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The fully spin polarized composite fermion (CF) Fermi sea at half filled lowest Landau level
has a Fermi wave vector k∗F =

√
4πρe, where ρe is the density of electrons or composite fermions,

supporting the notion that the interaction between composite fermions can be treated perturbatively.
Away from ν = 1/2, the area is seen to be consistent with k∗F =

√
4πρe for ν < 1/2 but k∗F =

√
4πρh

for ν > 1/2, where ρh is the density of holes in the lowest Landau level. This result is consistent
with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi
wave vector of the spin-singlet CF Fermi sea (CFFS) at ν = 1/2, for which particle-hole symmetry
is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the

Fermi wave vectors for up and down spin CFFSs at ν = 1/2 are consistent with k∗↑,↓F =

√
4πρ↑,↓e ,

where ρ↑e = ρ↓e = ρe/2, which implies that the residual interactions between composite fermions
do not cause a non-perturbative correction for non-fully spin polarized CFFS either. Our results
suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are

given by k∗↑F =

√
4πρ↑e and k∗↓F =

√
4πρ↓e .

PACS numbers: 73.43.-f

I. INTRODUCTION

The emergence of a Fermi sea at half filled Landau level
(LL)1–10 is remarkable given that the original Hamilto-
nian has no kinetic energy. Its appearance is a conse-
quence of the formation of composite fermions11,12, which
experience, on average, no magnetic field at filling factor
ν = 1/2. In recent years, accurate determination of the
Fermi wave vector of composite fermions from commen-
surability oscillations at and near half filled Landau level
(LL)13–17 has shed important new light into the physics
of the composite fermion (CF) Fermi sea. At ν = 1/2, the
measured Fermi wave vector of composite fermions, de-
noted by k∗F, is found to be k∗F =

√
4πρe, consistent with a

fully spin polarized Fermi sea of composite fermions with
density ρe. Slightly away from ν = 1/2, the CF Fermi
wave vector has been found to be consistent with that of
the minority charge carriers in the lowest LL (LLL)14,
i.e., k∗F =

√
4πρe for ν < 1/2 and k∗F =

√
4πρh for

ν > 1/2, where ρh is the density of holes in the LLL.

The dimensionless quantity k∗F`, where ` =
√

~c/eB is

the magnetic length, is given by k∗F` =
√

2ν for ν < 1/2

and k∗F` =
√

2(1− ν) for ν > 1/2.

This experimental observation has put focus on the
following paradox. At first glance, the CF theory seems
to offer two distinct choices for any given filling fac-
tor. The state can be described in terms of composite
fermions formed from binding of vortices to electrons,
which have the same density as electrons, namely ρe. Al-
ternatively, the state can be described in terms of com-
posite fermions formed from binding of vortices to holes
in the LLL, which have the density ρh. Are these two dif-
ferent states of matter? This point of view has been taken
in Ref.18, which investigates the consequences of a spon-

taneous breaking of the particle-hole (PH) symmetry in
the LLL. However, numerical calculations strongly sug-
gest that, in spite of the seemingly different physics, the
states formed from composite fermions made of electrons
and composite fermions made of holes are ultimately dual
descriptions of the same state. For example, the CFFS
at ν = 1/2 constructed from composite-fermionizing elec-
trons has been found to be essentially identical to that
constructed from composite-fermionizing holes19. As an-
other example, the states at ν = (n + 1)/(2n + 1) can
be constructed either as ν∗ = n of composite fermions
formed from holes or ν∗ = n + 1 of composite fermions
made of electrons (in a negative magnetic field); both
of these descriptions produce identical quantum numbers
for the ground and low energy excited states, and, indeed,
their actual wave functions have close to 100% overlap for
finite but not very small systems20,21. The PH symmetry
of composite fermions has motivated a Dirac CF theory
that builds PH symmetry in a manifest fashion22. The
Chern-Simons field theory approach1,23 is not projected
into the LLL, and thus does not allow a consideration
of composite fermions formed from binding of vortices to
the holes of the LLL, but has nonetheless been shown24 to
produce results consistent with PH symmetry to certain
nontrivial orders in perturbation theory. For experimen-
tal parameters, the positions of the commensurability os-
cillations minima predicted from the Dirac CF theory and
the Chern-Simons field theory agree to a high degree25.

Even if one assumes PH symmetry, the question “Is
the k∗F determined by ρe, by ρh, or by something else?”
still remains. At ν = 1/2, where ρe = ρh, one would
expect k∗F =

√
4πρe, if one assumes that the residual

interactions between composite fermions can be treated
perturbatively. However, away from ν = 1/2 the an-
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swer is not obvious. In Ref. 26, we addressed this ques-
tion in an unbiased fashion starting from the microscopic
wave functions of composite fermions, which are known
to be very close to the exact solutions of the Coulomb
problem12,27–31. Following an earlier work32, we used the
Friedel oscillations in the pair correlation function g(r),
which is equal to the normalized probability of finding
two particles a distance r apart from each other in the
ground state, to determine the CF Fermi wave vector at
ν = 1/2 and nearby filling factors, and found it to be close
to that given by the minority carrier rule. (In the Ap-
pendix C we show results for fully spin polarized systems
for higher particle numbers than those given in Ref. 26,
which bring k∗F into better agreement with the value as-
certained from the minority carrier rule. We also obtain
the static structure factor32,33 for fully spin polarized sys-
tems and compare it with the predictions from topolog-
ical field theories34,35 and the Dirac composite fermion
approach22,35,36.) For this purpose, we fitted the oscilla-
tions in g(r) at an intermediate range of r, because for
small r the short distance correlations dominate, whereas
for large r the pair correlation function exponentially ap-
proaches unity due to the gap. We stress that no Fermi
wave vector was built into the initial wave function. It is
notable that well defined oscillations occur at intermedi-
ate distances at ν = n/(2n± 1) even for moderate values
of n26,32. We also showed that the result was indepen-
dent of whether composite fermions made of electrons or
holes are used.

The goal of this work is to extend the work of Ref. 26
to include the spin degree of freedom and study a non-
fully spin polarized CFFS at ν = 1/2. The reason is that
PH symmetry is not relevant to a CFFS that is not fully
spin polarized, because, once the spin degree of freedom
is active, particle-hole symmetry relates states at ν and
2 − ν. The apparent dichotomy that exists in the CF
theory for fully polarized states around ν = 1/2 does
not arise for systems that are not fully polarized; now
only composite fermions formed from electrons see a zero
effective magnetic field at filling factor 1/2. From this
perspective, one might argue that provided a Fermi sea is
formed, its area must be determined by the density of up
and down spin electrons, and not up and down spin holes.
Nonetheless, it is in principle possible that the Luttinger
theorem is violated for this state. Furthermore, as we
move away from ν = 1/2, there is no longer a symmetry
that relates the k∗F`’s on the two sides.

Additionally, the question has experimental rele-
vance. It is well known, both theoretically37–40 and
experimentally41–45, that the CFFS is partially spin po-
larized at relatively small but experimentally attainable
Zeeman energies. This is expected from the fact that the
fractional quantum Hall (FQH) states at ν = n/(2n ±
1) have, in general, several spin polarizations10,41,46–57,
which have been qualitatively and quantitatively ex-
plained by the CF theory in terms of partially spin polar-
ized states of composite fermions20,31,37,39. Even a spin-
singlet CFFS can be obtained by reducing the Landé g

factor to zero by application of pressure50,58 or by going
to a two-valley system with zero valley splitting59–61.

These questions have motivated us to consider the
Fermi wave vector for a non-fully spin polarized CFFS.
For technical reasons, it is convenient for us to study a
spin-singlet CFFS, but our results are straightforwardly
generalizable to CFFS with arbitrary spin polarization.
Since the technical details of this work are very simi-
lar to those of Ref. 26, it would suffice to give an out-
line. We evaluate the CF Fermi wave vector for spin-
singlet states from Friedel oscillations within the CF
framework and find that it is consistent with the den-
sity of electrons. For this purpose, we consider both
the spin-singlet CFFS at ν = 1/2 and the spin-singlet
FQH states at ν = n/(2n ± 1) for large n (only even
values of n produce spin-singlet states) where the den-
sities of spin up and spin down composite fermions are
given by ρ↑e = ρ↓e = ρe/2. We use the projected Jain
wave functions for the calculation, which are known to
describe the physics of the LLL very accurately12,27–31.
At ν = 1/2, our calculated CF Fermi wave vector for
both up and down spin composite fermions is consistent
with k∗F =

√
2πρe. Given that the model of noninteract-

ing composite fermions is valid for both fully spin polar-
ized and spin singlet states, we expect the Fermi wave
vectors for partially spin polarized CFFS to be given by

k∗↑F =

√
4πρ↑e and k∗↓F =

√
4πρ↓e, where ρ↑e and ρ↓e are

densities of up- and down-spin electrons or composite
fermions. The situation is less clear away from ν = 1/2,
but our calculations suggest a ‘tent-like’ structure for k∗F,
approaching k∗F =

√
2πρe sufficiently close to ν = 1/2.

II. BACKGROUND

As a background, the FQH effect of electrons at filling
factors along the Jain sequence ν = n/(2pn ± 1) is de-
scribed as the integer quantum Hall (IQH) state of com-
posite fermions carrying 2p vortices (denoted as 2pCFs)
with n filled Λ levels (ΛLs)11. (The term ΛLs refers to
emergent Landau-like levels of composite fermions, which
reside entirely within the LLL of electrons.) We shall
specialize to 2p = 2 below. For spinful electrons, we
write12,20,37 the CF filling as n = n↑ + n↓, where n↑ and
n↓ are the number of filled spin-up and spin-down ΛLs
respectively. The Jain wave function12 for this state is
given by:

Ψ n
2n±1

= PLLLΦ±nJ
2 = PLLLΦ±n↑Φ±n↓J

2 (1)

where J =
∏

1≤j<k≤N (zj − zk) is the Jastrow factor, zi
is the ith electron coordinate written as a complex num-
ber in the two-dimensional plane, Φn↑ (Φn↓) is the Slater
determinant wave function for n↑ (n↓) filled LLs of elec-
trons, Φ−n = [Φn]∗, and PLLL denotes LLL projection.
In this paper we shall consider only spin-singlet states
i.e., n↑=n↓ = n/2. For all our calculations we shall use
the Jain-Kamilla projection method, details of which can
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be found in the literature12,28,31,62–65. For n→∞ the se-
quence n/(2n± 1) approaches the filling factor ν = 1/2,
where a spin-singlet CFFS is predicted to exist38,66 at
zero Zeeman energy. Throughout this work we use the
spherical geometry67,68 in which N electrons reside on
the surface of a sphere and see a radial magnetic flux of
2Qhc/e emanated from a Dirac monopole sitting at the
center of the sphere. All states considered in this work
have a uniform density on the sphere i.e., have total or-
bital angular momentum L = 0, and have a total spin
S = 0.

Note that unlike for the fully polarized states around
ν = 1/2, the CF theory gives a unique description for the
states at ν = n/(2n ± 1) involving spins. These states
are understood as IQH states of composite fermions
formed from attaching vortices to electrons; these com-
posite fermions see a positive effective magnetic field at
ν = n/(2n + 1) and negative effective magnetic field at
ν = n/(2pn− 1).

III. CALCULATIONS AND RESULTS

We extract the Fermi wave vector for composite
fermions from the Fermi-sea like Friedel oscillations seen
in the pair-correlation function of FQH states26,32,69,70.
The pair-correlation function for a homogeneous non-
interacting Fermi gas in zero magnetic field with equal
number of up and down spins in two dimensions is given
by33:

gσ,σ′(r) = 1− δσ,σ′
(

2J1(rkF)

rkF

)2

(2)

where the Fermi wave vector kF =
√

2πρ, ρ is the total
fermion density and J1(x) is the Bessel function of or-
der one of the first kind. Clearly, we have g↑,↓(r) = 1 =
g↓,↑(r) for all r as there are no Pauli correlations between
non-interacting fermions of opposite spins. The oscilla-
tory part of gσ,σ(r) for large rkF goes as (rkF)3 sin(2kFr),
which lead to the well-known 2kF Friedel oscillations.
This motivates us to define the Fermi wave vector for
FQH states through the the pair correlation function, for
which we assume the form26,32:

gσσ(r) = 1 +A(r
√

2πρe)
−α sin(2k∗Fr + θ) (3)

where ρe is the electron density and A, α, k∗F and θ are
fitting parameters.

We have evaluated the same-spin pair-correlation func-
tion gσ,σ(r) for ν = n/(2n+1) for up to n = 14 using the
Monte Carlo method in the spherical geometry choos-
ing r as the chord or the arc distance. The gσ,σ(r) for
the largest systems considered in this work are shown in
Fig. 1(a). In the same figure we also show the fits for
the pair-correlation function obtained using Eq. (3). In
this fitting we have discarded small values of rkF, where
short distance physics is important and large values of

rkF where curvature effects become significant and oscil-
lations decay exponentially due to the gap. For states in
the sequence n/(2n+1), it is possible to perform calcula-
tions for very large spin-singlet systems at filling factors
slightly below ν = 1/2. We have carried out these cal-
culations for up to N = 350 electrons and have extrap-
olated k∗F` to the thermodynamic limit from our finite
system results. The largest system available at ν = 1/2
is relatively small with 98 particles, hence leading to a
larger uncertainty in the evaluation of k∗F at ν = 1/2
(see below). These extrapolations are shown in the Ap-
pendix A. The reader may note that we are able to go to
much larger value of n and N than for fully spin polarized
composite fermions. The limitation in this respect is set
by the ΛL index; it becomes increasingly more compu-
tationally time consuming to fill higher and higher ΛLs.
Since we need to fill only n/2 ΛLs for spin singlet states,
we can access high values of n.

For ν = 1/2 we calculate the Fermi wave vector by
considering states of filled-shell CF systems at zero effec-
tive magnetic field69. This state can also be viewed as
the n→∞ limit of the n/(2n± 1) sequence.

We obtain thermodynamic extrapolation for the value
of k∗F` by fitting our pair correlation function to both arc
and chord distances, and the results are shown separately
in Fig. 1(b). Both should give the same result in the
thermodynamic limit, but seen from the error bars, the
fits from the arc distance are more accurate for the finite
systems accessible to our calculations.

An important result of our calculations is that the ex-
trapolated value of the Fermi wave vector at ν = 1/2
is consistent with k∗F =

√
2πρe (i.e. k∗F` =

√
ν), as ex-

pected in a model that assumes composite fermions to
be noninteracting. It is stressed that we do not make
any assumption regarding the interaction between com-
posite fermions; in fact, the wave functions representing
a strongly correlated liquid of electrons include all ef-
fects of interaction and are very accurate representations
of the exact states. We also note, parenthetically, that
we have also tried to calculate the Fermi wave vector at
ν = 1/2 in the torus geometry (we thank Csaba Tőke
in this regard). These calculations show that finite-size
effects are very significant in the torus geometry, proba-
bly because we are forced to model the Fermi sea with a
small section of the reciprocal lattice, which only crudely
resembles a circle. A simple linear or polynomial ex-
trapolation of the system size dependence of the wave
vector of Friedel oscillations does not do full justice to
the data; and the improvement of individual points by
longer Monte Carlo runs may change the extrapolated
value significantly. These considerations lead us to con-
clude that the torus data do not conclusively identify the
thermodynamic limit of Fermi wave vector and hence we
do not show results from torus geometry here.

At filling factors away from 1/2, the calculated Fermi

wave vector appears to approach the value k∗F` =
√

1/2
from both sides. Far from 1/2, our calculated k∗F` devi-
ates from k∗F` =

√
ν. The presumably more accurate arc
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results suggest that k∗F` has a tent-like shape, but this
result is not fully corroborated by the chord extrapola-
tions. Furthermore, as we go far from ν = 1/2, g(r) has
very few oscillations, and it is unclear how meaningful
the concept of Fermi wave vector remains.

A technical comment is in order. To observe the same
number of oscillations as for fully spin polarized states,
the system size needs to be doubled, which is not always
feasible. For this reason, our calculation on spinful sys-
tems is more sensitive to finite size effects than the results
of Ref. 26. The problem is especially severe for states
with reverse flux attachment, where the LLL projection
suffers from numerical precision issues64. This requires
us to store all quantities to a high precision, which con-
siderably slows down the calculation for large N . Due to
this technical issue, when we approach the CFFS from
above, our extrapolations are based on smaller systems
(and hence are less reliable) than as we approach it from
below. Due to this reason we do not have enough accu-
racy for ν > 1/2. Nonetheless, the results are consistent
with k∗F =

√
2πρe.

IV. CONCLUDING REMARKS

We end the article with several observations.
Given that the prediction from a model of non-

interacting composite fermions is valid for the spin-
singlet and fully spin polarized CFFSs, it is natural to
expect that it remains valid for partially spin polarized
CFFS as well. As noted above, a partially spin polarized
CFFS will likely produce two different Fermi wave vec-

tors, given by k∗↑F =

√
4πρ↑e and k∗↓F =

√
4πρ↓e. There is

preliminary experimental evidence16 for the reduction of
the Fermi wave vector from its fully spin polarized value.

Ref. 26 showed that the Fermi wave vectors of fully
spin polarized states related by particle-hole symmetry,
when measured in units of the inverse magnetic length,
are identical. In other words, we have (k∗F`)1−ν = (k∗F`)ν .
By the same token, for partially spin polarized CFFS,
we have (k∗F`)2−ν = (k∗F`)ν , and our results apply to the
Fermi wave vector of partially spin polarized states in the
vicinity of ν = 3/2.

We also investigate the issue of how robust the Fermi
wave vector is to LL mixing. A realistic treatment of LL
mixing is a complicated problem, and optimally it would
require a fixed phase diffusion Monte Carlo study with
the projected Jain wave functions in Eq. (1) used as trial
functions for fixing the phase71,72. That is beyond the
scope of this work. To gain some qualitative insight, we
have calculated the Fermi wave vector from the unpro-
jected Jain wave functions:

Ψun
n

2n±1
= Φ±nJ

2 = Φ±n↑Φ±n↓J
2 (4)

These wave functions have a small amplitude in higher
LLs12,73,74 and are likely adiabatically connected to the
projected wave functions75. For these wave functions, the

pair correlation function at filling factors ν = n/(2n− 1)
and ν = n/(2n + 1) are the same for a given N when
plotted in units of the the radius of the sphere. For a
finite spin-singlet system this gives the relation

(k∗unF `) n
2n−1

(k∗unF `) n
2n+1

=

√
N − 1 +Q∗

N − 1−Q∗
, Q∗ =

2N − n2

4n

which in the thermodynamic limit implies:

(k∗unF `) n
2n−1

=

(
2n+ 1

2n− 1

)1/2

(k∗unF `) n
2n+1

(5)

The estimated values of k∗unF ` for the unprojected states
are shown in Fig. 2(b). These numbers show that to
the extent it can be defined, the CFFS area away from
ν = 1/2 depends on LL mixing. We stress that this
calculation does not represent a realistic treatment of
LL mixing. Another class of wave functions with ampli-
tude in higher LLs is the Chern-Simons mean field wave
function1,11:

ΨCS−MF
n

2n±1
= Φ±n(B∗)

J2

|J |2
(6)

where B∗ = B − 2ρφ0. Since the absolute value of these
wave functions is the same as that of the IQH state
Φ±n(B∗), we have k∗MF

F =
√

2πρe for all ν = n/(2n± 1),
where ρe is the density of electrons.

For completeness, we have also calculated the Coulomb
interaction energies of the spin singlet FQH states. These
are tabulated in Appendix B.

In summary, we have shown that the Fermi wave vec-
tor for composite fermions for a spin singlet Fermi sea at
ν = 1/2 is consistent with the prediction of the model
that takes composite fermions as non-interacting. This
implies that the residual interaction between composite
fermion does not cause, within the accuracy of our cal-
culations, any non-perturbative corrections to the spin-
singlet CF Fermi sea. Away from ν = 1/2, our calcu-
lations admit the possibility of a tent-like structure for
k∗F`.
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FIG. 1. (a) Pair correlation function g(r) as a function of r/`,
where r is the arc distance on the sphere, obtained using the
projected wave functions of Eq. (1). The solid lines are fits
using Eq. (3) for oscillations in an intermediate range of r.
The curves (except for 14/29) have been shifted up or down
by multiples of 0.02 to avoid clutter. (b) Thermodynamic
value of k∗F` as a function of ν from arc fits (solid vertical
bars) and chord fits (dashed vertical bars), slightly shifted
horizontally for clarity. The mean-field value k∗F` =

√
ν is

shown for reference.

Appendix A EXTRAPOLATION OF THE FERMI
WAVE VECTOR IN THE SPHERICAL

GEOMETRY

In this appendix we show the thermodynamic extrap-
olation of the Fermi wave vector obtained from finite
size systems in the spherical geometry for spin singlet
states. The extrapolations of the Fermi wave vectors for
the projected and unprojected states are shown in Fig. 3
and 4 respectively. The thermodynamic values of the
Fermi wave vector obtained from these extrapolations are
shown in Fig. 1(b) and Fig. 2(b) of the main text where
the range shown is obtained from linear fitting in 1/N of
the Fermi wave vector obtained from the arc and chord
distance results.

Some remarks regarding the extrapolation are in or-
der. At filling factors where we have a large number of
systems, the thermodynamic values of the Fermi wave
vector given by a linear fit to the arc and chord distance
data approach one another. We have also tested that
a quadratic fit gives a value within 0.05 of the linear
fit. At filling factors n/(2n+ 1) we have considered very
large systems, so we expect corrections to be small. For

10 15 20 25

0.95

1.00

1.05

r/ℓ, r is the arc distance

g
σ
σ
(r
)

N = 98 , ν = 1/2
N = 280 , ν = 14/29
N = 180 , ν = 12/25
N = 330 , ν = 10/21

FIG. 2. Same as in Fig. 1 but for the unprojected wave
functions. Also shown for reference is the mean field value
k∗MF
F ` =

√
ν corresponding to composite fermions made from

electrons.

ν = 1/2 and ν = n/(2n− 1) we only have a few systems
and, given the scatter, a quadratic fit is not appropriate
for them.

Appendix B GROUND STATE COULOMB
INTERACTION ENERGIES OF SPIN-SINGLET

STATES

For completeness, we list the Coulomb energies of the
Jain wave functions defined in the main text for various
spin-singlet states along the sequence n/(2n±1). Our cal-
culations are performed in the spherical geometry67 using
standard Monte Carlo methods, assuming zero thickness
and no LL mixing. The density for a finite system in the
spherical geometry depends on the number of electrons N
and is different from its thermodynamic value. To elim-
inate this effect we use the so-called “density-corrected”
energy12 E

′

N = ( 2Qν
N )1/2EN for extrapolation to the ther-

modynamic limit N → ∞. All energies quoted here are
the per particle density-corrected energies E

′

N/N .
Fig. 5 shows the thermodynamic extrapolation of the

projected and unprojected ground state Coulomb ener-
gies for the various spin-singlet FQH states along the
sequence n/(2n ± 1) as well as for the limiting case of
the ν = 1/2 composite fermion Fermi sea. In Table I
we list out the extrapolated values of the ground state
energies. (The kinetic energies of the unprojected states
are not included.) As anticipated, the Coulomb ener-
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FIG. 3. Thermodynamic extrapolation of the Fermi wave vector k∗F` for the projected spin-singlet Jain wave function at various
filling factors along the sequence n/(2n± 1) and the ν = 1/2 CF Fermi sea (bottom-most panel). The empty (filled) symbols
correspond to the values obtained from the chord (arc) distance on the sphere and the dashed (thick) lines show linear fits to
these values as a function of 1/N.

gies of the unprojected states are slightly smaller than
those of the projected states74, because the unprojected
states have better correlations at short distance. We note
that the ground state energies for the unprojected states
along the sequence n/(2n−1) is related to the energies of
n/(2n+ 1) FQH states. This is because |Ψun|2 evaluated
on the unit sphere for the unprojected states at filling
factors ν = n/(2n − 1) and ν = n/(2n + 1) is the same
for a given N . The Coulomb energies scale inversely with
the radius of the sphere (

√
Q`), thus we have the relation:

Eun
n

2n−1

Eun
n

2n+1

=

√
N − 1 +Q∗

N − 1−Q∗
, Q∗ =

2N − n2

4n
(7)

where Q∗ is the effective magnetic flux seen by the CFs.

This in the thermodynamic limit implies:

Eun
n

2n−1
=

(
2n+ 1

2n− 1

)1/2

Eun
n

2n+1
(8)

Appendix C RESULTS ON FULLY POLARIZED
STATES

We take this opportunity to also report certain results
for fully spin polarized states. We will present better
estimates for the Fermi wave vector of fully spin polar-
ized composite fermions than those in Ref.26, obtained
from more extensive calculations. We will also present
results for the static structure factor for fully spin polar-
ized FQH sates and its comparison with predictions from
field theoretical approaches34–36.
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FIG. 4. Same as Fig. 3 but for the thermodynamic extrapolation of the Fermi wave vector k∗unF ` for the unprojected Jain wave
function defined in Eq. 4 of the main text at various filling factors along the sequence n/(2n+ 1).

0.00 0.01 0.02 0.03 0.04 0.05

−0.470

−0.465

−0.460

−0.455

projected states

1/N

E
n
er

g
y
(e

2
/ǫ
ℓ)

6/13
8/17
10/21
12/25
14/29
1/2

0.00 0.01 0.02 0.03 0.04 0.05

−0.490

−0.485

−0.480

projected reverse flux attached states

1/N

E
n
e
rg

y
(e

2
/ǫ
ℓ)

10/19
8/15
6/11

0.00 0.01 0.02 0.03 0.04 0.05

−0.490

−0.485

−0.480

−0.475

−0.470

unprojected states

1/N

E
n
er

g
y
(e

2
/ǫ
ℓ)

6/13
8/17
10/21
12/25
14/29
1/2

FIG. 5. (Color online) Thermodynamic extrapolation of the Coulomb ground state energies in the spherical geometry for
projected (left and center panels) and unprojected (right panel) spin-singlet states in the sequence n/(2n±1) with even n. The
extrapolated energies are listed in Table I.

A Updating results of Ref.26

Since the publication of Ref.26, we have obtained re-
sults for 8/17; we have studied larger systems for states
along the sequence n/(2n+1) with n = 3−7; and we have
calculated the pair correlation function for the ν = 1/2
state for N = 100. The updated results are given in
Figs. 6 and 7. The upper panel of Fig. 6 shows the
pair correlation function for the largest N and its fitting
to g(r) = 1 + A(r

√
4πρe)

−α sin(2k∗Fr + θ) to obtain k∗F,
and Fig. 7 shows thermodynamic extrapolations of k∗F for
several fillings. The thermodynamic values of the Fermi
wave vector obtained from these extrapolations is shown
in the lower panel of Fig. 6 where the range shown is
obtained from linear and quadratic fitting in 1/N of the

Fermi wave vector obtained from the chord and arc dis-
tance results. These calculations further corroborate the
results of Ref.26 in that the Fermi wave vector for Jain
states at ν = n/(2n+ 1) is close to the value ascertained
from the minority carrier rule. Furthermore, we find that
at ν = 1/2 the Fermi wave vector is nicely consistent with
Luttinger’s rule.

For completeness in Fig. 8 we show the extrapolation
of the Coulomb ground state energies and tabulate them
in Table II.
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filling factor ν per particle Coulomb energy (e2/ε`)
projected state unprojected state

6/13 -0.45798(1) -0.47080(1)
8/17 -0.46074(1) -0.47539(0)
10/21 -0.46245(2) -0.47821(0)
12/25 -0.46358(2) -0.48011(1)
14/29 -0.46449(5) -0.48151(2)
1/2 -0.46961(1) -0.49003(0)
6/11 -0.48304(4) -0.51181(1)
8/15 -0.47940(8) 0.50609(0)
10/19 -0.47735(7) 0.50275(0)

TABLE I. Coulomb interaction energies (in units of e2/ε`)
obtained from a thermodynamic extrapolation of results on
the spherical geometry for spin-singlet ground states states at
ν = n/(2n ± 1). The energies for projected and unprojected
states are obtained from the wave functions given in Eq. 1
and Eq. 4 respectively in the main text.

filling factor ν per particle Coulomb energy (e2/ε`)
3/7 -0.44226(1)
4/9 -0.44751(1)
5/11 -0.45081(1)
6/13 -0.45309(2)
7/15 -0.45475(1)
8/17 -0.45604(2)
1/2 -0.46566(10)

TABLE II. Coulomb interaction energies (in units of e2/ε`)
obtained from a thermodynamic extrapolation of results on
the spherical geometry for the fully polarized ground states
at ν = n/(2n+ 1) using the Jain wave function.

B static structure factor

We have also considered the static structure factor
for the fully spin polarized state and compared it to
the predictions by Gromov et al. using a topolog-
ical approach34,35 and those based on the Dirac CF
description35,36. We find that our results agree with the
predictions in the long wave length limit.

The structure factor S(q) is defined by the
relation32,33:

S(q) =
〈ρqρ−q 〉
N

−Nδq ,0, ρq =
∑
j

eiq .rj (9)

where 〈· · · 〉 denotes the expectation value in the ground
state. It is related to the pair-correlation function g(r)
by the Fourier transform32:

S(q)− 1 =

∫
d2r eiq .rρ(r)[g(r)− 1] (10)

Considering uniform incompressible states on the plane
we get:

S(q)− 1 = 2πρ

∫
dr rJ0(kr)[g(r)− 1] (11)

5 10 15 20 25

0.95

1.00

1.05

1.10

r/ℓ, r is the arc distance

g
(r
)

N = 100 , ν = 1/2
N = 200 , ν = 8/17
N = 259 , ν = 7/15
N = 252 , ν = 6/13
N = 250 , ν = 5/11
N = 240 , ν = 4/9
N = 135 , ν = 3/7

FIG. 6. (a) The pair correlation function obtained from the
projected Jain wave functions of fully spin polarized compos-
ite fermions, as a function the arc distance on the sphere. The
thick lines are fits to g(r) = 1 + A(r

√
4πρe)

−α sin(2k∗Fr + θ)
in an intermediate range of r where oscillations are seen. The
curves (except for 6/13) have been shifted up or down by mul-
tiples of 0.02 for ease of viewing. (b) Thermodynamic value
of k∗F` as a function of ν obtained from linear and quadratic
fits to the arc and chord data. The mean-field values

√
2ν

(blue) and
√

2(1− ν) (green) are shown for reference.

where J0(x) is the zeroth order Bessel function of the first
kind. For the Fermi sea of non-interacting fully polarized
electrons at zero magnetic field the static structure factor
is given by32:

S(q) =


1, q ≥ 2kF

2
π

[
q

2kF

√
1−

(
q

2kF

)2
+ arcsin

(
q

2kF

)]
, q < 2kF

(12)
which starts at zero for q = 0 and increases monotonically
till it attains its maximum value of unity at 2kF and then
stays there for q > 2kF. At q = 2kF, S(q) as well as its
first derivative are both continuous.

Using the pair-correlation functions calculated in the
spherical geometry we can get the structure factor by
numerically evaluating the integral given in Eq. 11. This
is a valid approach since the systems considered in this
work are large and curvature effects are negiligible for
them, thereby allowing us to use the Fourier transform
on the plane. One can also directly use the Fourier trans-
form on the sphere and we have checked that these give
similar results.
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FIG. 7. Thermodynamic extrapolation of the Fermi wave vector k∗F` for the projected fully polarized Jain wave function at
various filling factors along the sequence n/(2n + 1) and the ν = 1/2 CF Fermi sea (bottom-most panel). The empty (filled)
symbols correspond to the values obtained from the chord (arc) distance on the sphere and the thick and dashed lines show
linear and quadratic fits respectively to these values as a function of 1/N .
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FIG. 8. (Color online) Thermodynamic extrapolation of the
Coulomb ground state energies in the spherical geometry for
the fully polarized Jain states in the sequence n/(2n+ 1) (see
Table II for the extrapolated energies).

We can also evaluate the structure factor directly from
its definition given in Eq. 9. The magnitude of the pla-
nar wave vector q is related to the total orbital angular
momentum L on the sphere by the relation: L = qR
where R =

√
Q` is the radius of the sphere and the static

structure factor SL ≡ SqR is given by32:

SL =

0, L = 0

4π
N 〈|

∑
j YL,0(Ωj)|2〉 =

∑
i,j

〈Pk(cos(
rij
R ))〉

N , L > 0

(13)
where Yl,m(Ω ≡ (θ, φ)) are spherical monopole harmon-
ics with θ and φ the polar and azimuthal angles on the
sphere, Pk(x) is the kth ordered Legendre polynomial,
and rij is the arc distance between electrons i and j on
the sphere. In the above equation we have chosen Lz = 0
without loss of generality since we are only interested
in uniform homogeneous states. In Fig. 9 we show the
static structure factor calculated using Eq. 13 for a large
system along the sequence n/(2n+ 1) and at ν = 1/2.

Gromov et al. found, under certain assumptions, that
the static structure factor in the q � 1 (` = 1) limit for
the Jain states is given by34,35:

Stop
n

2n+1
(q) =

1

2
q2 +

n

8
q4 +

(
n3 + 2n2 − 2n− 1

48

)
q6 + · · ·

(14)
where in the terms corresponding to q4 and q6 can be
related to various topological properties of the system.
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Using the Dirac composite fermion theory22,35,36

Sn/(2n+1)(q) can be derived exactly in the large n limit,
where q(2n+ 1) ∼ 1. The static structure factor S(q) in
this limit is given by:

SDirac
n

2n+1
(q) =

[q(2n+ 1)]3[(4n+ 2)2 − [q(2n+ 1)]2]J2([q(2n+ 1)])

32n(2n+ 1)4J1([q(2n+ 1)])
+ 1− e−

q2

2 (15)

where Jα(z) is the Bessel function of the first kind.
In the n → ∞ limit (and consequently small q limit)

SDirac
n/(2n+1)(q) is identical to Stop

n/(2n+1)(q). We find that

the calculated structure factor agrees well with both
Stop
n/(2n+1)(q) and SDirac

n/(2n+1)(q) in the regime where q` .
0.1 (see Fig. 9).
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FIG. 9. (color online) Static structure factor obtained in the
spherical geometry using Eq. 13 with the composite fermion
wave function (red dots). The inset shows a comparison in
the small wave vector limit with predictions of the topologi-
cal terms [Eq. 14] (blue circles) and Dirac composite fermion
theory [Eq. 15] (green diamonds).
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