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Abstract

Effective spin torques can generate the Néel vector oscillations in the antiferromagnets (AFMs).

Here, it is theoretically shown that these torques applied at one end of a normal AFM strip can

excite a helical type of spin waves in the strip whose properties are drastically different from the

characteristic spin waves. The analysis based on both a Néel vector dynamical equation and the

micro-magnetic simulation identifies the direction of magnetic anisotropy and the damping factor

as the two key parameters determining the dynamics. The helical wave propagation requires the

hard axis of the easy-plane AFM to be aligned with the traveling direction, while the damping

limits its spatial extent. If the damping is neglected, the calculation leads to uniform periodic

domain wall structure. On the other hand, finite damping decelerates the helical wave rotation

around the hard axis causing ultimately stoppage of its propagation along the strip. With the

group velocity staying close to spin-wave velocity at the wave front, the wave length becomes

correspondingly longer away from the excitation point. In a sufficiently short strip, a steady-state

oscillation can be established whose frequency is controlled by the waveguide length as well as the

excitation energy or torque.
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I. INTRODUCTION

Helimagnets and helical structures in ferromagnets (FMs) or antiferromagnets (AFMs)

are the characteristic states found usually in rather complex magnetic crystals. The origin

of magnetic helicity stems from the interplay of several competing interactions such as the

exchange interaction, crystalline anisotropy, and Dzyaloshinskii-Moriya interaction. A ther-

modynamically stable, inhomogeneous distribution of the magnetic moments in the form

of helical waves (HWs) has been studied extensively as can be found in the literature (see

Ref. [1] and the references therein). A particularly interesting issue is the spatial structure

of these HWs in the presence of external parameters such as, for instance, an applied mag-

netic field [2]. It is evident that controlled generation and manipulation of HWs in more

common magnets can offer additional prospects in the pursuit of magnetic materials and

their applications.

The desired magnetization dynamics may be achieved by taking advantage of the effective

spin torques that have shown to produce oscillations of order parameters in FMs or AFMs

via the current-driven or even currentless mechanisms [3–10]. Of the two classes of magnetic

materials, AFMs in particular have received much attention recently due to the fast sub-

lattice magnetization dynamics (and those of the Néel vector) as well as their insensitivity

to the spurious magnetic fields. These distinctive features rely on the absence or sufficient

suppression of macroscopic angular momentum that allows the Néel vector rotation to con-

tinue even after the applied torque ceases [10, 11]. Consequently, persistent oscillations up

to THz frequencies can be generated [7–10]. Applying a spin torque at one end of a long

AFM strip would undoubtedly alter the state of magnetic equilibrium in a certain manner

specific to the torque strength and parameters of the structure.

In this paper, it is theoretically demonstrated that a long easy-plane AFM strip can

serve as a waveguide transferring the Néel vector rotation in the form of HWs. The specific

structures under consideration are shown in Fig. 1, where an effective torque is employed only

at one end of the strip. In contrast to helimagnets, the spin torque establishes the HWs

as the final outcome of transient processes. As such, the resulting Néel vector dynamics

exhibit a strong dependence on the nature of the applied torque (e.g., anti-damping vs.

field-like). The analysis takes advantage of a simplified model that is developed to describe

HW transient dynamics based on the spatial and temporal progression of the Néel vector
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chiral phase along the AFM hard axis. Micro-magnetic simulations are also applied for

comparison as well as to elucidate the steady-state characteristics in the waveguides of finite

lengths. A brief discussion on the detection of HWs is provided toward the end.

II. EQUATIONS OF MOTION

An approach that can conveniently describe the AFM dynamics results from the sym-

metry analysis and subsequent formulation of the corresponding Lagrangian in terms of the

Néel vector (L) as well as its spatial and temporal derivatives [12]. This description supposes

the dominant exchange interaction between magnetic sublattices resulting in the relatively

small AFM magnetization M (i.e., |L| ≡ L ≫ |M|). The former is commonly represented

by a strong exchange field Hex (∼ MOe) aligning the sublattice magnetizations in opposite

directions. Consequently, the length of the Néel vector (L) can be treated approximately

as an integral of the motion. This simplification reduces the relevant vector variables for

each sublattice magnetization to a single normalized quantity n ≡ L/L = (nx, ny, nz). In

the case of a sufficiently small waveguide width ∆ (i.e., ∆ ≪ vm/ω, where ω is the typical

frequency of the Néel vector rotation and vm the magnon velocity), the transversal variation

in the Néel vector can become negligible. As such, the only spatial variable z along the

AFM waveguide and time t determine the Néel vector [thus, n(z, t)], which in turn uniquely

defines the Lagrangian [12–15]

L =
L2

2ω2
ex

[ṅ2
(t) − v2mṅ

2
(z)]−

L2

ω2
ex

[ṅ(t) × n]·γH+
L2

2ω2
ex

(n×γH)2 −W (n), (1)

where ω2
ex = γ2HexL, ṅ(i) ≡ ∂n/∂i (i = z, t), γ is the gyromagnetic ratio, and H denotes

the magnetic field of external and/or internal origin. More specifically, the first two terms in

the square brackets represent the density of kinetic energy and the inhomogeneous exchange

interaction, respectively, while the next two are for the contributions of the dynamic and

static susceptibility to the AFM magnetic energy in the presence of a magnetic field H [14].

Lastly, W (n) describes the density of anisotropy energy. It is interesting to note that, at

vm = 0 and |H| = 0, the expression given in Eq. (1) mimics the Lagrangian for a pendulum

with the ”kinetic” energy (i.e., the ṅ2
(t) term) and the ”potential” energy W (n). Likewise, a

finite magnetic field corresponds to the external forces. In an AFM with the easy x-y plane
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and the hard z axis, the density of anisotropy energy can be expressed as

W (n) =
1

2
Kn2

z, (2)

where K (> 0) represents the strength of magnetic anisotropy along the hard z axis.

As noted above, the present analysis is focused on the excitation of Néel vector rota-

tion and subsequent propagation along the AFM waveguide. The most reliable approaches

adopted thus far to trigger the Néel vector oscillations have been based on either the spin

transfer torque [9, 10, 16] or the spin-orbit torque [6–8]. Both of these mechanisms can be

represented via the electron spin polarization P (with p ≡ P/ |P|) of the spin current flowing

into the AFM, which results in an anti-damping torque ηn×(n× p). Here, the parameter

η reflects the efficiency of the process [7]. Friction proportional to the angular velocity of

the Néel vector also arises against the anti-damping torque, which hinders excitation of the

oscillations. Thus the energy loss accompanies the Néel vector precession. Combined with

the torque-induced energy gain, the dissipation function can then be expressed as [13]

R = Rṅ2
(t) + η(n× p) · ṅ(t), (3)

where R = δrL
2/4ω2

ex with δr from the width of AFM resonance. A constant value is used for

R in the ensuing discussion even with a large deviation of the Néel vector from equilibrium.

In the case of a field-like torque, the effect on the excitation does not require a separate

description as it can be addressed by simply adding an appropriate contribution to H. The

corresponding friction is naturally accounted for by the first term in Eq. (3).

Taking into account the unimodularity |n| = 1, the Euler-Lagrange equation reads

n×
[

∂

∂t

∂L

∂ṅ(t)

+
∂

∂z

∂L

∂ṅ(z)

− ∂L

∂n
+

∂R

∂ṅ(t)

]

= 0. (4)

Substitution of Eqs. (1)−(3) into Eq. (4) yields a set of equations for the components of

vector n(z, t). Formulation with dimensionless variables w(n) = W (n)/K, h = γH/ωr,

t → ωrt, z → kz = ωrz/vm explicitly transforms Eq. (4) to a partial differential equation

(PDE)

n×
[

n̈(tt) − n̈(zz)+2(ṅ(t) × h)− (n× ḣ(t)) + h(n · h) + 1

4

∂

∂n
w(n) + 2λṅ(t) + σ(n× p)

]

= 0,

(5)
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where ωr = γ
√
2HexHan for the zero-field AFM resonance frequency, Han = K/1

2
L for the

effective anisotropy field, λ = δr/ωr (= Rωr/K) for characteristic damping, and

σ(z, t) =
η(z, t)

L2

Hex

2Han
. (6)

Further simplification can be done if one takes into account that the system maintains

the axial symmetry provided that the spin current mediates a spin torque collinear to the

hard z-axis. As shown in Fig. 1(a), spin polarization p of the injected spin current is chosen

to match the hard axis of the AFM layer. This configuration confines the Néel vector within

the energetically favorable x-y plane. The cylindrical symmetry permits us to parameterize

the Néel vector as n(z, t) → n(ϑ, ϕ, t) = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) in terms of the polar

ϑ = ϑ(z, t) and azimuthal ϕ = ϕ(z, t) angles. Substituting n(ϑ, ϕ, t) into Eq. (5) separates

the variables ϑ(z, t) and ϕ(z, t) so that the polar angle ϑ(z, t) is essentially a time-space

independent constant π/2. Then, the final expression for the remaining variable ϕ = ϕ(z, t)

is given as
∂2ϕ

∂t2
− ∂2ϕ

∂z2
+ 2λ

∂ϕ

∂t
= Φ(z, t), (7)

where Φ(z, t)=σ(z, t) − ḣ(t)(z, t). The first term σ(z, t) represents the contribution of the

anti-damping torque, while the field-like torque ḣ(t)(z, t) is introduced via the time derivative

of the effective field h. Note that the derivation of Eq. (7) is predicated on local invariance

of the Lagrangian with respect to the Néel vector rotation around the hard axis (which is

collinear to the applied spin torque). Thus, the formulation would similarly be applicable if

both the torque and the hard axis are along the normal y-direction.

III. SOLUTIONS OF BASIC EQUATION

It is rather surprising that the non-linear equations of AFM dynamics for the Néel vector

components are reduced to a linear equation for the azimuthal angle in a one-dimensional

configuration space. This inhomogeneous, second-order PDE needs to be solved for time

t > 0 with the initial conditions for the Néel vector and its time derivative. In the present

analysis, it is assumed that the Néel vector in the AFM layer is initially aligned along the x

axis and stationary; i.e., n(z, t = 0) = (1, 0, 0) and ṅ(t)(z, t = 0) = (0, 0, 0). These conditions

appear in the angular variables as

ϕ(z, t)|t=0 = ϕ̇(t)(z, t)|t=0 = 0. (8)
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Unlike the bi-axial cases studied previously [8–10, 16], the Néel vector in an easy-plane AFM

nanoparticle [i.e., Eq. (7)] starts to rotate at any torque with the divergent frequency of

ωp =
Tq

2λ

(

1− e−2λt
)

, (9)

reaching the steady state in time t ≫ 1/2λ.

To examine the effect of long waveguides, Eq. (7) is reduced to the inhomogeneous rela-

tivistic Klein-Gordon equation by using the substitution ϕ(z, t) = u(z, t)e−λt:

ü(tt) − ü(xx) + λ2u = eλtΦ(z, t). (10)

In doing so, it is chosen not to correct the boundary conditions to avoid the inessential

complications. While this approximation assumes no reflected wave from the far end of the

waveguide, it is expected to remain valid for a sufficiently long channel considering that the

damping can significantly reduce the boundary effect. The above Klein-Gordon equation

with the given initial conditions [Eq. (8)] can be approached via integral transformation [17].

The resulting solution can be expressed in the form

ϕ(z, t) =
1

2

∫ t

0

∫ z+s

z−s

Φ(ζ, t− s)e−λsJ0

(

−λ
√

s2 − (z − ζ)2
)

dζds, (11)

where J0(x) is a Bessel function. This integral presentation can be numerically evaluated

for arbitrary disturbances, Φ(z, t), applied along the AFM strip (see Fig. 1 for the set-up).

The excitation torque may be represented conventionally in a multiplicative form

Φ(z, t) = Tqfz(z)gt(t), (12)

where fz(z) determines the location of the applied torque, gt(t) the time dependence, and

Tq the amplitude.

Consider the torque localized around the origin z = 0, as illustrated in Fig. 1, in a space

scale much shorter than the wave length. A subsequent approximation of fz(z) = δ(z)

reduces Eq. (11) to a more manageable expression

ϕ(z, t) =
Tq

2

∫ t

0

χ(z, s)gt(t− s)e−λsJ0

(

λ
√
s2 − z2

)

ds, (13)

where

χ(z, s) =
sgn(s+ z) + sgn(s− z)

2
. (14)
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For a semi-infinite strip (i.e., z > 0), the torque efficiency is doubled as is the case in

the rest of the discussion. Equation (13) describes evolution of the Néel vector n =

[cosϕ(z, t), sinϕ(z, t), 0] as well as the HW ”group velocity” vg = −ϕ̇(t)(z, t)/ϕ̇(z)(z, t) and

the rotation frequency ωp(z, t) = ϕ̇(t)(z, t) along the waveguide. Equations (13) and (14) ex-

plicitly reveal the retardation between the excitation and the response (of t = z or t = z/vm

in dimensional units).

IV. TRANSIENT AND STEADY-STATE DYNAMICS OF HELICAL WAVES

We start the analysis of Eq. (13) with the dissipationless case λ = 0. It can be seen

in Fig. 2(a) that Eq. (13) describes the self-similar wave train with variable ξ = t − |z|
(in conventional units ξ = ωrt − k|z|) provided that once applied at t = 0 the torque

remains constant Tq [i.e., gt(t) = θ(t) is the Heaviside step function]. Thus Eq. (13) reduces

to ϕ(z, t) = Tqξθ(ξ). The results clearly amount to the desired generation of HWs in an

AFM strip which can travel over a long distance without dissipation. In this case, the

speed of the Néel vector rotation is proportional to the strength of the applied torque [i.e.,

ωp(z, t) = Tqωr], whereas the group velocity vg (= ωr/k) corresponds to the magnon velocity

vm independent of the external forces. While the necessary constant torque (more accurately,

in a step-function form) can be realized in theory by both the anti-damping and field-like

terms, the latter requires an effective field linearly increasing in time. On the other hand,

the anti-damping simply requires to turn on a constant excitation current or bias. As such,

the discussion in the present section focuses on this mechanism, specifically the spin-orbit

torque in the physical system shown in Fig. 1(a).

Once the dissipation is accounted for, the HW dynamics for the step-function torque

change rather significantly from the simple picture as shown in Fig. 2(b). The rotation

around the hard z-axis [i.e., ωp(z, t)] progressively slows down away from the excitation

point, while the group velocity vg maintains close to vm. Accordingly, the wavelength is

shown to elongate gradually as Λ = 2πvg/ωp(z, t). However, the asymptotic behavior of

ωp(z, t) at t → ∞ is not so evident in contrast to the stationary oscillations excited in small

AFM particles [Eq. (9)]. In fact, it is found that the oscillations stop moving spatially and

temporally (or become ”frozen”) with t → ∞ and an aperiodic static Néel vector pattern is
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established [Fig. 2(c)], resembling a stable helimagnet structure:

ϕ(z, t) →
t→∞

Tq√
2λ

e−
√
2λz. (15)

The total number of static windings around the z axis can be estimated as NHW = Tq/
√
8πλ,

while the distance ∆L needed for the first 360◦ rotation of the pattern is (in dimensional

units)

∆L =
vm√
2λωr

ln(2NHW). (16)

In a dielectric AFM, this length can be as large as a few µm. To achieve at least one reversal

of the Néel vector (i.e., one full winding or twisting), the spin torque must exceed a critical

value
√
2πλ. An increase of the torque slowly extends the HW’s reach along the AFM strip

as a logarithmic function. The established helical structure is maintained only during the

presence of the excitation torque. As soon as it is turned off, the domain wall-like pattern

starts to unwind and the AFM returns to the equilibrium state ϕ(z, t) = 0.

For further analysis, it is illustrative to compare the rotational speed ωp(z, t) and the

group velocity vg(z, t) at the origin and at the wave front; thus at z = 0 and z = t. The

results are shown in Fig. 3. In the trivial case of λ = 0, uniform oscillations persist with

no change observed in the HW characteristics. In other words, both ωp and vg remain

constant spatially and temporally [see, for instance, lines 3 in Fig. 3(a,b)]. When non-

zero damping is considered, the rotational speed at both ends tends to zero as t → ∞
for ωp(z = 0, t) = Tqe

−λtJ0(λt) and ωp(z = t, t) = Tqe
−λt [curves 1 and 2, respectively, in

Fig 3(a)]. This is also consistent with the physical picture emerged from Fig. 2. On the

other hand, the group velocity behaves differently. While it decreases exponentially with

time at the excitation point, the front of the HWs continues to move at the magnon velocity

[vg(z = 0, t) = e−λtJ0(λt) and vg(z = t, t) = 1; curve 1 and line 2, respectively, in Fig. 3(b)].

An additional point of interest is a damped pendulum-like feature that is apparent from the

evolution of the Néel vector at/around z = 0. As illustrated, relaxation to the stationary

state starts with the deceleration of ωp and vg. Then, this damping overshoots to the region

with negative values, followed by a gradual decay to zero (see ωrt = 25− 50 in the insets to

Fig. 3). The negative values in ωp and vg indicate that the Néel vector rotation reverses its

direction or chirality before stopping its movement finally.

At the first glance, the freeze in the HWs appears incompatible with the steady torque

particularly since the friction also diminishes when the Néel vector texture rotates slowly
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[see the first term in Eq. (3)]. The seeming contradiction is resolved if one takes into account

that the inhomogeneous exchange interaction in the twisted texture exerts a counteraction

to the externally applied torque. The shorter the wavelengths at the excitation point are, the

stronger the reaction to the torque becomes which finally stops the HWs from developing.

Thus, the energy from the current-induced steady torque is expended before it can excite

additional oscillations in the long AFM strip. In the case of a sufficiently short waveguide

length, the torque is not fully compensated and a steady-state oscillation can be excited

through the entire AFM strip with the Néel vector texture similar to that in Fig. 2(b).

Apparently the coherent Néel vector rotation distributes the friction and dissipation evenly

along the waveguide. For a given torque at the excitation point, the rotational speed in the

steady state shows an inverse dependence on the waveguide length L. It is also affected by

the size of the excitation area L0. Considering that Eq. (9) for the nanoparticles corresponds

to the condition of L0 = L, the frequency for the partial overlap between L and L0 may

scale to

ωp(z, t) →
t→∞

ωr
Tq

2λ

L0

L
;L0 < z < L. (17)

This simple estimate shows a good agreement with the micro-magnetic simulations provided

in Fig. 4. The numerical results also reveal that transition to the steady-state oscillation

involves multiple reflections of the HWs at the channel edges.

Actual realization of the desired structure [i.e., Fig. 1(a)] may be achieved by taking

advantage of room-temperature easy-plane AFMs such as FeF3 and α-F2O3 in combination

with a heavy metal injector made of Pt or Ta. A typical threshold current density for

the Néel vector rotation is expected to be of the order of 108 A/cm2 judging from the

recent experimental data obtained in the bi-axial NiO-Pt system [8]. Despite the differences

in the AFM properties (i.e., easy-plane vs. bi-axial anisotropy), the underlaying physical

mechanism of spin-orbit torque appears comparable in the two systems.

V. BEYOND HELICAL WAVE EXCITATION

While the desired excitation of HWs can be achieved by the anti-damping torque as

described above, it is also instructive to examine the effect of a field-like contribution on the

Néel vector dynamics. For this, a scheme based on electrical spin pumping is considered in a

spin-capacitor structure [see Fig. 1(b)] in place of the heavy metal based spin current injector.
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The basic mechanism relies on the net electron spin polarization induced in the AFM through

spin-filtered injection/depletion, subsequently mediating an exchange field and thus a field-

like torque (i.e., its time derivative) to the constituent sublattice magnetizations [18]. The

dynamical response is modeled by adopting, as a typical example for the effective field, an

asymmetrical pulse

h(t) = h0(1− e−t/dt)e−t/T1 (18)

with a fast rise (∼ dt; the circuit RC time) and a slow fall (∼ T1; the electron spin relaxation

time) in the course of a longer pulse duration [18]. The results illustrate that the applied

field-like torque pushes a local disturbance of Néel vector with the velocity vg ≃ vm along

the waveguide (Fig. 5). The disturbance quickly relaxes in a distance comparable to the

wavelength of the corresponding HW and does not form any wave-like pattern. Evidently

the field-like torque is not conducive for HW excitation, at least not with the assumed form

of the effective field.

The generated space-time structure of the Néel vector can be detected by using the

magnetoresistance effect. In the case of a dielectric AFM (which is preferred due to the

weak damping and the potentially low excitation current with no shunting), one can use

a tunneling configuration between the two FM contacts placed at the location of interest.

One may also take advantage of conductance anisotropy induced in an adjacent conductor

with a strong spin-orbit coupling [19]. If, on the other hand, a metallic material is used, the

in-plane conductance of the AFM layer may provide the desired knowledge on the twisted

magnetic structure (e.g., the number twists or domain walls) analogous to the non-collinear

magnetoresistance for magnetic skrymions [20].

VI. SUMMARY

The spin torque applied locally to one end of an easy-plane AFM strip is shown to

excite a Néel vector rotation that can propagate over a long distance in the form of HWs.

They move along the magnetic waveguide with the ultimate magnon velocity, while the

wavelength progressively becomes longer at the wave front due to the effective friction. In a

long strip, this transient dynamics relax to a static Néel vector texture over a finite portion

under a constant torque. Once the torque is withdrawn, the spring-like texture unwinds and

returns to the initial homogeneous AFM state. If the AFM strip is sufficiently short, on the
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other hand, a steady-state aperiodic wave pattern is achieved whose rotation frequency is

inversely proportional to the length. The typical time scale of the transient processes with

HW formation is around tens of ps. This and other striking HW manifestations including

controllable wavelength and frequency as well as a large amplitude may offer an intriguing

opportunity in the emerging AFM-based spintronics [21, 22].
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FIG. 1. Schematic illustration of the structures under consideration. (a) An electrical current J

through the heavy metal (HM) layer induces the anti-damping spin-orbit torque in the adjacent

AFM. The arrows show the spin separation due to the spin-Hall effect. (b) Net electron spin in

the AFM polarized along the FM magnetization (thick black arrow) generates the field-like spin-

pumping torque. Under an applied bias, electrons spin-filtered by the FM gather near the AFM

interface with the insulating layer (I), providing the effective field. In both (a) and (b), the torque

is applied parallel to the AFM hard axis along the strip.
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FIG. 2. Snapshots of Néel vector texture n = [nx(z, t), ny(z, t), 0] in the AFM strip under a

constant spin torque of Tq=5 at (a,b) instant t=15 and (c) t → ∞. The damping is neglected in

(a), while it is set at λ=0.1 for (b,c). Dimensionless units are used.
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FIG. 3. Temporal dependence of (a) HW rotation frequency ωp(z, t) and (b) group velocity vg(z, t)

at the excitation point (z = 0; curves 1) and at the wave front (z = t; curve/line 2). Note that

the HW group velocity at the wave front remains unchanged at the magnon velocity (vm). In the

calculation (for both 1 and 2), the damping constant of λ=0.1 is assumed. The results for the

dissipationless case (λ=0) are also shown for comparison (lines 3). The insets illustrate the time

domain where the values for ωp and vg change to negative. The thin lines at zero are provided for

reference.
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FIG. 4. Steady-state rotation frequency ωp vs. length L of the AFM strip (line 1). L0 denotes

the size of the excitation area, where the AFM and HM layers overlap [see Fig. 1(a)]. The solid

line represents the estimate based on Eq. (17), while the data points are from micro-magnetic

simulations. In addition, curve 2 shows the temporal evolution of ωp in the limiting case of L = L0

based on the analytical expression [Eq. (9)] as well as the corresponding numerical calculations

(data points). The micro-magnetic simulations assume the conditions of L0 = 20 nm, ωr=667

GHz, λ = 0.06, and vm = 6.33 × 105 cm/s. The torque is estimated by using the procedure of

Ref. [7] with the current density of 3× 107 A/cm2.
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FIG. 5. Snapshots of Néel vector texture n = [nx(z, t), ny(z, t), 0] in the AFM strip under a field-

like spin-pumping torque of Tq=5 at instant t=2, 5, 10, 20 for (a)-(d), respectively. The applied

effective field is assumed to have a pulse-like form with the rise time of ω−1
r and the relaxation

time of 8ω−1
r . The pulse duration is taken to be sufficiently long (e.g., 35ω−1

r in physical units).

The damping constant of λ=0.1 is used for all cases (in dimensionless units).
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