q)

−iω + εk − εk+q

(
1 +

ε2k + v2k · q
εkεk+q

)
(22)

Πh(iω, q) = − 1

Ω

∑
k

nF (Ek)− nF (Ek+q)

−iω + Ek − Ek+q
(23)

Note the additional Berry-curvature form factors in Πe. We note that the form factor appearing in the first equations
is the same as (15). Neglecting the small band mass, ∆bg, of the electron pockets, the exact formula for these



11

polarization bubbles is given by

Πe(iω, q) = 2Nρ



1

12

[
3ω̃2 + 8q̃2 − 36

3
− ω̃

q̃

(
ω̃2 + 3q̃2 − 12

)
arctan

q̃

ω̃

]
; if q̃ < 1

1

72q̃

[
6ω̃2 + 12q̃ (q̃ − 2)− 44 + 3ω̃

(
ω̃2 + 3q̃2 − 12

){
tan−1 q̃ − 2

ω̃
− tan−1 q̃

ω̃

}
; otherwise

+ 6
(
4 + (q̃ − 3) q̃2 − 3ω̃2

)
tan−1

(
2− 2q̃

2 + q̃ (q̃ − 2) + ω̃2

)] (24)

and

Πh(iω, q) =
2R

16

8− 4Q̃2 − Q̃4 + W̃ 2

Q̃3
log

1− 8Q̃3

Q̃2
(

2 + Q̃
)2

+ W̃ 2

+ 2i
W̃

Q̃
log

(
W̃ 2 − 4Q̃2 + Q̃4 + 4iQ̃W̃

W̃ 2 − 4Q̃2 + Q̃4 − 4iQ̃W̃

)
(25)

where ρ = k2
F /2π

2v, R = K2
F /2π

2VF are the density
of states per spin and pocket, ω̃ = ω/εF , q̃ = q/kF ,

W̃ = ω/EF and Q̃ = q/KF .

B. COLLECTIVE MODES IN A TWO FLUID
MODEL

In this section we derive the effective interaction in
the vicinity of the collective modes of the electron-hole
plasma. In this case, where there are two fluids with sig-
nificantly different Fermi velocities, there are two fermi-
surface volume modes: the gapped plasmon and the
acoustic plasmon. These modes are obtained by seek-
ing the zeros of the dielectric function (5), i.e. by solving
the equation

q2 = Nq2
TFΠe(ω, q) +Q2

TFΠh(ω, q) . (26)

To get an intuitive picture, however, it will be sufficient
to focus on the limit of q � kF where Eq. (26) reduces
to

q2

Nq2
TF

= f(z) +
ν

δv
f(z/δv) (27)

where ν ≡ δ2
k/N , z = ω/vq, δv = VF /v and f(z) =

z
2 log

(
z+1
z−1

)
− 1.

1. The gapped plasmon

The first mode, the gapped plasmon, occurs in the
high frequency regime ω � vq, VF q, where the elec-
tron and hole polarization are deep in the dynamic
limit Πe,h(iω, q) ∝ q2/ω2. Therefore we find a solu-

tion of Eq. (27) at ω = ωp where ωp =
√
w2
p +W 2

p ,

wp =
√
N/3 v qTF and Wp = δv

√
ν ωp. The resulting

interaction Eq. (4) assumes the form

V (ω, q) ≈ 4πe2

εq2

[
1−

ω2
p

ω2
p − ω2

]
(28)

Plugging in realistic parameters for the averaged ve-
locities and Thomas-Fermi momenta, v, VF , qTF and
QTF , we find that to match the experimental value of
the plasma frequency, ωp = 18 meV, we need ε ≈ 30.
(Note the significant deviation from the measured dielec-
tric constant, ε = 90 [46] which is due to the isotropic
approximation).

Eq. (28) is known as the plasma pole approximation,
which captures the position of the plasma pole in fre-
quency space but not the effective electron-plasmon cou-
pling strength. The main reason for this inaccuracy is
that at higher momentum, q > qc, the plasmon runs
into the p-h continuum of the electron bands and be-
comes strongly damped (see Fig. 1). Denoting that
qc & ωp/v [2] we can obtain a better approximation for
the plasmon coupling by limiting the the phase space of

V (iω, q) ≈


4πe2

ε∞ (q2 + κ2
TF )

; if q > ωp/v

4πe2

ε∞q2

[
1− α(q)

ω2
p

ω2
p − ω2

]
; otherwise

(29)
where α(q) = κ2

TF /(q
2 + κ2

TF ) interpolates to the value
of the screened Coulomb interaction in the static limit
ω → 0.

From Eq. (29) we see that the plasmon response is
observed in a window of scattering angles on the Fermi
surface defined by cos θk,k′ > 1− ω2

p/2ε
2
F .

2. The acoustic plasmon

The second mode, the acoustic plasmon, is observed at
lower frequencies vq > ω > VF q. This limit lies within
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the p-h continuum of the electrons (see Fig. 1), which
means that the function f(z) non-zero imaginary part
Imf(z) = πz/2 and therefore we must seek a solution of
Eq. (27) in the complex plane z = z0 [32, 34], such that

vz0 = u1 + iu2 (30)

and where u1 and u2 are real positive numbers and where
δv < u1 < 1.

In Fig. 2 we plot the numerical solution of the damped
pole vs. values the velocity ratio δv. The shaded region
in panel (a) marks the onset of the particle hole contin-
uum of the holes (where Imf(z/δv) 6= 0). Thus, in this
regime there is no longer a solution. Note that using the
parameters in Table I we get ν = 0.5 and δv = 0.4.

We find that the acoustic plasmon, for these param-
eters, is weakly damped. The velocity of this mode in-

creases with δv. However, for δv > 0.45 the solution dis-
appears and the only solution of Eq. (27) is the gapped
plasmon.

We can also obtain an analytic solution of the acoustic
plasmon in the limit of δv � 1. In this case Eq. (9)
assumes the form

z2

(
1− iπz

2

)
=
δvν

3

In the limit of small νδv � 1 this gives the well known
result[34]

z =

√
νδv
3

+ i
πνδv
12

(31)

C. ELIASHBERG THEORY

A. The action in Nambu space

As a preparatory step for the Eliashberg theory we transform the Hamiltonian to an action in Nambu space.
Comparing the plasma frequency with the Fermi energy of the holes and electrons in bismuth (Table. I) we find that
the plasmon is only retarded with respect to the electrons. Therefore we will focus on the electron pockets here.

1. Free part

A single Dirac pocket, Eq. (2), is written in Nambu space as

S0 =
1

2

∑
k,ω

Ψ†k

(
−iω +He(k)− εF 0

0 −iω −H∗e (−k) + εF

)
Ψk (32)

where the Nambu spinor are given by

Ψk =

(
ψk

ψ†−k

)
.

and ψk = (ψk,1, ψk,2, ψk,3, ψk,4)
T

is written in the notations of Re. [29]. The Hamiltonian is time-reversal symmetric,
and therefore T H∗(−k)T −1 = H(k), where T = i σy sz. Therefore, the free action Eq. (32) it is diagonalized by the
unitary matrix

Λ̂(k) =

(
Λ(k) 0

0 T −1Λ(k)

)
= [Λ0(k) + Λz(k)τz] . (33)

Here Λ(k) is the 4 × 4 matrix which diagonalizes He(k) (i.e. Λ†(k)He(k)Λ(k) = diag {εk, εk,−εk,−εk}), Λ0(k) ≡
1
2

(
1 + T −1

)
Λ(k), Λz(k) ≡ 1

2

(
1− T −1

)
Λ(k) and τ i represent Pauli matrices in Nambu space. The free part of the

action, written in the band basis is therefore

S0 =
1

2

∑
k,ω

C†kα [−iω + (Dαα(k)− εF ) τz]Ckα (34)

where α runs over spin and band basis,

Ck = Λ̂†(k)

(
ψk

ψ†−k

)
and Ψk = Λ̂(k)

(
ck
c†−k

)
.
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2. Interaction part

We now turn to write the Coulomb interaction in the Nambu basis. We start from

SI =
T

2L3

∑
q,k,k′

∑
ν,ω,ω′

V (iν, q)

(
1

2
Ψ†k+qτ

zΨk

)(
1

2
Ψ†k′−qτ

zΨk′

)
(35)

where L3 is total volume.
It is useful to note that the density in Nambu space transforms to the band basis as follows

Ψ†k+qτ
zΨk =

[
C†k+qΛ̂†(k + q)

]
τz
[
Λ̂(k)Ck

]
= C†k+qM(k,k + q)τz Ck

where

M(k,p) = Λ†0(p)Λ0(k) + Λ†z(p)Λz(k) = Λ†(p)Λ(k)

Therefore, the interaction assumes the following form when written in the band basis

SI =
T

8L3

∑
q,k,k′

∑
ν,ω,ω′

Qαβ;γδ(iν,k,k
′, q) C†k+qατ

zCkβ C
†
k′−qγτ

zCk′δ (36)

where

Qαβ;γδ(iν,k,k
′, q) = V (iν, q)Mαβ(k,k + q)Mγδ(k

′,k′ − q) (37)

is a rank 4 tensor which obeys the equality

Qαβ;γδ(iν,k,k
′, q) = Qγδ;αβ(iν,k′,k,−q) (38)

We also note that Γ is an even function of iν.

3. Projection to the occupied bands

Since only two bands are occupied in each pocket we restrict the analysis to those bands. In the band basis this a
trivial task: We simply restrict the sum over band indices α, β, γ, δ to the hole bands. Therefore they now become
indices running over two hole bands which are related to each other by TRS and are denote by α = ±.

B. Derivation of the gap equation

We now turn to derive the Eliashberg theory for superconductivity due to the interaction Eq. (4). We first introduce
the definition of the self-energy

Σ(iω, k) = G−1
0 (iω,k)− G−1(iω,k) (39)

where G−1
0 (iω,k) = −iω + ε(k)τz is the bare Green’s function in the band basis and G(iω,k) is the dressed one. The

self energy is then given by

Σβγ(iω,k) = − T

2L3

∑
ω′,k′

∑
α,δ

τzGδα(iω′,k′)τz
[
Qαβ;γδ(iω − iω′,k,k′,k′ − k) +Qγδ;αβ(iω′ − iω,k′,k,k − k′)

]
(40)

= − T

L3

∑
ω′,k′

∑
α,δ

τzGδα(iω′,k′)τz Qαβ;γδ(iω − iω′,k,k′,k′ − k)

where the two terms on the r.h.s. of the first line come from two possible contractions of the interaction Eq. (36)
with q = k′ − k (note that here each one of these contractions can be taken in two equivalent ways due to the fact
that we have artificially doubled the the number of fields when going to Nambu space). In the latter diagram one
needs to interchange α, β with γ, δ and k with k′. In the transition to the second line we have used Eq. (38).

For simplicity we will neglect dispersion and mass cor- rections (These are typically important for extremely ac-
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curate calculation of the gap in the limit of intermediate
coupling strength). In this case we have

Σ(iω,k) =

(
0 ∆̂(iω,k)

∆̂(iω,k) 0

)

where ∆̂(iω,k) = ∆0(iω,k) + d(iω,k) · σ.

For simplicity we assume the gap function is well de-
fined under inversion, that is ∆̂(iω,−k) = ±∆̂(iω,k)
(Note that in Bismuth does ot have inversion symmetry

and therefore, in general, one needs to consider a more
generic gap function). We can consider two distinct cases:
even parity, where ∆0(iω,k) 6= 0 and d(iω,k) = 0 or odd
parity, where ∆0(iω,k) = 0 and d(iω, k) 6= 0. In this case
we can write

τzG(iω,k)τz = − iω + ε(k)τz − ∆̂τx

ω2 + ε2(k) + |∆̂(iω,k)|2

where |∆̂(iω,k)| = |d(iω,k)| for odd parity and is triv-
ially defined for even parity. Therefore

∆̂βγ(iω,k) = − T

L3

∑
ω′,k′

Mγδ(k
′,k)∆̂δα(iω′,k′)Mαβ(k,k′)

ω′2 + ε2(k′) + |∆̂(iω′,k′)|2
V (iω − iω′,k′ − k) (41)

C. Estimation of the transition temperature

To estimate the transition temperature we linearize Eq. (13), i.e. we neglect the ∆ dependence in the denominator.
We also consider, for simplicity, a s-wave gap function. In this case we have

Mγδ(k
′,k)∆̂δα(iω′,k′)Mαβ(k,k′) =

1

2

(
1 +

k · k′

k2

)
δβγ

Note that here we have normalized the matrices such that Tr
[
∆̂†(k)∆̂(k)

]
= 1. Taking the sum over momentum to

an integral and performing the integral over the solid angle we obtain

∆(iω, x) = −ρTc
4εF

∑
ω′

∫ ∞
0

dx′x′2
∆(iω′, x′)(

ω′

εF

)2

+ (x′ − 1)
2
Vs(iω − iω′, x, x′) (42)

where Vs is given by

Vs(iω − iω′, x, x′) ≡
1

2

∫ 1

−1

dγ (1 + γ)V
(
iω − iω′, kF

√
x2 + x′2 − 2xx′γ

)
(43)

D. RULING OUT THE PHONON MECHANISM
FOR SUPERCONDUCTIVITY

Throughout this paper we have only considered
Coulomb interactions, neglecting all possible local inter-
actions. The argument was that the density of states
in bismuth is too low, such that local interactions are
negligible. In this section we elaborate on this point.

Let us first consider the standard electron-phonon cou-
pling to the longitudinal acoustic phonon considered for
conventional superconductors [50]

HLA
el−ph =

∑
k,q

(−iq)D√
2ρmωq

(
bq + b†−q

)
ψ†k+qψk , (44)

where ωq = vsq is the dispersion of the phonon branch,
vs = 1790 m/sec is the sound velocity, ρm = 10 g/cm3

is the mass density and bq, b
†
q are the phonon creation

and annihilation operators, respectively. D is the defor-
mation potential, which is typically of order 5 eV and
in Bismuth has been estimated to be 8 eV, at most [51].
The resulting phonon-mediated interaction in Matsubara
space is then given by

VLA(iω, q) =
D2q2

ρm

1

ω2 + ω2
q

(45)

From this, we can estimate the coupling strength by tak-
ing the zero frequency limit of the interaction times the
density of states in Table I. We find that

λh =
RD2

ρmv2
s

≈ 0.004 ; λe =
ρD2

ρmv2
s

≈ 0.001 (46)

which corresponds to a transition temperature, Tc =
ΘD exp [−1/λ], which is much lower than 10−100 K. Since



15

Eq. (46) is independent on q we may is also roughly es-
timates the coupling to the longitudinal optical branches
by extrapolating q to the zone boundary.

It is important to note two additional factors that re-
duce the effectiveness of the attractive interaction Eq.
(46). First, we did not take into account the matrix el-
ement effect Eq. (15), which will further reduce λ in the
electron bands. The second is that we have neglected
any repulsion coming from the Coulomb interaction (4),
which will be poorly screened in the low density limit
and will completely overwhelm the small attraction com-
ing from these phonons.

We also find evidence to rule out the phonon mecha-
nism in bismuth based on recent density functional the-
ory (DFT) calculations [52]. In this study the author
studied superconductivity in YPtBi, which is character-
ized by a density of 2×1018 cm−3 and a density of states
5×1019eV−1cm−3 (Comparing with Table I the density of
states is comparable to that in bismuth). He ignored the
polar nature of the phonons and used a mesh of 5×5×5
and 10× 10× 10 for the phonon and electron dispersion,
which is clearly too small because the grid must be dense
on the scale of kF , nevertheless he found the coupling
constant is λ = 0.02 ± 0.02. Since the electron phonon
coupling in YPtBi is not anomalously small we conclude
that these calculations rule out the possibility of non-
polar phonon superconductivity at such low density, in
agreement with the early results of Ref. [2].

We can also estimate the coupling constant λ based
on the superconducting states observed in amorphus bis-
muth below Ta = 6K [53]. The electronic density is
∼ 2 × 1022 cm−3, thus we estimate the density of states
ρa ≈ 1.6 × 1021eV−1cm−3 and the phonon mediated in-
teraction to be V0 ≈ 1/ (ρa log ΘD/Ta) ≈ 3 eVVuc, where
Vuc is the unit cell volume. Assuming that the short
range physics of the electron phonon coupling does not
change dramatically in crystalline bismuth we estimate
λe = ρV0 ≈ 0.002 and λh = ρV0 ≈ 0.007. Again, too
small to be relevant for superconductivity.

Finally, it is also important to point out that in spite of
the very low Tc in bismuth the coupling constant can not
be smaller that λ = 0.08. Inverting the density of states
and assuming a general local interaction of the form

HBCS = −V0

∑
k,k′

ψ†kψ
†
−kψ−k′ψk′ (47)

and taking V0 = (ρ log ΘD/Tc)
−1 we find that the phonon

mediated interaction must be at least V0 ≈ 135 eVVuc.
Thus, when interpreting the attractive interaction in bis-
muth as local, with a typical crystalline length scale, it
takes an unphysically large value indicting that super-
conductivity does not come from local interactions.

E. MATRIX ELEMENT MODIFICATIONS OF
THE BCS FORMULA FOR Tc

The additional form factor (15) has an important ef-
fect on superconductivity, regardless of the pairing mech-
anism. To see this, let us consider the constant attrac-
tive interaction that BCS considered in their original pa-
per (i.e. Eq.(47), which corresponds to V (iω − iω′,k −
k′) = −V0Θ(ωD−|ω|)). Without spin-orbit coupling the
M(k,k′) matrices become trivial and Eq. (13) reduces to
(for s-wave pairing)

1

ρV0
=

∫ ωD

Tc

dω

|ω|
(48)

where ρ = k2
F /2π

2v is the electronic density of states per
pocket and spin. Note that we have made the assumption
ωD � εF . The corresponding transition temperature is
given by Eq.(1). In contrary, within the Dirac dispersion,
where spin orbit coupling is present, we find two crucial
differences:
(i) First we find that the odd parity pairing channel [of

the form ∆̂(k) = −∆̂(−k)], may also have a finite tran-
sition temperature in spite of the structureless interac-
tion assumed by BCS. This is contracts to the case of
no spin-orbit coupling, where one finds that the transi-
tion temperature to an odd-parity state is strictly zero.
This origin for this difference is the matrices Mk,k′ in
Eq. (13) which encode the channel’s parity into non-
trivial momentum dependent form factors. Note that for
odd-parity pairing ∆(iω,k) is proportional to a sum of
the Pauli matrices and therefore the factor (15) takes a
different form.
(ii) Second, we find that when averaging (15) over the
solid angle between k and k′ the second term in the l.h.s.
averages to zero. When ∆bg = 0 Eq. (15) gives a factor
of 1/2 reduction of the coupling constant. For finite ∆bg

we find (for s-wave pairing)

Tc = ωD exp

− 1

ρV0

2 + 2
(
vkF
∆bg

)2

2 +
(
vkF
∆bg

)2


 (49)

Thus, in the parabolic limit vkF � ∆bg the transition
temperature reduces to Eq. (1). However, in the rela-
tivistic limit vkF � ∆bg the coupling constant is reduced
by a factor of 1/2 and consequently Tc is reduced expo-
nentially. Note that here we have assumed a constant
density of states. Thus the parameter ∆bg/vkF contin-
uously tunes between Eq. (1) and the much suppressed
transition temperature Tc = ωD exp [−2/ρV0].

The latter is in sharp contradiction to the conven-
tional wisdom based on Anderson’s [42] notion of pairing
time reversed states which states that any time-reversal-
symmetric perturbation that does not modify the density
of states also does not modify the transition temperature.
The origin of the contradiction is the projection to the
occupied bands, which was not considered as a possibil-
ity in Ref. [42]. Anderson used the completeness of eigen
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states to prove that the transformation from one eigen
basis to the other does not modify the matrix element
in the s-wave channel. However, the action of projection
violates the completeness of the basis and allows to get
an overlap smaller than one.

A similar matrix element effect has been discussed in
detail in Ref. [43], where superconductivity in a quadratic

band touching point has been considered. It is found that
the suppression of the s-wave channel is maximal, i.e.
the form factor (15) is equal to 1/2 as long as the band
touching point is not gapped. Note that the same applies
to Dirac semi-metals, namely in the case of ∆bg = 0
the form factor (15) becomes equal to 1/2 after angular
averaging.
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Physical Review Letters 112, 207002 (2014).

[12] X. Lin, Z. Zhu, B. Fauqué, and K. Behnia, Physical
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