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A comprehensive study of the influence of classical anisotropy fields on the magnetic properties
of Heisenberg antiferromagnets within unified molecular field theory versus temperature 7', mag-
netic field H, and anisotropy field parameter hai is presented for systems comprised of identical
crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferro-
magnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or
field-induced thermal-average moment with a magnitude proportional to the moment, whereas that
for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,
again with a magnitude proportional to the moment. Properties studied include the zero-field Néel
temperature T, ordered moment, heat capacity and anisotropic magnetic susceptibility of the AFM
phase versus T' with moments aligned either along the z axis or in the xy plane. Also determined are
the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear
AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop
(SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and haj.
Phase diagrams at 7" = 0 in the H.—ha: plane and at 7" > 0 in the H.—T plane are constructed
for spins S = 1/2. For ha1 = 0 the SF phase is stable at low field and the PM phase at high field
with no AFM phase present. As hap increases, the phase diagram contains the AFM, SF and PM
phases. Further increases in hai lead to the disappearance of the SF phase and the appearance
of a tricritical point on the AFM-PM transition curve. Applications of the theory to extract hai
from experimental low-field magnetic susceptibility data and high-field magnetization versus field
isotherms for single crystals of AFMs are discussed.

I. INTRODUCTION

Collinear and planar noncollinear Heisenberg antiferro-
magnets (AFMs) always have at least a small amount of
some type of magnetocrystalline anisotropy present that
establishes the axis or plane, respectively, along which
the ordered magnetic moments are aligned with respect
to the crystal axes. These include single-ion anisotropy,
spin exchange anistropy in spin space and anisotropy
due to classical magnetic dipole interactions. These
anisotropies are known to change the AFM ordering
(Néel) temperature Ty as well as the magnetic and ther-
mal properties of the spin system'2. Recently we carried
out comprehensive studies of the influence of dipolar and
uniaxial quantum DS? magnetocrystalline anisotropies
on the thermal and magnetic properties of Heisen-
berg AFMs containing identical crystallographically-
equivalent spins®*, where the Heisenberg interactions are
treated within unified molecular-field theory (MFT)> 7.
In this MFT the properties of collinear and planar
noncollinear AFMs are calculated on the same footing
and the theory is expressed in terms of directly mea-
surable quantities instead of exchange interactions or
molecular-field coupling constants>®. The theory for
DS? anisotropy applies only to spins S > 1, a serious
limitation, since the magnetic properties of S = 1/2 sys-
tems are of great interest.

A generic classical anisotropy field Ha has been used
sporadically in the past to study the effects of anisotropy.
In particular, this field can give rise to an energy gap in
the spin-wave spectrum ~ +/2Ha Hexen, Where Hexen i

the exchange field, and can affect macroscopic proper-
ties such as yielding an anisotropy in the external field-
induced magnetization®. For collinear AFMs, a field ap-
plied along the easy axis can give rise to a spin-flop tran-
sition, where the ordered moments flop to an orientation
roughly perpendicular to the easy axis, given by Eq. (140)
below?, which again involves Hy.

However, a comprehensive formulation of it and study
of its influence on the thermal and static magnetic prop-
erties of Heisenberg AFMs are lacking. Here we report
results from such investigations. An important advan-
tage of this type of anisotropy is that such uniaxial and
planar (XY) anisotropies apply to systems with S = 1/2
in addition to S > 1. Another is that the anisotropy pa-
rameter in a system is much more easily derived from ex-
perimental magnetic data on single crystals compared to
that for single-ion anisotropy. The Heisenberg exchange
interactions are treated within the unified MFT, again
assuming identical crystallographically-equivalent spins.

Results from the unified MFT of Heisenberg AFMs
that are needed to develop the theory incorporating clas-
sical anisotropy fields are summarized in Appendix A. A
summary of notation and thermodynamics expressions
used in the paper are given in Sec. II. We use two forms
of anisotropy field depending on whether the anisotropy
field induces collinear AFM ordering along the z axis
or collinear or planar noncollinear AFM ordering in the
xy plane. A detailed discussion of these is presented in
Sec. III.

Calculations of the AFM ordering (Néel) tempera-
ture T and ordered moment versus temperature 7' in
the presence of both the exchange and anisotropy fields in



zero applied field H are given in Sec. IV for arbitrary an-
tiferromagnets containing identical crystallographically-
equivalent spins. Laws of corresponding states for these
properties and others are the same for all AFMs and
ferromagnets (FMs) when expressed in terms of the uni-
versal reduced parameters of the unified MFT. Expres-
sions for the magnetic internal energy, heat capacity, en-
tropy, and free energy of the AFM phase in zero field
for both uniaxial and planar anisotropy are also derived
and plotted in Sec. IV. The anisotropic magnetic sus-
ceptibilities x arising from the classical anisotropy field
are derived for the paramagnetic (PM) phase in Sec. V
and for the AFM phase in Sec. VI, and the perpendicu-
lar high-field magnetizations for the PM and AFM states
are calculated in Sec. VII.

The high-field magnetization parallel to the easy axis
of a collinear AFM is of special interest. This is derived
for the PM phase together with its free energy Fia, ver-
sus H in Sec. VIII B. The spin-flop (SF) phase is treated
in Sec. VIIIC, in which are presented the ordered mo-
ment versus 7' in H = 0, the thermal-average moment
1. versus H using two different approaches, the spin-
flop critical field h.gr at which the SF phase exhibits a
second-order transition to the PM phase with increas-
ing H, the zero-field internal energy Upae versus T', and
the (Helmholtz) free energy Fiag versus T and H. The
more involved calculations of the magnetic properties of
the AFM phase in high longitudinal fields are given sepa-
rately in Sec. IX, including the z-axis sublattice, average
and staggered moments, and Fi,,s versus T, H, and
anisotropy parameter ha;.

Phase diagrams are constructed in Sec. X. We start
with the determination of the low-temperature properties
of the AFM, SF, and PM phases and their dependences
on the parameters of the MFT in Sec. X A. The H, ver-
sus hai phase diagrams at T = 0 in the H,—ha1 plane
are then constructed. In addition, p, versus H, plots
are provided for various values of ha; to compare with
experimental data at T" < Tx. In this section, phase di-
agrams in the H | —ha; plane for fields H; perpendicular
to the easy z axis of a collinear AFM or easy plane of a
planar noncollinear AFM are presented.

We then move on to construct phase diagrams in the
H.,-T plane in Sec. XB from free energy minimization
with respect to the SF and AFM phases (the PM phases
are high-field extensions of these phases beyond their re-
spective critical fields). Representative phase diagrams
are presented for spins S = 1/2 for six values of ha;. For
ha1 = 0, the only stable phases with increasing H, are
the SF' and higher-field PM phases, as expected. With
increasing hai1, the AFM phase appears at low fields for
T < Ty followed by the SF and PM phases with increas-
ing field. Further increasing ha; results in the gradual
disappearance of the SF phase and appearance of a tri-
critical point on the AFM-PM phase boundary. When
hai is sufficiently large, the SF phase disappears, leaving
only the AFM and PM phases in the phase diagram with
both first- and second-order transitions between them

along the transition curve with a tricritical point separat-
ing the two regions. At T'= 0 the AFM to PM transition
is a 180° spin-flip transition of the moment initially oppo-
site in direction to the field to being parallel to the field,
whereas at finite T" the transition is a “gradual” spin-flip
where the magnitude of the initially oppositely-directed
moment smoothly decreases to zero and then that mo-
ment increases with field in the direction of the field,
eventually becoming the same in a second-order transi-
tion to the PM phase as that of the moment that was
initially in the direction of the field.

A summary is given in Sec. XI. We discuss in depth
how hai1 and another parameter f; can be derived from
experimental data using our formulas for different mag-
netic properties. Also discussed are the relationships be-
tween the formulas for Ty and the Weiss temperature 6,
in the Curie-Weiss law for the present classical anisotropy
field treatment with those with DS? anisotropy* and ar-
rive at a proportional relationship between ha; and D
for small values of D. In general, magnetic anisotropy
data are much easier to analyze in terms of the present
classical anisotropy field than in terms of D.S? anisotropy.

II. NOTATION AND THERMODYNAMICS

A. Notation Summary

Henceforth we designate two parameters changed by
the presence of the anisotropy field by removing the sub-
script J to indicate that these values contain the contri-
bution of the anisotropy field in zero applied field:

TNJ — TN, 9pJ — 9p. (1&)

The Txy, 0p7 and f; parameters retain their meanings
in terms of the Heisenberg exchange constants and mag-
netic structure as given in Egs. (A6a), (A6b) and (A7),
respectively. We normalize energies, fields and temper-
atures by Tny in this paper, as given in the following
summary and definitions of parameters.
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The magnetic susceptibility per spin x, in the «
principal-axis direction is rigorously defined in the ab-
sence of a ferromagnetic component to the magnetization

as

Xa = limoﬂa(Hoz)/Ha' (2)

o

We define two reduced magnetic susceptibilities in the «
principal-axis direction. The first is

v _ Ha
== . 3
Xa =], (3a)
The second is
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o= = , 3b
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where the single-spin Curie constant Cp is given in
Eq. (A1b).

B. Thermodynamics

In this section we give thermodynamics expressions
needed in this paper assuming that the ordered and/or
induced moment of a representative spin ji; versus field
and temperature has already been determined within the
unified MFT as outlined in Appendix A in the case of zero
applied and anisotropy fields.

The magnetic internal energy Up,ag of spin 4 for a local
magnetic induction B; in the «a principal-axis direction
is

Umagi = —hiaBia, (4)

where here B, is written in general as

1
Bia = §(Hexchia + HAia) + Hou (5)

and Haj, is the local anisotropy field seen by spin ¢ dis-
cussed later. We have seen that the exchange field seen
by a spin is proportional to ;. This is also true for the
anisotropy field by assumption in Sec. III below. Thus
the parts of Upnagi associated with these fields are both
proportional to p2, , indicating that they both ultimately
arise from interactions between pairs of spins, hence the
prefactor of 1/2 in the first term of Eq. (5) as discussed
in regard to Eq. (A16) where only the exchange field
was present. We write the sum of the exchange and
anisotropy fields as

Heychia + Hpjo = Aoy (6)

where the constant a contains the parameters associated
with these fields. Then Eq. (5) becomes

Bia = Qi + Ha- (7)

1. Properties in Zero Applied Field

When H, = 0, Egs. (4) and (5) yield the internal en-
ergy per spin as

a
Unas(Ha = 0,7) = =5 2 (7). ®)
We always assume that the spins are identical and crys-
tallographically equivalent, so the subscript ¢ is sup-
pressed when H, = 0. Then the magnetic heat capacity
per spin Ciag is
AUnmag(Ha =0,T) dig,

Cmag(Ha = O,T) = AT = —Qpa—7

The magnetic entropy Smag(Ha = 0,7") per spin is then
obtained as

Smag(Ha =0,T) = Smag(Ha =0,T7 =0) (10)
T _
n / Crag(Ha = O’T)dT,
0 T

and the (Helmholtz) free energy Fiag(Ha = 0,T) as

Frag(Ho =0,T) = Unag(Ho =0,T) (11)
— T'Smag(Ho =0,T).

2. Properties at Nonzero Temperature and Nonzero Applied
Field

It is most convenient in this paper to calculate the
thermodynamic properties in the H,-T plane by choos-
ing the path from (H, = 0,7 = 0) to (Hy, = 0,T) as
in the previous section and then at constant T from
(Hy = 0,T) to (Ha,T). The differential of the free
energy for the second part of the path at constant T,
dFag = —Smagd! — padH, with dT' = 0, yields

dFmag(Ho, T) = —ptodH,. (12)



Then using Eq. (11) one obtains

Hea
Fmag(Ha;T) :Fmag(Ha :O,T)—/ ,UJa(Ha;T)dHav
0
(13)
where Fiag(Hy = 0,T) is found as described above.

The variation of the magnetic entropy with field at
constant temperature is found from the Maxwell relation

pa(Ha, T)
dSmag)T = | ——7— dH,. 14
(@smee)r = (L) (1)
Then using Eq. (10) one obtains
Smag(Ha, T) = Smag(Hoa =0,T) (15)

e Opa(Ha, T)
o[ (D)
0 aT He

An increment of internal energy is
AUmag = T'dSmag — HadHq. (16)

Using Eq (14) for dSmag at fixed T gives

Oue(Hy, T
(dUmag)T = |T (%) - Moz‘| dHou (17)
Hea
and hence
Umag(Ha, T) = Umag(Ha =0,T) (18)
H,
« aua(HmT)>
+ / T<7 — Lo | dH,,.
0 6T H,

In the free-energy expression (13), the integral of
(Ofta(ha,t)/0t)n, over hg in Smag and Umag is not
present because it cancelled out in the definition Fiae =
Umag - TSmag-

3. FExpressions in Reduced Variables

In order to formulate laws of corresponding states for
the thermodynamic properties, we normalize all energies
by kTN, where T s is the Néel temperature in zero field
arising from exchange interactions alone as discussed in
Appendix A. We also define the following dimensionless
reduced variables

guBBa
bo = , 19a
kBTN (192)
a
A = : 19
kBTN (19D)

bo = Afig + ha. (19¢)

Then also using Egs. (1), the expressions in the above
two subsections become
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III. AFM ORDERING IN A CLASSICAL
ANISOTROPY FIELD

- ﬂa (hou t)‘| dhoz'

o

The lowest-order uniaxial anisotropy free energy Fa;
per spin associated with a uniaxial or planar anisotropy
symmetry as in Figs. 1 and 2, respectively, for an ordered
and/or magnetic field-induced thermal-average magnetic
moment ji; is written as?

Fa; = Ky;sin® 60, (21)

where 6; is the polar angle between ji; and the uniaxial
z-axis. Here we assume that this relation is valid for the
entire angular region 0 < 6 < w. The z axis for Fa;
from which 6; is defined is assumed to be a uniaxial axis
of the lattice, and hence the anisotropy is fundamentally
magnetocrystalline in origin. This generic model is as-
sumed to apply to spin systems with any spin angular
momentum quantum number S (in units of & which is
Planck’s constant divided by 27) and can therefore treat
systems with S = 1/2 for which a magnetocrystalline
DS? term in the Hamiltonian gives no anisotropy. The
anisotropy constant K is in general different for differ-
ent moments fi; because of their different magnitudes as
discussed below, hence the subscripts 7 in Eq. (21). If
K, is positive and H = 0, then the lowest free energy
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FIG. 1: (Color online) The orientation of a representative
magnetic moment ji; described by spherical coordinates 0;
and ¢; in an applied magnetic field H = H, k and a generic
classical anisotropy field Ha; directed along the +z-axis. For
such an anisotropy field collinear AFM ordering along the
z axis is favored if H, = 0.

—>n T
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FIG. 2: (Color online) The orientation of a representative
magnetic moment fi; in an applied magnetic field H = H, k
and an anisotropy field Ha in the xy plane that is directed
along the projection of fi; onto the zy-plane as shown. For
such an anisotropy field collinear or planar noncollinear AFM
ordering within the xy plane is favored if H, = 0. The az-
imuthal angle ¢; is in general different for different moments

but the value for each moment is not affected by H.

of a system occurs with sin6; = 0 for all fi;, for which
the ordered moments are collinear and aligned parallel
or antiparallel to the uniaxial z axis, whereas if K;; is
negative the lowest free energy occurs when sin §; = 90°
for all fi;, resulting in collinear or coplanar ordering in
the zy plane. Using Eq. (21), the magnitude 74; of the
torque on each fi; by its anisotropy field Hy; (see below)
has the same form for all moments and is given by

OFn;
00

= 2|Ky;sin6; cos ;] . (22)

-

A. Collinear Ordering along the z Axis: Uniaxial
Anisotropy

For collinear AFM ordering along the z axis in H =
0 with uniaxial anisotropy, one has 6; = 0 or 180° in
Fig. 1. The anisotropy field Ha; along the z axis in such
a collinear AFM is defined to be in the same direction +k
as that of the ordered moment ji;, which can be written
as

HAi = HAOiCOSQik,
Hpiz = Hag;cost;,

(23a)
(23b)

where Hpg; > 0 is the amplitude of the anisotropy field
for axial anisotropy. For uniaxial ordering Ki; > 0 in
Eq. (21), so that the minimum free energy Fa, = 0 oc-
curs for collinear AFM ordering with the moments ori-
ented along the z axis as shown in Fig. 3(a). If the mo-
ments all rotate with increasing field into a “spin flop”
phase to give ; < 90° for each spin, then from Eq. (21)
and Fig. 3(a) the anisotropy free energy of each moment
increases to ~ Kj;.

Using Eq. (A27a) for a representative moment ji;, the
torque due to the anisotropy field on the moment tilted
by an angle 6 with respect to the z axis is

Pai = fli X Hay = piHao; sin 0; cos 0;[sin ¢ i — cos ¢y j|,
(24a)
with magnitude
TA; — |/J,iHAQi sin 91' COS 91| N (24b)
where p; is the magnitude of the (thermal-average) fi;
and 0, is the polar angle in Fig. 1. Comparing Egs. (24b)
and (22) gives the anisotropy constant for moment 7 as

Ky = “H% >0, (25)
where K7; is positive for uniaxial collinear ordering in
zero field as discussed above. As noted above, K; can
depend on the specific moment ¢ if the magnitude p; is
not the same for all moments.

The maximum magnitude of Hya; from Egs. (23) oc-
curs at #; = 0 or 180°, at which the anisotropy free energy
in Eq. (21) is minimum (zero) as shown in Fig. 3(a). A
plot of Hp;./Hagi versus 6; from Eq. (23b) is shown in
Fig. 3(b), which by comparison with Fig. 3(a) demon-
strates that the maximum magnitude of the anisotropy
field occurs at the ordering angles for collinear AFM or-
dering, for which the free energy is minimum.

B. Collinear or Planar Noncollinear Ordering in
the xy Plane: Planar Anisotropy

When planar (XY) anisotropy is present, the ordered
AFM structure in H = 0 can be either a collinear struc-
ture or a planar noncollinear structure with the ordered
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FIG. 3: (Color online) Comparisons of the free energy and anisotropy fields, respectively, for (a,b) axial z-axis anisotropy and
ordering and (c,d) zy-plane anisotropy and ordering. The anisotropy free energy per spin Fa; normalized by |K1;| is given in
Eq. (21), where Ki; > 0 for axial anisotropy and Ki; < 0 for planar anisotropy. The anisotropy fields Ha; for axial and planar

anisotropies are given in Eqs. (23) and (27), respectively.

moments aligned in the zy plane for both structures. In
either case the polar angle for the orientations of all or-
dered moments for H = 0 is #; = 90° in Fig. 2. In order
that these magnetic structures have a lower magnetic free
energy than for collinear AFM ordering along the z axis
requires that

Ky; <0 (26)
in Eq. (21), as shown in Fig. 3(c).

From Fig. 2, Ha; is directed along the projection of i;
onto the xy plane instead of along the z axis as described
in Eq. (23a) for uniazial anisotropy. Therefore, instead
of Eq. (23a), we now write Ha; in spherical coordinates
as

H o, sin ;(cos ¢; i+ sin i j),
H po; sin 0,

Hai =
HAi Ty

(27a)
(27b)

where Hq; is the magnitude of Hu; when 6; = 90°. The
torque exerted by Hya; on fi; is obtained from Egs. (27a)

and (A27) as

— i H p0; 8in 6; cos 0 (sin ¢; i—cos i j),
(28)

Tai = Hi X Hay
with magnitude

TA; — |,LLZ'HA01' sin 91 COS 91| . (29)
This is the same expression as in Eq. (24b) for collinear
AFM ordering along the z axis, but here the zero-torque
condition applies to §; = 7/2 instead of 0 or 7 as appro-
priate for z-axis collinear ordering.

Comparing Egs. (29) and (22) and using (26) gives

_ HiHaoi

Ky = >

<0, (30)
which is the same as in Eq. (25) for axial anisotropy
except for the sign. A plot of Ha; 4/ Haoi versus 6; from
Eq. (27a) is shown in Fig. 3(d), which by comparison
with Fig. 3(c) demonstrates that the anisotropy field is
maximum at the ordering angle 6; = 7 /2 for planar AFM

ordering for which the free energy is minimum.



C. Fundamental Anisotropy Field Ha:

In the present treatment of either uniaxial or pla-
nar anisotropy, we write the anisotropy field amplitude
Hap; > 0 in Egs. (23) and (27) as

3HA1 _ 3HA1

Hpoi(T) = i =———1,(T), (31
aolT) = G () = el @), (31a)
where the subsidiary anisotropy field

Hpr >0 (31b)

does not depend on the moment ji; or on T and is there-
fore a more fundamental anisotropy field than Hag;. The
reason for including the factor 3/(S + 1) in Eq. (31a) is
explained in Sec. IV below. The reduced ordered mo-
ment fi; = p;/lsat can be numerically calculated for all
moments in H = 0 using Eq. (37a) below but the value
can be different for different moments if H # 0. Inserting
Eq. (31a) into (25) or (30) gives
3H A 9
s 62
where we used Eq. (1b). Since (T = Tn) = 0 if
H = 0 where Ty is the Néel temperature in the pres-
ence of both exchange and anisotropy fields (see below),
one has Ky,(T — Ty) = 0 if H = 0'°. However, for
H > 0 afield-induced thermal-averaged moment p; arises
in the paramagnetic state at T' > Ty, and this anisotropy
therefore influences both the AFM and PM (FM-aligned)
states.

3guBSHaq i2(T)

Kizi.

IV. NEEL TEMPERATURE, ORDERED
MOMENT, INTERNAL ENERGY, HEAT
CAPACITY, ENTROPY, AND FREE ENERGY
OF THE ANTIFERROMAGNETIC PHASE IN
ZERO APPLIED FIELD

The definition of the anisotropy field Hy; in Eq. (23a)
for collinear AFM ordering along the z axis (6; = 0
or 180°) and in Eq. (27a) for ordering in the zy-plane
shows that for H = 0, Hy; is parallel to each ordered
magnetic moment fi; in the ordered state below Ty, just
as the exchange field Hexep; 8. Since the local exchange
and anisotropy fields are both in the same direction as
that of the respective ordered moment in the AFM state
in H = 0, they reinforce each other, and also have the
same values for each moment because all moments are
identical and crystallographically equivalent by assump-
tion.

For H = 0 the parameters pg, jig, K1 and Hpp do not
depend on the spin ¢ and hence we drop the subscript 4
when discussing these quantities for H = 0. Here the
parameters po and fig respectively refer to the ordered
moment and reduced ordered moment in H = 0 but in
the presence of both the exchange and anisotropy fields
as appropriate.

From Egs. (A9) for the exchange field in H = 0 to-
gether with Eq. (A1b), one obtains

3Thy
N +N1J)T Ho: (33)

gNBHexchO
kT

Using Eq. (31a), a similar expression for the anisotropy
field is

g Hao 3gusHa1 3Ta1
= fio = i (34)

keT — (S+DkeT ™° (S+1)T "

where the anisotropy temperature Th1 (not a real tem-
perature) is defined in terms of Hay in Eq. (1d). For
H = 0, the magnetic induction obtained by MFT that
is seen by each moment is B = Hexcno + Hap. Using
Egs. (33) and (34), fig is governed by the Brillouin func-
tion Bg(y) according to Eqs. (A10) as

,L_LO = BS(yO)v (35)
3 Po
p— —_— T T p—
Yo S+1(NJ+ Al)T

The ordering temperature occurs as jig — 0. Using the
first-order Taylor series expansion term of the Brillouin
function in Eq. (Allb), Eq. (35) gives the Néel temper-
ature T' = Ty in the presence of both the exchange and
anisotropy fields as

Tn=Tng +Ta1=Tns(1+ har), (36)

where ha; is defined in terms of Ta; and Ha; in Egs. (1e)
and (1i). Thus the presence of the reinforcing anisotropy
field hpy > 0O increases the Néel temperature, as ex-
pected. From Eq. (36), the fractional increase in the
Néel temperature due to the anisotropy field, % -1,
is equal to ha1, an appealing physical interpretation of
hai. This behavior is comparable to the influence of a
DS? anisotropy on Ty at small D where Ty is propor-
tional to D, but is very different from the behavior of T
versus D at larger D where Ty varies nonlinearly with
D*. However, for the classical anisotropy treated in this
paper both the ordering temperature Tx and the Weiss
temperature 6, (see below) vary linearly with ha in the
same way for arbitrary values of hay.

To determine the zero-field ordered moment versus
temperature for T' < Ty, we use Egs. (1j) and (36) and
Eq. (35) becomes

o = BS (y0)7 (378“)
3
ool om

This equation, which is used to numerically calculate
fio(ta), has the same form as Eq. (A14) for H = Ha; = 0,
except with to = T/Tx in Eq. (1j) replacing t = T/TnJ
as shown in Fig. 4''. Hence the reason we introduced the
factor of 3/(S+1) in the definition of the anisotropy field
Haoi in Eq. (31a) was to require Eqs. (37) to have the
same form as Egs. (A14).
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FIG. 4: (Color online) Reduced ordered moment fig versus
reduced temperature ta in zero applied field but in the pres-
ence of an anisotopy field. These behaviors are valid within
MFT for both uniaxial and planar anisotropies for any type of
magnetic ordering of identical crystallographically-equivalent
spins.

To determine [ip in terms of ¢ = T/Tny instead of
ta = T/Tn, one can use Egs. (1j) and (37a) to obtain

3fio(1 +hA1):|

CES (38)

flo = Bs {
Setting ha1 = 0, one recovers Egs. (A14) for the case of
zero anisotropy.
In zero field all spins have the same internal energy per
spin U; according to Eq. (5), which has two contributions
for either z-axis or xy-plane ordering given by

Ui = exch0 T UAi (393“)
1

Uexchi = - §,UfHexchOa (39b)
1

UAi = _§IUHAQ7:. (39C)

Normalizing the energies by kgTns, Egs. (A17), (1),
(23b) or (27b), and (31a) yield

chchO 35

= — 02 4
kTN 2(S + 1)”0’ (402)
UAfL' 38 —9
kTN 2(S+1) A1k, (40b)
U; 35
L = - 1+ hat)fa. 4

Shown in Fig. 5 are plots of U;/kpTx versus reduced
temperature to for a range of reduced anisotropy param-
eters ha; = 0 to 1 and for spins S = 1/2 and S = 7/2 ob-
tained using Eqgs. (37) and (40c¢). One sees that the zero-
temperature internal energy decreases (becomes more
stable) with increasing ha; as expected. Also, the inter-
nal energy goes to zero when the ordered moment goes
to zero with increasing temperature.

25 . . 1 . 1 . 1 \
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FIG. 5: (Color online) Magnetic internal energy per spin
Umag normalized by kT of the AFM phase versus reduced
temperature ta in zero applied field in the presence of a re-
duced anisotopy fields ha1 = 0 tol for spins (a) S =1/2 and
(b) S = 7/2 obtained using Egs. (37) and (40c).

The magnetic heat capacity per spin is

Cmag  d(U;/kgTx)
kg dt
_ 35 _ djio(ta)
= - (S——I—l) (1 +hA1)MO(tA)Ta
_ 35\ - diio(ta)
- (S+1)MO(tA) dta (41)

where we used Eq. (1j) to obtain the third equality,
fip(ta) is obtained by solving Eqs. (37) and dfig(ta)/dta
is obtained from Eq. (Allc) where y = yo is given in
Eq. (37b). Equation (41) for Cp,ag is identical in form to
the equation for Cinag with ha1 = 0 and with ¢ replacing
ta'l. The presence of hay in Eq. (41) is therefore equiv-
alent to the replacements Tn; — Tx and t — ta in the
equation for ha; = 0. Plots of Ciag/ta versus ta are
shown for S = 1/2 to S = 7/2 in Fig. 6(a). One sees
that with increasing S, on approaching Ty from below
Chag/ta approaches a constant value for increasing S



given by

Crag(ta — 1,8 = 00)
kg

=5/2, (42)

consistent with the exact expression for finite S6

Cag(ta = 1) 5S(S+1) 3)

ks T 1428(S+1)

The broad hump that develops in Crag/kBta at ta ~ 1/4
for large S is intrinsic to the MFT®, and is therefore
prominantly observed in the AFM state of compounds
containing spin-only Eut? and Gd*? ions with large spin
S = 7/2C. It arises from a practical point of view in or-
der that the statistical mechanics value for the magnetic
entropy per spin at Ty, given by

Smag(ta = 1)/ks = In(25 + 1), (44)

continues to increase with increasing S, since as just
stated the Ciag(ta ~ 1) is bounded with increasing S
and hence the increasing entropy must arise by increasing
Chuag at lower and lower temperatures with increasing 5.

The Smag/kB versus ta for hai > 0 is obtained using

ta
Smng(ta) _ / COmag(ta) /s g, (45)

where Smag(ta = 0) = 0 because the energy levels are
nondegenerate at t4 = 0 due to the presence of nonzero
Hexen and Hya, and Chag(ta)/kg is obtained as described
above. The Spag is plotted versus to for S =1/2to S =
7/2 in Fig. 6(b), where the high-T limit in Eq. (44) is
indeed obtained for each value of S for T' > Tx.

The reduced Helmholtz free energy per spin versus re-
duced temperature 5 is given in general by

Fmag Umag Smag
= —t . 46
kBTNJ kBTNJ A kB ( )

Shown in Fig. 7 are plots of Fiae/kpTng for H = 0
versus ta with hay values from 0 to 1 for spins S = 1/2
and S = 7/2 obtained from the data in Figs. 5 and 6.
One sees that Fi,,, varies monotonically with ¢, but
that the sign of the slope depends on the value of haj.
Another important feature is that Fi.e is independent
of hay for tao > 1 because Upag = 0 in that temperature
range and Syag versus ta is independent of ha; for a
given value of the spin S because the influence of ha;
is already included via its effect on Ty in the definition
tA = T/TN.

V. MAGNETIC SUSCEPTIBILITY OF THE
PARAMAGNETIC PHASE

In the paramagnetic (PM) phase at T' > Ty, there
is no ordered or induced moment in the absence of a
field H applied along a principal-axis direction. When

(a) S=1/2,1,3/2,..,72 ‘
H=0

3.0+

€/t ()

20 (b)
S=1/2,1,3/2, ...
L5 ¢ H=0
o
T LOE
g
[# 2]
0.5F
0‘0 | 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

tA=TfTN

FIG. 6: (Color online) Magnetic heat capacity per spin Cumag
of the AFM phase versus reduced temperature ¢4 in zero ap-
plied field for any reduced anisotopy field ha1 > 0 and spins
S = 1/2 to 7/2 in half-integer increments. The hump that
develops with increasing S at a temperature ~ ¢4 /4 is intrin-
sic to molecular-field theory. (b) Magnetic entropy per spin
Smag/kB versus ta for the same parameters as in (a).

H, > 0, the field-induced thermal-average moment of
each spin points in the direction of H. From Eq. (A21a),
the magnitude of the exchange field seen by each moment
is

3kpb,.

Hex a = T 4 N
P gus(S+1)

fars (47)

where 6,7 is the Weiss temperature due to the exchange
interactions alone, which is defined in terms of the ex-
change constants in the spin system in Eq. (A6b), and
flo = fa/lsat = Ma/gSps is the normalized thermal-
average moment induced by H, in the « direction.
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FIG. 7: (Color online) Reduced magnetic free energy per spin
Finag/ksTng of the AFM phase versus reduced temperature
ta in zero applied field for anisotopy fields ha1 as listed and
spins (a) S = 1/2 and (b) S = 7/2, obtained using Eq. (46)
and the data in Figs. 5 and 6.

A. Anisotropic Paramagnetic Susceptibility with a
Uniaxial Anisotropy Field Along the z Axis

1. HL =z

Here we consider a uniaxial anisotropy field Ha; along
the z axis as in Eq. (23a) and Fig. 1 with the induced
moments in the PM state with T" > Ty aligned perpen-
dicular to the z axis due to an infinitesimal H applied
in the xy plane. According to Egs. (24) with 6; = 90°,
the torque of Hya; on fi; is zero. Hence the anisotropy
field has no influence on p , where the 1 direction is
perpendicular to the easy axis or plane for AFM order-
ing. Therefore the low-field susceptibility x| follows the
Curie-Weiss law given by Eq. (A23b) for exchange inter-
actions alone as

Cq

xapm(T 2 Tn) = Xay(T 2 Tn) = 75—
pP-

(48a)

10

The xy-plane susceptibility at Ty is thus

o e
Tn—0p; Ing+Tar—0ps°

x1pm(In) = (48Db)

where we used Eq. (36) for Ty to obtain the second equal-
ity. The presence of the infinitesimal H; does not mea-
surably affect Tx. The reduced susceptibilities defined in
Egs. (3) are

T
Xipm(T > Tn) = %INJ (49a)
- 1 B 1
Cot—fs  ta(l+har)—fs
1
X T=1TNy) = ——, 49b
X1pMm( N) T = [ (49b)
. fi S+1\ _
Xipm(T > 1Tn) = Z—L = (T) X1pm(T > TxN)
1
(49¢)
o S5+1 S+1
3(t—f1)  3ta(l+har) = fi]°
" S+1
XJ_PM(T = TN) = (49d)

31+ har — fi1)

If H is along the z-axis, then an anisotropy field in
the direction of H and of the induced moment is present
with magnitude Hao given by Eq. (31a). The normal-
ized induced moment in the z-direction (f) is given by
Egs. (A10), (A21Db), (31a) and (1d) as

guB

kBT(chch + HAO + Hz):| (50)

HBpm = BS{

3
= Bg|—— (0 T
s [54—1( bt + Ta1)
Using the first-order term in the Taylor series expansion
of the Brillouin function in Eq. (A1lb) one obtains the
Curie-Weiss law

M Gy
> = — =
Xpm(T > 1) - T—0, (51a)
Cq
X||PM(TN) = In — 0, (51b)
= G (51c)

Tny(1+ hat) — 6y’

where the Weiss temperature in the presence of the
anisotropy is

Op = Op5+Ta1 =055+ 0pa (51d)
= Op5 + haiInyg,
6‘pA = TAl = hAlTNJ. (516)



Equations (51) yield the reduced forms (3) as

_ 1
Xjipm(T > Tn) = T4 ha)in = ) —har’ (52a)
Xjem(T' =Tn) = 7 —1fJ’ (52b)
) B S+1
S+1
Xipn(T =1Tn) = §?f§7§3' (52d)

Thus the Weiss temperatures from the exchange inter-
actions and from the anisotropy are additive. This addi-
tivity also occurs for anisotropy arising from the magnetic
dipole interaction® and from the uniaxial D.S? single-ion
anisotropy at small D*. From Egs. (51a) and (51d),
one sees that the z-axis anisotropy field in the direc-
tion of H increases x| pm at fixed T', as expected since
the anisotropy field increases the magnitude of the local
magnetic induction seen by each induced moment.

In addition, one finds that Ty in Eq. (36) and 6, in
Eq. (51d) for H directed along the z axis are both shifted
towards positive values by the same amount due to the
anisotropy field, and therefore

In—0p=Tny —0Ops (H || easy axis). (53)

By comparing Eqs. (48a) and (51a), the Weiss temper-
atures are seen to be different for xpy and X|[PM and
hence Eq. (53) applies for H || z but not for H L z. From
the definition for f; in Eq. (A7) together with Eq. (53),
Eq. (51b) can alternatively be written as

4 B 4
Tng—0ps  Tng(1—fy)
as is also apparent from Eq. (52b).

Since Tx > TN, one sees by comparison of Egs. (49b)

and (52b) that x(Tx) > x1(Tx) if the g values for fields
in the two directions are the same.

x| (Ix) = (54)

B. Anisotropic Paramagnetic Susceptibility with
XY Planar Anisotropy

If the anisotropy field is in the xy plane as in Fig. 2,
one cannot identify a unique easy-axis direction. Hence
we specify the anisotropic susceptibilities as x. and xgy
instead of x1 and x|, respectively. In the presence of
an applied field in some direction in the zy plane, the
induced moments in the PM state are aligned in the same
direction.

Following the same steps as in the previous section,
we find that y.(T > Tx) is the same as x, (T > Tn) in
Eqgs. (48), i.e.,

Cq
> -
X=(T > 1IN) 76, (bba)
C C
X-(Tn) = ! ! (55b)

In — 0oy  Tng+Tar—0ps°
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FIG. 8: Figure showing that the influence of an infinitesimal
magnetic field H along the | -axis on each spin in the xy plane.
The H induces a tilting of each ordered magnetic moment fi
towards the magnetic field direction by an infinitesimal angle
v, which results in an induced l-axis component p, of fi.
The angle ~ in the figure is greatly exaggerated for clarity. To
first order in v and H the magnitude of the ordered moment
is unaffected by the presence of H.

where T'a1 is defined in Eq. (1d).
Similarly X, (T > Tx) is the same as x| (7" > Tx) in
Eq. (5la):

O Ch
S T—0, T—Tar—0p5

Xacu(T Z TN) (55C)

Therefore at the Néel temperature, using Eq. (53) one
obtains

cy Cy
In—0, TIng—0Ops

me(TN) = (56)

Thus in the paramagnetic state with T > T, if one
has z-axis uniaxial anisotropy then X. > Xy, whereas
for xy planar anisotropy one has xgzy > X-.. These rela-
tionships are expected, since a uniaxial anisotropy field
helps to align the moments along the z axis, whereas an
zy planar anisotropy field helps to align the moments in
the zy plane.

VI. ANISOTROPIC MAGNETIC
SUSCEPTIBILITY OF THE
ANTIFERROMAGNETIC PHASE

A. Perpendicular Susceptibility

To calculate x | apm (T < Tx) in the presence of Hy we
assume here the presence of a planar XY anisotropy as in
Fig. 2 with the ordered moments aligned in the zy plane
for H = 0. The expression for x;apm in Eq. (61) be-
low is valid for both collinear and planar noncollinear
AFM structures. We calculate the infinitesimal angle
in Fig. 8 for which the total torque on a representative
moment fi; is zero, and from that yjapm(T < Tn) is
obtained.

From Fig. 8, one finds that the ordered moment mag-
nitude po in H; = 0 does not change to first order in H
and the radian angle «v. Thus using spherical coordinates,
the magnetic moment i; to first order in ~ is

fii = fto (COS ¢ii+sing; +7j—) ; (57)



where ¢; is the angle between i; and the positive x axis in
H = 0. The torque contribution due to the exchange field
is obtained writing § = § — v and thus sinf cosf = v in
Eq. (A28) and then using Egs. (Alb) and (1b), yielding

2 ~ ~
i X Hoxeni = —%"f(sin $i1— cos§; ) (Txs — Op)
2 A~ A~
= —M(sin @il —cos;j), (58)
XL1J

where Eq. (A33b) was used to obtain the second equal-
ity. The contribution of the applied magnetic field to the
torque to first order in H, is

fis x H = pigH | (sin ¢; 1 — cos ¢ j). (59)

The torque on fi; exerted by Hp; to first order in v =
90° — 6 is given by Eq. (28) as

fii x Ha; = —ypoHao(sin ¢ i — cos ¢ j). (60)

Then setting the sum of the three torques to zero, solv-
ing for yup = py and using Egs. (Alb), (A23c), (31a)
and (36), one obtains the perpendicular susceptibility
XLAFM = ILLL/HL in the AFM state as

o e
Tn—0p;  Tng+Tar—0p

xiarm(T < Tn) = (61)

which agrees with Eq. (48b) for the PM state at Tx.
Thus x| arm is independent of T' below Ty with the value
x1pMm(TN). From Eq. (61), one sees that xjapm(T <
Tx) is reduced compared to the pure Heisenberg case in
which Ta1 would be zero, since that anisotropy field re-
sists the tilting of the moments out of the xy plane by H .
The same T independence of x for T' < Tx was found
for AFM ordering in the presence of magnetic dipole in-
teractions with or without the presence of exchange in-
teractions®. In contrast, when quantum uniaxial DS?
anisotropy is present in a Heisenberg spin system, x|
decreases with decreasing T below Ti?.

B. Parallel Susceptibility of Collinear z-Axis
Antiferromagnets below Tn

In this section we calculate x| (7" < Tn) in the presence
of a uniaxial anisotropy field along the easy z-axis as in
Fig. 1. Here we follow the approach of Ref.* in which
the influence of quantum DS? anisotropy was studied
instead of the present generic classical anisotropy. In
the collinear ordered state, we consider two sublattices.
Sublattice i; = u; k is taken to point in the direction of
the field H, and sublattice ji; = —pu; k to point in the
opposite direction in zero field.

The exchange field seen by a spin on sublattice 7 is*

kTN

S 1T (1) == 1] (620)

Hexchi =

12

If H, = 0, one has [i; = —ji; and p; = pp for all spins,
yielding

3kpINiio
Hecchio = ———— 62b
MO gus(S + 1) (62b)
and
gﬂBHexchi 3 _
ex = = . 62
Yexcho lpT S+ 1) (62)

The anisotropy field seen by fi; in the z direction is

3Ha1 3Hay _
Haoiz = iz — ) 63
AV =SS+ )T s 1 (63a)
yielding
guBHaoi 3har
= = . 63b
Yao T S+ 1)tu0 (63b)
Thus the parameter yg is
= + = L(l + har)p (64)
Y0 = Yexcho T YA0 = (St 1) A1)Ho
But to =t/(1+ ha1), so one can also write
3
(65)

N RN

Then the reduced ordered moment in zero field fig is ob-
tained at each t or t5 by solving

fo = Bs(yo)- (66)
When a field H, is present, one has

gMBHz hz
=== —. 67
YH ksl P ( )

If H, is infinitesimal as needed to calculate x|, one
must go back to Eq. (62a) to obtain the infinitesimal

change in the exchange field. In this case one has dji; =
—dji; and Eq. (62a) gives

3kgInyfr
dHexehiz = ——— 5~ dfi;z. 68
Then one obtains
3fr
AYexchi = 7o A= 69
Yexehi = (g 73,47 (69)

From Eqgs. (63b) and (67) one also has
3ha1 dh,

dya; = ————d[l;z, dyg = . 70
vai = oy i =~ (70)
The sum of the three changes in dy; is
3 dh.
dy; = hat)dii; + —. 71
Y (S+1)t(fJ+ A1)dfii; + : (71)



The change dji;, in the reduced moment on sublattice 4
is governed by the Brillouin function, i.e.,

diti» = B (yo)dy;. (72)

Substituting dy; from Eq. (71) into (72) and solving for
dfi;, gives the reduced z-axis susceptibility per spin ac-
cording to Eq. (3b) as

Xjarm(t) = mv (73)
where
e (S

If ha1 = 0, one recovers the || expression for the pure
Heisenberg case given in Refs.?S.

Using Eq. (1j), one can also calculate yjjary in Eq. (73)
versus to = T'/Tx instead of versus ¢t = T'/Tx from

_ - 1
Xjarm(ta) = —TK s+ har)’ (75)
where
" . (S+1)tA(1+hA1)
TA(tA) = 3Bf9(y0) . (76)
We find
_ 1
Xj(ta=1)=7— 7 (77)
so from Eq. (75) one obtains
Xjarm(ta) 1—f;
=1 A -G rhay

where 7x(ta = 1) = 1+ ha; and hence the ratio in
Eq. (78) at to = 1 is equal to unity as required.

C. Summary: Anisotropic Susceptibility of
Collinear z-Axis Antiferromagnets in Reduced
Parameters

Using the definition of the reduced susceptibility in
Eq. (3b), together with Eqgs. (1), (48a), (51), and (75),
the anisotropic reduced susceptibilities versus ta = T/Tn
for the PM and AFM phases are summarized as

m (AFM, ta < 1)

XL = L (79&)
T EMota =),

i m (AFM, tx < 1)

X = . (79b)
T (EMs ta > 1),
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FIG. 9: (Color online) Anisotropic reduced magnetic suscep-
tibilities | and Y1 versus reduced temperature to for two
different S values, two different f; values and for a fixed
anisotropy field ha1 = 1/4, according to Egs. (79).

X (TN) hai
=1+ , 79c
x1(Tn) L—f; (79¢)

where
N (S—l—l)(l—l—hAl)tA
_ , 79d
™ 3B5(0) (784)
_ 3fio

fio = Bs(yo). (79f)

In these reduced susceptibility units, x 1 (ta) is inde-
pendent of S for all t4, and X arm(ta < 1) is dependent
of S since 75 depends on S. These features are illus-
trated in plots of x| (ta) and x|(ta) in Fig. 9 for § = 1/2
and 7/2 and for f; = —1 and f; = 0.5, all with a fixed
value of the reduced anisotropy parameter haq = 1/4.
An important feature of the temperature dependences is
that X|PM > X1PMm at ta > 1, but a crossover occurs
where xarm < XL1aFM at lower £a.

From Eq. (79¢), as f; increases algebraically towards
its upper limit of unity at a fixed value of ha1, the ratio
x| (Tn)/x L (Tn) increases, as observed in Fig. 9.

VII. HIGH-FIELD PERPENDICULAR
MAGNETIZATION OF THE
ANTIFERROMAGNETIC AND
PARAMAGNETIC PHASES

In this section the “perpendicular” direction 1 of an
applied field H refers to a direction perpendicular to the
easy axis (for a collinear AFM) or plane (for a planar
noncollinear AFM) of the anisotropy field Ha.
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FIG. 10: (Color online) Influence on the generic magnetic
structure due to a high magnetic field applied perpendicular
to the easy axis of a collinear antiferromagnet (AFM) (top
panel) and to the easy plane of a planar noncollinear AFM
(bottom panel). Hodographs of the zero-field magnetic mo-
ment vectors are shown on the left. In high fields as shown
on the right, the AFM structures become canted towards
the field. The ordered moments of the collinear AFM are
now coplanar, whereas those of the noncollinear AFM now
lie on the surface of a cone with the axis of the cone along
the magnetic field axis as shown. At a sufficiently high field
H = Hgj arm given by Eq. (83), the moments in either case
become parallel to each other and a second-order transition
from the canted AFM to the PM state occurs.

A. Antiferromagnetic Phase

The x 1 arm(T < Tx) for fields H; — 0 was calculated
in Sec. VIA. Here we determine the magnetization in
high perpendicular magnetic fields for both collinear and
planar noncollinear AFMs at fields below the perpendic-
ular critical field H. | aopym = ‘LLO(H =0,T< TN)/XLAFM-
We find that p axn is proportional to H; up to He | arpm
with the same T-independent slope x| arm as for H; —
0 in Eq. (48b), and that the ordered moment po(T) is
independent of H, in the AFM phase.

For collinear AFMs, at high fields the canted moments
lie in a plane defined by the initial parallel axis and the
applied field as shown in the top panel of Fig. 10. In
contrast, for a planar noncollinear structure at H = 0, in
large fields the moments in a hodograph lie on the surface
of a cone with the tails of the moment vectors at the apex
and the axis of the cone along the applied field axis as
shown in the bottom panel of Fig. 10. We can therefore
treat both the collinear and planar noncollinear cases si-
multaneously, where the anisotropy field is in the plane
perpendicular to the applied field as shown in Fig. 2.

From Fig. 2, the torque on [i; due to a perpendicular
field H in Eq. (59) is the same as that due to Ha, in
Eq. (60) except for the scalar prefactor and the opposite
direction. Therefore comparing Egs. (59) and (60) one
can include the influence of Hp; on the value of the in-
duced moment p) by setting H = H) — Hag cos6 in the
expression setting the net torque equal to zero in the ab-
sence of Hap*. Then using the definitions 1, = pcosé,
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o = pu/(gSps) and Hpp in terms of Hyy in Eq. (31a)
gives

1 SHa1pt1

CiH - Ci——————|, 80
MOS0 Y

J_ =
a Ing —Ops
where the single-spin Curie constant Cj is given in
Eq. (A1b). Solving for p, gives

C1H |
= 81
j2aN TN — opJu ( )

where to obtain this equation we used the expression for
Tn in Eq. (36) and the definition of Th; in Eq. (1d).
Hence

po(T <Tn) = x1armH (11 < po),
Cy

XLAFM = 7,
TN —Ops

(82)
where x| arpMm is seen to be the same as the zero-field
perpendicular susceptibility already obtained in Eq. (61),
which in turn is the same as x 1 pm(TN) in Eq. (55b).

This independence of p; /H, with respect to H, in
the AFM phase indicates that the magnitude p of the
moments is independent H; and in particular is equal
to the zero-field value, i.e., u(T) = po(T). Thus the T-
dependent critical field H.j oy is given by the field at
which py = po(T), ie.,

Heiarm(T <IN) = (D) (83)

X LAFM

Using Eq. (3b) together with the variable definitions
in Egs. (1), Eq. (82) gives

1

. 84
1+har—fs (84)

XLAFM =
which reproduces the first entry in Eqgs. (79a). Using
Eq. (3b) one obtains

S+1_

. S+1
XLAFM — 3 XLAFM =

3(1+ha1 — fj)°

(85)

Then using the definition | = x* gL from Eq. (3a)
and setting fi; = fip yields the reduced critical field

3fio(ta)

heiarm(ta) = {57_’_1

] Atha—f)  (36)

where fig(ta) is found by solving Eqgs. (37) and fig(ta >
1) = 0. The dependence of h. apm on ta is thus the same
as that of fig on ta shown above in Fig. 4. For given
values of ta, ha1, and fy, heiarm(ta = 0) decreases
with increasing spin S. At t4 = 0 one has jip = 1. Then
Eq. (86) gives

31+ ha1 — fr)

S+1 (87)

heiarm(ta =0) =



B. Paramagnetic Phase

The paramagnetic (PM) phase can be reached from the
AFM phase by increasing the field to H; > H.japm at
T < Tn or by increasing the temperature to 7' > T at
H, = 0. In either case, the thermal-average moment in-
duced by the applied magnetic field H is in the direction
of H if H is in a principal axis direction as considered in
this paper. In this section both H and the field-induced
PM moment p are in the same 1 direction that is per-
pendicular to the easy axis of a collinear AFM or to the
easy plane of a planar noncollinear AFM. Then accord-
ing to Eq. (23a) and Fig. 1 or Eq. (27a) and Fig. 2, re-
spectively, the anisotropy field Hy is zero in either case.
Therefore Eq. (A22) and the definitions of the reduced
variables in Eq. (1) immediately give

_ 3fiIngpiirm  gusH L
= B
HLPM [ CE Y (88)
3frhipm  hy
= B _ —_—
s [ CESI (89)

Even though Ha = 0 for the perpendicular moment ori-
entation, one still has T > Tny if ha1 > 0. Therefore
to compare with experimental data we reexpress the re-
duced temperature as t — (1 4+ ha1)ta using Eq. (1j),
yielding

1 3fsi h
,L_LLPM—BS{ [ friiipm +_L}}

90
1+ hat (S + 1)tA tA ( )

The i, py for given values of hay, f; and ¢ is deter-
mined by numerically solving Eq. (90).

The results for the two cases h; < heiarpm(ta) and
hi > heiarm(ta) are summarized respectively as

(S+1)h
3(1+ha1—f1)

'ul(hl) B BS { 1+}1A1 [(2{%’1#);\ + }Z_:}}
(PM, hi > heiarm)
(91)
where he) arm is given in Eq. (86). Using Eqgs. (91), the
[y versus h curves for spin S = 1/2 and 7/2 with f; =
—1 at four reduced temperatures and hy; = 0 and 1/2
are plotted in Fig. 11. A discontinuity in the slope of
iy versus hy is seen at h; = heyapm for each reduced

temperature ta, reflecting a second-order transition from
the AFM to the PM phase.

(AFM, hy < heiarm)

VIII. HIGH-FIELD PARALLEL
MAGNETIZATION OF z-AXIS COLLINEAR
ANTIFERROMAGNETS:
PARAMAGNETIC AND SPIN-FLOP PHASES

A. Introduction

When a collinear AFM is placed in a magnetic field
parallel to the easy axis (defined to be the z-axis here),
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FIG. 11: (Color online) Reduced perpendicular moment

fi1 = p1 /psat versus reduced perpendicular field h for spins
S =1/2and S = 7/2 at the reduced temperatures tA = T/Tn
indicated for parameters f; = —1 and reduced anisotropy
fields (a) ha1 = 0 and (b) ha1 = 1/2, according to Egs. (91).
Discontinuities in slope at fields hei (T') are seen as the sys-
tem undergoes second-order transitions from the canted AFM
state to the PM state with increasing field. The reduced crit-
ical fields at ta = 0 for ha1 = 0 are hciarm = 4/3 and 4 for
S = T7/2 and S = 1/2, respectively, and for ha1 = 1/2 are
heiarm = 5/3 and 5 for S = 7/2 and S = 1/2, respectively.
Both are in agreement with Eq. (86).

different T-dependent behaviors can occur. A first-order
spin-flop (SF) transition may occur from the AFM phase
to a SF phase as shown in the top panel of Fig. 12, where
the orientations of the ordered moments aligned along
the z axis flop with increasing field to an approximately
perpendicular canted perpendicular orientation!?. It is
common to use the term “spin flop” to denote both the
magnetic phase and the magnetic phase transition. Upon
further increasing the field a second-order spin-flop to
paramagnetic (PM) phase transition occurs in which all
moments then point in the direction of the field.

The PM phase is sometimes called a “ferromagnetic
phase” in the literature because the magnetic structure
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FIG. 12: (Color online) Phase transitions that can potentially
occur in collinear antiferromagnets (AFM) when a magnetic
field H is applied along the easy axis. The magnitude H of the
field increases from left to right. The top panel shows a first-
order spin-flop (SF) transition that occurs from a collinear
AFM structure to a SF phase at a SF field Hsr, which is a
canted AFM structure. At higher fields, the angle between
the two sublattice magnetic moments goes continuously to
zero, corresponding to a second-order transition from the SF
phase to a paramagnetic (PM) phase at a critical field Hcsr.
Alternative scenarios with increasing H include either a first-
order spin-flip transition directly from the AFM to the PM
phase as shown in the middle panel, or a continuous evolution
(“gradual spin flip”) of the AFM phase into the PM phase via
a second-order phase transition as illustrated in the bottom
panel.

of the field-induced PM phase has ferromagnetic (FM)
alignment of the field-induced moments. However, we
reserve the term “ferromagnetic phase” for a ferromag-
netic structure that is caused by the interactions between
the moments in zero applied magnetic field, not by the
field. Indeed, a thermodynamic transition from a PM
phase to a FM phase cannot occur versus 7' in finite H
because the FM order parameter (the net magnetization)
is never nonzero in a finite H at a finite 7.

A first-order spin-flip transition may occur with in-
creasing field directly from the AFM phase to the PM
phase if the anisotropy field along the z axis is sufficiently
strong, as shown in the middle panel of Fig. 12. Within
MFT the magnitude and direction of the initially antipar-
allel moment can also vary smoothly with field, resulting
eventually in a second-order AFM to PM transition as
shown in the bottom panel of Fig. 12.

B. 2z-Axis Induced Moment and Free Energy of the
Paramagnetic (PM) Phase

In this section, we change notation for the PM phase
from g to p.pm. The general high-field expression for
the PM phase was already obtained in Eq. (50). Utilizing
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FIG. 13: (Color online) Reduced z-axis moment fi-pm/fisat
of the paramagnetic (PM) phase versus reduced field h. =
gpBH: /kTny for spins (a) S =1/2 and (b) S = 7/2 at the
indicated reduced temperatures t = T7'/Tns and for f; = —1
and ha1 = 1/2, according to Egs. (92).

Egs. (1), Eq. (50) can be written in reduced variables as

p-pm = Bs(ypm), (92)
_ 3y t+hay) he
ypM 7(5 T l)t HzPM n
1 3(fr+ha1)
= . +h.|.
(1+ ha1)ta S+1 HzPM

When the reduced temperature is taken to be ¢, one can
write

bz

?7 (93)

YypM =

where the reduced magnetic induction b, seen by a rep-
resentative spin is

~ 3(fs 4 har)

b, = i h. 94
511 HepM + (94)

Shown in Fig. 13(a) are plots of fi.pym versus reduced
field h, obtained from Eqs. (92) for parameters f; = —1
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FIG. 14: (Color online) Reduced free energy Fiag/kINJ

of the paramagnetic (PM) phase versus reduced field h. for
spins (a) S = 1/2 and (b) S = 7/2 at the indicated reduced
temperatures ¢ and for f; = —1 and ha1 = 1/2, obtained
using Eq. (98) and the data in Fig. 13.

and hpa; = 1/2, each for spins S = 1/2 and S = 7/2, at
reduced temperatures t = T /Tx; as indicated. Perhaps
unexpectedly, fi.py for ¢ — 0 is seen to be proportional
to h, from h, = 0 to a critical field h.py at which fi.py
saturates to the value of unity and continues to have
that value at higher fields. The scale of the abscissa is
reduced by about a factor of 3 for S = 7/2 compared to
that for S = 1/2. However, the shapes of the plots for
the two spin values are very similar for the same reduced
temperature.

In h, = 0, one sees from Fig. 13 that g,pm = 0, so
Eq. (20a) gives the internal energy per spin as

Umag(h> = 0,1)

=0. 95
kTN (95)

Also, the PM phase in h, = 0 is completely disordered
at all temperatures, so the entropy per spin is

Smag(h- = 0,1)

. =1In(2S +1). (96)
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Thus the free energy in h, = 0 is given by Eq. (20d) as

Fiag(h. =0,1)

= —tIn(2S +1). 97
T ( ) (97)

Now including the field dependence using Eq. (20e) gives

Fmag (hz ) t)

h.
=—tln(25+1) — S/ foz(hzyt)dhy. (98)
kBTN 0

The reduced free energy is plotted versus h, for
spins S = 1/2 and S = 7/2 in Fig. 14 with the same
parameters as in Fig. 13, obtained using Eq. (98).

C. Spin-Flop Phase of Collinear Antiferromagnets
1. Ordered Moment in Zero Field

The magnetic structure and magnetic field orientation
in the spin flop (SF) phase in the top panel of Fig. 12
with nonzero anisotropy field Ha along the easy axis are
the same as those used for calculation of the high-field
perpendicular magnetization in Appendix A for the case
of zero anisotropy field Hy = 0. In that case we ob-
tained Eq. (A38) in which the reduced ordered moment
i = [t/ psar, depends only on t = T'/Tny and not on the
applied field H, if H; < H.,. Equation (A38) is identi-
cal to Eq. (A14) for determining fig(¢) for H = Hp = 0.
Similarly, in the spin flop phase, H and Hx are in the
same direction perpendicular to the H = 0 AFM order-
ing plane and hence the ordered moment again cannot
depend on H, or Ha and is therefore given by the same
Eqs. (A38) and (A14). We have confirmed this conclu-
sion from detailed numerical exact-diagonalization calcu-
lations that will not be presented here. Thus Eq. (A38)
in the case of the SF phase reads

psr = Bs [(S?’[LTSI;)J (99a)
_ 3fisF
- s [(S +1)(1+ hAl)fA] ’ (99P)

where to obtain the second equality we used Eq. (1j).
The ordered moment in the SF phase goes to zero at
a temperature Ty below the Néel temperature Ty, as
shown in Fig. 15 for spins S = 1/2, 3/2 and 7/2 with
ha1 = 1/3 for which Ty /TN = 3/4 according to Eq. (1i).
This feature is critically important to the construction of
the phase diagrams in the h,—t5 plane that are presented
in Fig. 32 below.

The total derivative of fgrp with respect to re-
duced temperature tn is obtained by substituting
t — (14 ha1)ta from Eq. (1j) into Eq. (A15), yielding

dise _ HsF (100a)
dt (S4+1)(14ha1)t ’
. tA[ing@:)l - 1}
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FIG. 15: (Color online) Reduced ordered moment fisp =
usr/psat of the spin flop phase versus reduced temperature
ta for spins S =1/2, 3/2 and 7/2 with ha1 = 1/3, calculated
from Eq. (99b). The ordered moment of the SF phase does
not depend on f; or on applied field for h, < hcsr.

where

3fisE

100b
S—‘rl)(l—l—hAl)tA’ ( )

yA:(

fsr(ta) is obtained by numerically solving Eq. (99b)
and the Bg(ya) and Bg(ya) functions are given in
Egs. (A11). For ha1 = 0, Eq. (100a) reduces to Eq. (A15)
(with to = t), as required.

2. Magnetization versus z-Awxis Field

The magnetic susceptibility x.sr along the easy z axis
of the SF phase shown in the top panel of Fig. 12 is not
the same as y of the AFM phase in Eq. (61) obtained
when the applied field is perpendicular to the easy axis
or plane as in Fig. 10. The reason for this difference is
that when the applied field is along the z axis in the SF
phase, this field and the anisotropy field are in the same
direction for all magnetic moments, whereas in the AFM
case the anisotropy field lies within the xy plane and
hence these two fields are perpendicular to each other.
Thus the reduced critical field for the spin flop phase
hesr, at which the ordered moments become parallel to
the field with increasing field, is smaller than he apym of
the AFM phase in a perpendicular field in the presence
of an anisotropy field.

Torque Calculation

To calculate the z-axis susceptibility of the SF phase
we use a similar calculation as in Sec. VII A, but with
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the replacement

3H a1 fisF cos 6
S+1 7
where we have used Eqgs. (23a) and (31a) to express Ha

in terms of Ha; and have set ; — 0 and [i;, it — [isp-
Inserting this expression into Eq. (A30) gives

H, — H.+Hy = H, + (101)

3kp _ 3guBH 1 fisy cos 0
Tny—0 0= H,
S 1( N.J—0p.7) fisF COS gusH .+ S11
(102)
Then solving for fi,sp = figF cosf gives
_ (S+ 1)h,
JSF = ————— 103a
HizsE 3(1— f7—hay) ( )
3(1—f7—ha1) _
h, = 2o RA 103b
or 51 HzSF ( )

where we used Tny — 0p; = Tns(1 — f7), the reduced
anisotropy field hay was defined in Eq. (1i), and similarly
for the reduced applied field h,. Thus fi, < h, in the SF
phase. Since i, > 0, the maximum physical range of ha;

1S
0<ha < 1_fJ. (104)

The reduced susceptibilities defined in Egs. (3a) and (3b)
are then

S+1
Pk = —— 2 105
XSEE = B = f) — ha) (105)
1
X:SF = —————. 106
xese 1= f7—ha (106)
One sees by comparison with Eq. (84) that

XzSF > XLAFM- This inequality was qualitatively
13

explained previously by Buschow and de Boer .

Alternate Hamiltonian Diagonalization Calculation

In this section we give an alternative derivation of the
field-induced moment of the SF phase. The energy FE; of
a representative spin ¢ in a magnetic induction B; is

E; = —ji; - B; = gusS - By, (107)

where in the second equality we used the expression for
the magnetic moment operator

fi = —gusS, (108)

the negative sign comes from the negative charge on the
electron, and S is the spin operator. As usual, we nor-
malize all energies by kgTn., so Eq. (107) becomes

E;

109
kBTN (109)

:szv

where the reduced induction b; is defined as in Eq. (1c),
and b; is the sum of the reduced applied, anisotropy and
exchange fields.



Using Eqs. (A3), (A6), (A27), and (107), the exchange
part of the reduced Hamiltonian for S;, assumed without
loss of generality to lie in the xz plane, is

3[isF

Hexchi o .
Ty S+1(Sws1n9—|—fJSzc059)

(110a)

= SL_H(SLEISF + f1S:fsF),

where we used the relations fisp = psr/gunS, fzsp =
pspsinf and fi,sp = fisy cosf, and pgp is the magni-
tude of the ordered moment of each spin. Here S, is
the usual combination of raising and lowering operators
Sy = (S4+S5_)/2and S, is diagonal in the | S, S.) Hilbert
space. Similarly, the parts of the Hamiltonian for the
anisotropy and applied fields are

Hai 3hat _
= 25, 110b
keln,  S+1" (110b)
Hri
= S.h,. 110c
ks1INg ( )

We thereby obtain the total reduced Hamiltonian
H _ 3/7’1SF IS
kBTNJ S+1 ¥
30z
+ K . SF) (fr+ha1) +he| S

S+1
= b5, +b.5;,

(111a)

where
3ﬂmSF
S+1’

3ﬂzSF
b, = h h,.
(S+1)(fJ+ A1) +

by = (111Db)

The reduced magnetic moment operators for eigenener-
giesn =1 to 25 + 1 are?

1 Oe,,

P = ———=2 112

Ha S Oby lb,=3p./(5+1) (1122)
1 Oe

aoP = ———=2 . (112b

K S 0b, lb.=[3. /(S+1)](fs+ha1)+h= ( )

Then the thermal-average reduced moments fizsrp and
Ii.sr for the SF phase are calculated by solving the si-
multaneous equations

25+1

= 1 —op,—€n/t
HzSF = Z_S ; figre ; (113a)
] 25+l
= - —op,—€n/t
HzSF ZS ngl He )
where the partition function is
25+1
(113b)

Zg = Z e—en/t,
n=1
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the reduced magnitude of the ordered moment is

HsF = \ ﬂisp + ﬁﬁsp

and in this section we use the reduced temperature ¢t =
T/Tny. The two Egs. (113a) are solved iteratively for
sk and [i,sp for each desired combination of fy, ha1,
h. and t for a fixed spin S*.

Calculations of fi.sp versus h, isotherms at many ¢
values obtained using Eqgs. (113) are shown in Fig. 16 for
spins S = 1/2, 2 and 7/2 with f; = —1 and hay = 1/2,
where the data for the PM phase at h, > hcsr (below) are
obtained automatically. These results agree with what
would have been obtained from the results in the previous
section based on torque calculations.

We also find that the magnitude of the reduced ordered
moment figp is independent of h, for the SF phase (over
the proportional part of the fi, versus h, isotherm) at
each temperature.

(113c)

8. Critical Field

The critical field H.gr of the spin flop phase is defined
as the value of the applied field H, at which all the mag-
netic moments become aligned with the field, as in the
right-hand side of the top panel of Fig. 12. Since p,sr/H,
is independent of H, within the SF phase, this criterion
and Eq. (103a) gives the reduced critical field

3(1—f7—ha1) _

hese =
where figp versus t or ta is obtained by solving the first or
second of Egs. (99), respectively. The h.sr is dependent
on temperature because pigp is. Since 0 < fsp < 1, the
physically relevant range for positive h.gp is

3(1 = f7—hay)

0 < hesp <
== TS

(115)

For h, > h.sr, the system is in the PM phase with all
induced moments having the same magnitude fi,py and
pointing in the direction of H.

Shown in Fig. 17 are plots of h.sp versus ta for f; = —1
and spins S = 1/2 and S = 7/2, each with anisotropy
parameters ha1 = 0 to 1. The shapes of the curves are
noticeably different for the two spin values. One also sees
that the critical fields are much smaller for S = 7/2 than
for S =1/2, consistent with Eq. (114).

4. Spin-Flop and Paramagnetic Phase Magnetization
Summary

To summarize, the field dependences of the magneti-
zation for the low-field SF and high-field PM phases are
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FIG. 16: (Color online) Reduced induced moment per spin
iz = fz/psat for the low-field spin-flop (SF) and high-
field paramagnetic (PM) phases of a collinear or planar non-
collinear antiferromagnet versus reduced field h, for reduced
anisotropy field ha1 = 1/2 and f; = —1 at reduced temper-
atures t = T/Tny from 0.05 to 0.95 for spins (a) S = 1/2,
(b) S =2, and (c) S = 7/2 calculated using Eqgs. (113). The
SF and PM field ranges are separated by a break in slope
in fi, versus h. at the reduced critical field h, = hesr(t) in
Eq. (114). Note the different abscissa scales in panels (a)—(c).
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FIG. 17: (Color online) Reduced critical field hcsp for the

spin-flop phase of a collinear antiferromagnet versus reduced

temperature ta with f; = —1 and ha1 = 0 to 1 for spins
(a) S=1/2 and (b) S = 7/2, calculated using Eq. (114).

given by Egs. (103a) and (92), respectively, as

_ _ (S+ 1)h,

. = = - h, < hesr), (116
HzSF M 3(1— f; — ha1) ( sr), (116a)
fzpm = Bs(ypm) (116b)

1 3(fr+hat)_
= z + hz
YypMm (1 T ha)ia S+1 HzPM
(h Z thF)a

where hegp is given in Eq. (114) and figp is obtained by
solving Eq. (99b). Note that the slope of fi.sp versus h,
for the SF phase in Eq. (116a) depends on S, f;, and ha1,
and not on the temperature. The temperature only de-
termines the maximum field at which the proportionality
occurs.

The reduced z-axis moment of the SF phase [i,gp is
plotted versus the reduced fiield h, in Fig. 18 for tx = 1/2
and for S = 1/2 and S = 7/2 with ha; = 0to 1. The low-
field SF portion is proportional to h, but then undergoes
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FIG. 18: (Color online) Reduced ordered moment fi. =

1=/ isatr versus reduced field h. for the spin-flop (SF) and sub-
sequent paramagnetic (PM) phases of a collinear or planar
noncollinear antiferromagnet at reduced temperature ta =
T/Tn = t(1 + ha1) = 1/2 with f; = —1 and ha1 =0 to 1
for spins (a) S = 1/2 and (b) 7/2, calculated using Eqgs. (114)
and (116). The SF and PM ranges are separated by a break in
slope in fi;/pisat versus h. at h, = hesr. However, the curve
in each of (a) and (b) with ha; = 1 is paramagnetic over the
full field ranges shown.

a second-order phase transition via a slope reduction to
the PM state for which fi,sr exhibits negative curvature.
For ha; = 1 only the PM phase occurs for both spin
values, as seen in Fig. 18, because one can show that
hesp = 0 for any S if f; = —1, t4 = 0.5, and ha; = 0.5,
as illustrated in Fig. 17 for S = 1/2 and S = 7/2. It is
important to note here that ¢4 is not proportional to the
absolute temperature, since it depends on h; according
to the formula in the figures. Therefore in Fig. 19 the
same quantities are plotted as in Fig. 18, but where the
reduced temperature t = T/Tx ., proportional to the ab-
solute temperature T, is fixed to the same value of 1/2.
Qualitative differences are seen between the two figures.
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FIG. 19: (Color online) Same as Fig. 18, except that the
reduced temperature ¢t = T/Txy is fixed at the value of 1/2
instead of to = T'/Tn = 1/2. The plots are different than in
Fig. 18 because Tx depends on haj.

5. Internal Energy versus Temperature

We established in Sec. VIIIC2 that the ordered mo-
ment figr is independent of field within the SF phase, i.e.,
for 0 < h, < hegr(t). For h, = 0, the ordered moments
are oriented in the xy plane for which the anisotropy field
is zero as inferred from Eq. (23) and Fig. 3(b). Hence the
magnetic induction seen by a spin is identical to that of
a spin in an AFM in zero applied and anisotropy fields,
and therefore the internal energy per spin is given by
Eq. (A17) or by Eq. (40c) with ha; =0, i.e.,

Unag 35

= a2
kBTNJ 2(8 =+ 1) 0

where [ig(t) is obtained by solving Eq. (A14). At ¢t =0,
one has jigp = 1, yielding
Umag(hz < hCSF7 t= 0) 38

=— . 118
kBTNJ 2(S+1) ( )

(117)

Shown in Fig. 20 are plots of Umag/ksTn. versus ¢ for
spins S = 1/2 to S = 7/2 in half-integer increments.
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FIG. 20: (Color online) Internal energy per spin Upag normal-
ized by kgTn. versus reduced temperature t for the spin-flop
phase with spins S = 1/2 to 7/2, obtained from Eq. (117).
Umag is independent of field in the field range of stability
of the SF phase with respect to the PM phase, given by
0 < h. < hesr, where hegr is given in Eq. (114).

The internal energy for all spin values goes to zero at the
same temperature T = Ty because fip does. One also
sees that Eq. (118) is satisfied for all spin values.

6. Free Energy

The free energy Fiae is calculated from Egs. (20) us-
ing Eq. (117) and Umag data such as in Fig. 20 and
iz (h,t) data such as illustrated in Figs. 16 and 19. Plots
of Fiag/ksTny versus h, at fixed values of ¢t = T'/Tn s
from 0.05 to 1 for spins S = 1/2 and S = 7/2 are shown in
Fig. 21. Because the free energy in Eq. (20e) is derived
from an integral of fi.(h.,t) over h., the second-order
transitions between the SF and PM states at h, = hesp
are not obvious from the figure. The value of hesp(t = 0)
for each spin value is given in the respective panel.

IX. HIGH-FIELD PARALLEL
MAGNETIZATION OF z-AXIS COLLINEAR
ANTIFERROMAGNETS:
ANTIFERROMAGNETIC PHASE

Here we consider the general behavior of a collinear
AFM where the field is applied along the easy z-axis of
the AFM structure at finite temperatures. By definition,
in the collinear AFM phase the ordered moments are al-
ways aligned along the z axis.

A. Preliminaries

When the magnetization along the easy axis of a
collinear AFM becomes nonlinear in finite fields, one
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FIG. 21: (Color online) Reduced magnetic free energy per

spin Fmag/ksTng for the low-field spin-flop (SF) and high-
field paramagnetic (PM) phases of a collinear or planar non-
collinear antiferromagnet versus reduced field h, for reduced
anisotropy parameter ha1 = 1/2 and f; = —1 at reduced tem-
peratures t = T/Tx from 0.05 to 0.95 for spins (a) S = 1/2
and (b) S = 7/2, calculated using Eqs. (20e), (116), and (117)
togetheer with fi.(h:,t) data such as iin Figs. 16 and 19.
Note the different axis scales for the two panels. The second-
order phase transitions from the SF to the PM phase occur at
h: = hesr(t) in Eq. (114) and Fig. 17 and are not obvious in
either panel. The respective value of hesr(t = 0) [the upper
limit of hcsr(t)] is shown in each panel.

must define two different sublattices 1 and 2 because in
general the magnitudes of the ordered moments parallel
and antiparallel to the applied field H are different by
amounts greater than infinitesimal. Sublattice 1 is de-
fined to consist of all moments that are parallel to H and
sublattice 2 consists of the moments that are antiparallel
to H when H, = 0. When H, increases, the magni-
tudes of the z-components pi, and pg, are in general
not the same, which gives a net uniform magnetization
in the direction of the field. However, within the unified
MFT we do not require the two sublattices to be bipar-
tite, where the exchange interactions only connect spins
of one sublattice with those on the other. The exchange



interactions can connect further neighbors and can be
nonfrustrating and/or frustrating for AFM order. An
anisotropy field along the uniaxial z axis is present, as
shown in Fig. 1.

For moments fi; and ji; on the same (“s”) sublattice
of a collinear AFM structure, as defined above, the angle
between the moments is ¢j; = 0 in Eq. (A3) and for a
pair of moments on different (“d”) sublattices, the angle
between them in [, = 0is ¢;; = 180°. We then write the
expressions (A6a) and (A6b) for Ty and 0,7 at H, =0
for the two-sublattice collinear AFM, respectively, as

S(S+1 s
S(S+1 s

Solving these simultaneous equations for the two sums
gives

3kgIns(1+ fr)

_ 3kg(Tng +0p5)

25(S+1) 25(S+1)
Z g 3k (TN — 6p) _ 3ksIns(1 — fr)
g 25(S+1) 25(S+1)

(120)

where f; = 6,7/Tn is defined in Eq. (A7). We empha-
size that Ty, 0ps and f are defined, even in the pres-
ence of the anisotropy field, only in terms of the exchange
constants and magnetic structure by the above equations,
whereas T and 6, are the actual Néel and Weiss temper-
atures in the presence of a uniaxial anisotropy field and
zero or infinitesimal magnetic field that are both aligned
along the easy z axis.

In the following, we parameterize the high-field mag-
netization using the variables f;, which only depends
on the exchange constants and AFM structure, and the
reduced anisotropy field ha; defined in Eq. (le). This
choice of variables allows one to separate the effects on
the magnetization due to the anisotropy field from those
due to the exchange interactions and AFM structure.

B. Exchange, Anisotropy and Applied Fields

For a collinear AFM in a parallel applied field H, along
the easy z-axis, only the z-components of the moments
and the exchange fields are relevant. Using the definition
Hiz = iz /Psat = [iz/(gSpup) for the two sublattices i =
1, 2, and Egs. (A3) and (120), the z-component of the
exchange field seen by each moment on sublattice 1 is

s d
chch 1z = _% (,Ulz; Jij + NQz; J’L])
3ks1INg _
_ 2 (1 (1 — .
29#13(54—1)[ 1=(1+ fr) = 2= (1 — f)]

(121a)
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We express the magnetic fields in reduced for using

Eq. (1c). For the local exchange field seen by a spin
in sublattice 1 in Eq. (121a), the reduced field is
h :g,UJBchchlz _ 3[ﬂlz(1+fJ)_ﬂ2z(1_fJ)}
exchlz = kBTNJ 2(5 T 1) .
(121b)

Similarly, the exchange field for a spin in sublattice 2 is
1 d s
— 5 (Mlzz Jij + M2ZZ Jij)
g UB J J

_ __EYQ§ZE£L__[<_.Q1 (1
2gus(S +1) -

Hexch 2z =

= f1) + =1+ )],
(122a)
yielding the reduced exchange field

gNBHexChQZ 3[ -

firz(1 — fr) + fio= (1 + f7)] '

hcxc z = -
b2 kBTNJ 2(8 =+ 1)
(122Db)
Using Eqs. (23b), (31a), (A20), and the expression
[i; cos @ = [i;,, one obtains the anisotropy field
3Ha1 _
Haiz iz 123
A =gt (123a)
yielding the reduced anisotropy field
gpsHaiz  3ha1
h iz = = iz 123b
A kBTNJ S+1 H ( )
One also has the reduced applied field
grsH:
h, = . 123c
kTN (123¢)

The total reduced local magnetic inductions seen by
spins in sublattices ¢ = 1, 2 are then
gpBBiz
kTN

Inserting the above expressions for the components on
the right-hand side gives

biz =

- hcxchiz + hAiz + hz- (124)

=3[ (14 fr + 2ha1) — 2= (1 = f))]
bs = 2(S +1) ey
(125a)
by, — SLA1=(l = fo) & o (Lt fr 4 2ha0)]

2(S + 1)
(125D)

C. Coupled Equations for the Two Sublattice
Magnetizations

The values of fi;, (i =1, 2) versus H and T are gov-
erned by separate Brillouin functions for the two sublat-
tices as in Eqgs. (A10). One thus has two simultaneous
consistency relations

biz
zz:B -
2 S(t

(126)



Substituting Eqgs. (125) into (126) gives

g Ll fy 4 2ha) — fie-(1L— £)] | Be
faz =8 2(S + 1)t t ]’

2(5+ 1)t t

(127b)
When H, = 0 and T" < Ty, one has jis, = —fi1, and
Egs. (127a) and (127b) each reduce to the same general
expression (37a) for the ordered moment versus tempera-
ture, as required. For the PM regime T' > T, i1, = fi2s
and Egs. (127a) and (127b) each reduce to the z-axis
magnetic moment of the PM state of the AFM given by
Egs. (92), as also required.

. — B { Bl = f2) + oL+ £y + 2han)] e

D. Sublattice, Average and Staggered Moments
and Free Energy versus Magnetic Field,
Temperature, and Anisotropy Parameter

Two important quantities can be obtained from
Egs. (127) from which the thermal-average sublattice
magnetic moments i1, and jis, versus temperature, mag-
netic field and anisotropy parameter are calculated. The
first is the net average magnetic moment, normalized by
the saturation moment, which is

_ o ,Dle + ,a2z
,LLz ave — T

(128a)
This is the uniform magnetization along the easy axis
measured in a conventional magnetometer. The sec-
ond important quantity is the AFM order parameter /!,
which is the average z-axis staggered moment in the z-
direction normalized by the saturation moment, given by

,L_le - ,DJQz

ol
:u’Z 2

(128b)

By assumption i1, > fi2,, S0 ﬁl > 0. The spin system is
in the AFM phase when il > 0 and is in the associated
high-field PM phase when fi{ = 0.

The potential phase transitions between collinear AFM
and PM states discussed below will be preempted if the
free energy of the AFM phase for some combination of
t, h,, and ha; is higher than that of the SF phase, and
conversely. Therefore in this section we eventually deter-
mine the free energy of the AFM phase versus temper-
ature from the values of the thermal-average moments
i1, and [io, in the presence of the anisotropy and ap-
plied fields for comparison with the free energy of the SF
phase found previously in Sec. VIII C6.

Equations (127) were solved for [i1, and fia, versus h,
for given values of S, t, f, and ha; using an iterative
procedure*. Starting with h. = 0, the initial value of
i1, was set to 1 and fig, solved for. Then for that value
of 12, i1, was solved for. These steps were iterated

24

until the differences in fi1. 2. between subsequent itera-
tions were each less than 107'°. Typically the number
of iterations needed was less than 10, but occasionally
up to ~ 10* iterations were needed when approaching
a phase transition. Once i1, and fio, were determined,
fzave = (fl12 + [i22)/2 and .L_L,]; = (fi1> — fl2.)/2 were de-
termined. This sequence was repeated for the next value
of h., where the starting value of i1, was the final value
from the previous value of h,.

Shown in Figs. 22 and 23 are plots of ji1., fi2z, frave,
and i versus h, for f; = —1, ha; = 0, t = 0.1, 0.5,
0.8, and 0.95 for spins S = 1/2 and S = 7/2, respec-
tively. The data versus h, for S = 1/2 and S = 7/2 have
similar evolutions of the shapes on decreasing tempera-
ture, but the abscissa ranges for S = 7/2 are a factor
of three smaller than for S = 1/2. Qualitative plots of
fiz (i = 1, 2) similar to those in Figs. 22 and 23 were
shown in Fig. 11 of Ref.'*. The boundary between the
AFM and PM states occurs with increasing field when
/Zl — 0. We denote this reduced critical field by k¢ aru.
Thus for h, > h¢arMm, one has fi1, = 2, and ﬁl = 0.
Second-order transitions at h. apm are observed for the
full temperature range 0 < tp < 1 for f; = —1 and
har = 0.

First-order transitions between the AFM and PM
phases can occur over a range of low temperatures end-
ing at a tricritical point temperature above which the
transitions are second-order. For example, we changed
fs from —1 to the value of —1/4 while leaving ha; = 0
as in Fig. 22. Numerical solutions for ji;, (i = 1, 2), il
and [i,ave are plotted versus h, in Fig. 24 for reduced
temperatures ta = 0.1, 0.5, 0.8 and 0.95. At high T,
the AFM to PM transitions are seen to be second order.
However, at ¢t = 0.5 and 0.1, the transitions are strongly
and weakly first order, respectively, where a discontinu-
ous change in the AFM order parameter fil occurs at the
transition.

We carried out additional calculations of ﬁl and [izave
versus h, and reduced temperature ¢ = T/Tny. Plots
of fizave versus h, for spin S = 1/2 and f; = —1 for
t = 0.05 to 0.95 for reduced anisotropy fields ha; = 1/4,
1/2, 3/4, and 1 calculated using Eqgs. (127) are shown
in Fig. 25. One sees a clear evolution from first-order
to second-order transitions with increasing temperature.
The values of the AFM critical field hoapy were deter-
mined from Fig. 25 as the value of h, at which gf — 0
with increasing h.. Second-order transitions are char-
acterized by a continuous change for if — 0, whereas
a first-order transition shows a discontinuous change as
noted above. After converting ¢ to ta using Eq. (1j), plots
of the resulting heapm versus ta are shown in Fig. 26 for
S =1/2, f; = —1, and ha; values from 0 to 1. The
first-order transition data are represented by solid red
curves, and the second-order data by solid curves con-
necting data points of different colors. These plots are
not phase diagrams, which are given in Fig. 32 below for
the same values of ha; as in Fig. 25 and also for hay; = 0
and 1/8.
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FIG. 22: (Color online) Ordered moments fi;x = iz /psas (¢ = 1, 2) of the two magnetic sublattices along with the AFM order
parameter ﬁl = (1= — [i2=)/2 and the average ordered moment fi; ave = ({112 + fi22)/2 for spin S = 1/2, f; = —1 and ha1 =0,
all versus the reduced applied magnetic field h. along the easy z axis for reduced temperatures ¢t = T'/Tn of (a) 0.1, (b) 0.5,
(¢) 0.8 and (d) 0.95. The AFM regime is defined by the region where il > 0, and the PM regime is defined by i{ = 0. The
transition field between these two regimes is defined as the criticial field hcarm. Only second-order transitions are observed for

0 <ta <1with f; =—1 and ha1 = 0.

E. Magnetic Free Energy

Once [iave is determined as described above, the
reduced magnetic free energy of the AFM phase
Fagarm/ksTny is calculated versus t, h., and hai us-
ing Eqgs. (20). Plots of Finagarm/ksIng versus h, for
f7=-1,5=1/2 and reduced temperatures ¢ from 0.05
to 0.95 are shown for reduced anisotropy fields hay = 1/4
to 1in Fig. 27. One sees that at low temperatures for each
value of ha1, Fmagarm/ksTns shows a discontinuity in
slope at the respective heapm corresponding to the first-
order discontinuity in zi, in Fig. 25, whereas at the higher
temperatures Finagarm/ksIng varies smoothly through
hearm, corresponding to a second-order transition in fi,,
as quantified in Fig. 26.

X. PHASE DIAGRAMS

The phase diagrams discussed here are those with the
anisotropy field oriented along the z axis as in Fig. 1, for
which the ground state in h, = 0 is a collinear AFM
aligned along that axis, and with a reduced external
field h, in the +2z direction. We first discuss the zero-
temperature properties and phase diagrams of Heisen-
berg systems with classical anisotropy fields and then
extend the discussion to finite-temperature phase dia-
grams. Because phase diagrams for S = 1/2 are not rel-
evant when uniaxial quantum DS? anisotropy is present
in Heisenberg spin systems?, here we emphasize phase
diagrams for this spin value.
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FIG. 23: (Color online) Same as Fig. 22 except for spin S =

between this figure and that one.

A. Zero-Temperature Phase Diagrams and
Magnetizations versus Field

The zero-temperature properties and phase diagrams
are determined from the relative free energies of SF and
AFM phases and their dependences on the parameters
S, fr, ha1, and h,. The PM phase appears at and above
the critical field of the phase with the lower free energy.

1. Spin-Flop Phase

For t — 0, the entropy of the SF phase in H, = 0 is
zero due to the nondegenerate ground state arising from
the nonzero exchange field, so Eqgs. (20) yield

FmagSF(hz =0,t— 0)
kp1Ing

UmagSF(hz =0,t— 0)
ks1Ing

h
— S/ ﬂzSF(hz,t — O)dhz
0

(129a)
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7/2. Note the factor of three difference in the abscissa scale

Equation (118) gives the first term as

UmagSF(hz =0,t — O) 3S
- : 129
ksTng 2(S+1) ( )
and Eqgs. (116) give
_ hz/thF (hz S thF)
sp(ha,t— 0) = 129
M SF( — ) {1’ (hz Z hCSF)7 ( C)
where Eq. (114) gives the SF critical field as
3(1 = f7 —ha1)
hesp(t - 0) = —————= 129d
sr(t —0) S+l ( )

using fisp = 1 for t — 0. Thus Eq. (20e) gives the nor-
malized free energy of the SF phase versus h, for ¢ — 0
as
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FIG. 24: (Color online) Same as Fig. 22 except that here f; = —1/4. The data for ¢ = 0.1 show strongly first-order transitions,
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~ STy — 2:5 (hz < hesr)
FmagSF(h27 t— O) _ (5+1) =r (130)
kTN a5 hose
_m -5 [ CQ + (hz - thF)] (hz Z h’CSF)'

2. Antiferromagnetic Phase

For the AFM phase at ¢ — 0, the moments cannot
respond to the field without a spin-flip transition to the
PM phase. Also, the entropy is zero at ¢ — 0 because
the ground state is nondegenerate on account of the pres-
ence of the exchange and anisotropy fields. Thus using
Eq. (40c) with fip = 1, the reduced free energy per spin
is

FmagAFM(hZat — 0)
kTNg
3S(1+ ha1)
2(5+1)

UmagAFM(h27 t— 0)
kgTng

(hz < hearMm)-

(131)

Thus if ha1 = h, = 0, the free energies of the SF and
AFM phases in Egs. (130) and (131), respectively, are
the same, as required. The AFM critical field heapm, at
which fio, = —1 flips to the PM state with fio, = 11, =
+1 with increasing h, is determined next.

The spin-flip field to the PM state (the t = 0 AFM crit-
ical field heapn) is determined by the conditions under
which i in Eq. (128b) goes to zero with increasing h..
This was carried out by solving Eqs. (127b) at ¢ = 0.01
for various values of S, ha; > 0 and —1 < f; < 1. In
this way, we obtain

3(1 + hAl)

heArM = (132)

which is independent of f; in the given f; range. This ex-
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FIG. 25: (Color online) Reduced average z-axis moment per spin fizave = fizave/lisat for the low-field AFM and high-field PM
phases of a collinear antiferromagnet versus reduced field h. for spin S = 1/2 and f; = —1 at reduced temperatures t = T /T s
as shown for reduced anisotropy fields (a) ha1 = 1/4, (b) ha1 = 1/2, (c) ha1 = 3/4, and (d) ha1 = 1 calculated using Eqgs. (127)

and (128a).

pression is in agreement with our numerical data for the
AFM to PM spin-flip transition field at ¢ — 0 obtained
from numerical calculations such as the extrapolations to
t = 0 in Fig. 26 above for S = 1/2, f; = —1, and vari-
ous values of ha1, and in the phase diagram in Fig. 32(f)
below for S =1/2, f; = —1, and hay = 1.

Using Egs. (20) and (131) we obtain the field depen-
dence of the free energy per spin of the AFM phase (and
high-field PM phase) as

FmagAFM(t —0) 3S(1+ har)
- - ha < hearnt),
ksTng 2(S+1) (he < ear)
(133)
FmagAFM(t —0) 3S(1+ har)
= - ~ S(hs — he
ksTng 2(S+1) ( arm)

(hz > hearm)-

3. Comparison of the Free Energies of the Spin-Flop and
Antiferromagnetic Phases

Figure 28 illustrates the free energies Fi,.s per spin
versus reduced field h, of the SF and AFM phases (and
their high-field PM phases) for ¢t — 0, given in Egs. (130)
and (133), respectively, for f; = —1 and anisotropy pa-
rameters ha; = 0 to 1.5. For ha; = 0 the lowest-energy
phase for h, > 0 is the SF phase. Upon increasing ha,
one sees an evolution where the AFM phase is more stable
at low fields, but transforms to the SF phase at increas-
ing values of h., where the AFM to SF phase transition
is first order due to the discontinuity in slope of Fiag
versus h, at the transition point, which corresponds to a
discontinuity in the magnetization there.

Shown in Fig. 29 are zero-temperature phase diagrams
in the h,—ha; plane for collinear z-axis AFMs with
f7 = =1 and for spins S = 1/2 and S = 7/2, obtained
by determining which of the AFM and SF phases (and
associated high-field PM phases) has the lower free en-
ergy using Eqs. (130) and (133). One sees that the phase
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FIG. 26: (Color online) AFM critical field hcarm versus re-

duced temperature ta for S = 1/2 with f; = —1 and ha1
from 0 to 1 as indicated. First-order transition lines are in
red without data points and second-order transitions are in
other colors with data points. A tricritical point tempera-
ture separates the first- and second-order transitions on the
transition line for each ha; > 1/8.

diagrams are the same for S = 1/2 and S = 7/2, apart
from a reduction in ordinate scale by a factor of three
for S = 7/2 compared to that for S = 1/2. For ha; > 1
the AFM phase undergoes a spin-flip transition directly
to the PM phase with increasing h., sidestepping the in-
termediate SF phase.

The anisotropy parameter ha; = 1 at which the hgp
and hegr lines meet in Fig. 29 is a point where the SF and
PM phases are degenerate and hence PM, which occurs
at the lower end of a vertical line in the figure. The
upper end of a vertical line also corresponds to the PM
phase. We thus infer that all points along a vertical line
correspond to a transition line between the PM and AFM
phases. Consistent with this, the region to the immediate
left of a vertical line is PM and to the right is AFM.
Within MFT, a first-order transition from the PM to the
AFM phase thus occurs on crossing a vertical line with
increasing haq.

The analytic behavior of the AFM-SF transition field
hgr for f; = —1 such as in Fig. 29 in the region 0 <
ha1 < 1is found to be

3
hsF = =——1/2ha1 — b3, . 134
SF S+1 Al Al ( )
However, this expression is only valid for f; = -1,
which corresponds to a bipartite AFM with only nearest-
neighbor exchange interactions of equal value.  If
f7 # —1, we find

3 2

hsp = S—H\/hm(l — f) =3y, (135)

0 < hA1<(1_fJ)/2, _3§fj<1,
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where the upper hai limit is the maximum value for
which hgp < hesr, the lower limit on f; is obtained by
requiring hgp < hearpm for the given hap range, and the
upper limit on f; is required for any AFM, where the
value f; =1 corresponds to a FM rather than an AFM.

Thus the deviation of f; = 60,;/Txs from the value
of —1 usually assumed can have a very significant in-
fluence on the variation of hggp with ha; according to
Eq. (135), a situation not investigated previously to our
knowledge. This is important in view of the fact that
within MFT one can have —oco < f; < 1 for AFMs. In-
deed, most real AFMs are not bipartite with more than
nearest-neighbor interactions.

The reduced fundamental exchange parameter hp; is
expressed in terms of the reduced exchange field hag at
T = 0 using Eq. (31a), the t = 0 value i; = 1, and the
definition in Eq. (1c) as

S+1
hat = =5 —hao. (136)
Inserting this into Eq. (134) gives
S+1
hep — \/2 (T) hao — h3, . (137)

Now using Eq. (A13) for the exchange field together with
Eq. (1c) gives the reduced exchange field at T =0 as

S+1
hcxchO = ; (138)
3
Substituting this into Eq. (137) gives
hep = \/thxchohAo —h2,. (139)
In terms of the unreduced fields one has
Hsp = \/2HCXChOHAO - H3, . (140)

This expression is identical to the standard equation
for Hgp obtained using spin-wave theory assuming
fr = —1°. A more accurate expression obtained from
Eq. (135) is

Hep =\ HoxernoHao(1 — f1) — H, . (141)

As noted previously, f; < 1 for an AFM.

4. Magnetization versus Field

The magnetization of the SF phase is proportional to
field according to Eq. (103a), which at T'= 0 reads

Nz—h

(hz < thF)7 (142)

cSF
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of a collinear antiferromagnet versus reduced field h. for spin S = 1/2 and f; = —1 at reduced temperatures ¢t = T/Tny as
shown for reduced anisotropy fields (a) ha1 = 1/4, (b) ha1 = 1/2, (¢) ha1 = 3/4, and (d) ha1 = 1 calculated using Eqgs. (20)

and data such as in Fig. 25.

where the spin-flop critical field is given by Eq. (114) with
jisr =1 at T =0 as

3(1—fy—ha1)

S+1 (143)

hesk =

According to Eqs . (135), if ha1 > (1 — f5)/2 the AFM
phase undergoes a first-order transition with fi ave = 0
to the fully-saturated PM state with fi,ave = 1 at the
T = 0 transition field h, = hearm in Eq. (132), whereas
if har < (1 — f7)/2, the AFM state instead has a first-
order transition to the SF phase at hgp until the SF
phase saturates at h, = hcsp to i, = 1 after which
it remains constant at fi,(h,) = 1. With these crite-
ria, the fi.(h,) behaviors were determined as shown in
Fig. 30 for S =1/2, f; = —1 and a range of ha; values
from 0.02 to 0.9 as shown. Changing the value of f; re-
sults in no qualitative change in the ji, versus h,. plots,
but where the corresponding ranges of ha; values and
ordinate scales giving similar-looking plots as in Fig. 30
are changed appropriately.

5. Perpendicular Magnetic Fields

When the applied field is perpendicular to the easy
axis or easy plane of a collinear or noncollinear AFM as
shown in Fig. 10, only one transition versus field occurs
which is a second-order transition from the canted AFM
phase to the PM phase at the perpendicular critical field
heiarm given by Eq. (86) at T =0 as

he1armo = < ) (1+har — fr)- (144)

S+1

The phase diagrams in the h; —ha; plane for spins S =
1/2 and S = 7/2 are shown in Fig. 31, where the AFM-
PM transition lines vary linearly with ha; for each value
of S and f;.
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the respective critical fields of the AFM and SF phases as listed. The data were calculated from Egs. (130) and (133).

B. Field versus Temperature Phase Diagrams for

Fields Along the Easy Axis of Collinear

Antiferromagnets

In order to determine the phase diagrams in the field
versus temperature plane for given values of S, fy,

and haq, one must determine which of the AFM or SF

phases and assoc

iated PM phases have the lowest free en-

ergy at each temperature and field for given values of S,
ha1, and f; using information such as illustrated above

in Figs. 21 and 2

7. The transitions from the AFM to the
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FIG. 29: (Color online) Zero-temperature phase diagrams in
the h.-ha1 plane for collinear z-axis AFMs with f; = —1
and for spins (a) S = 1/2 and (b) S = 7/2. The phases in
competition are the collinear z-axis antiferromagnetic (AFM)
and spin-flop (SF) phases, with the paramagnetic (PM) phase
in each case above the respective critical field hcarm and hesr.
Note that the ordinate axes are different for the two spin
values. The transitions from AFM to PM and AFM to SF
are first order, and from SF to PM are second order. The
vertical transition lines separate the PM phase from the AFM
phase, with a first-order transition occurring upon traversing
the lines horizontally.

SF phase are always first order. For transitions of the SF
or AFM phase to the associated PM phase, the transition
field is determined as the field at which the angle 8 — 0
or ul — 0, respectively. First-order transitions have dis-
continuities in these quantities on crossing a transition
line.

Shown in Fig. 32 are the h, versus to phase diagrams
for S = 1/2, f; = —1, and six values of the reduced
anisotropy parameter ha; from 0 to 1. The phase dia-
grams were initially constructed versus t = T//Tnys but
the abscissa was then converted to to = T/Tn using
Eq. (1j). The t = 0 transition fields obtained from Fig. 29
are included in Fig. 32. For ha; = 0 the phase diagram
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FIG. 30: (Color online) Reduced z-axis moment fi. = fiz/ lisat
per spin versus reduced field h. = gusH./ksTns for spins
S = 1/2 at zero temperature for anisotropy parameters hai
as listed and f; = 0p5 /TNy = —1.

contains no z-axis-aligned AFM phase because for any
finite field the ordered moments flop to form a canted
AFM phase, the spin-flop phase. Even a rather small
value hp; = 1/8 gives rise to a SF phase in a large area
of the phase diagram in Fig. 32(b) and a bicritical point
appears where the AFM, SF, and PM phase lines meet.
With further increase of h a1, the SF phase region shrinks,
as shown for hpay; = 1/4,1/2, and 3/4 in Figs. 32(c)-32(e).
In addition, for ha; = 3/4 a tricritical point occurs at
ta =~ 0.56 separating second- and first-order AFM to PM
transitions, as shown. Finally, for ha; = 1 in Fig. 32(f),
the spin-flop region disappears and the tricritical point
moves to lower temperature with respect to Ty compared
to that for hy; = 3/4. We note that in Fig. 32(e) for
har = 1, the T' = 0 value of the AFM to PM transition
field is larger than for lower ha; values at higher temper-
atures, and is the same as the T' = 0 value of the SF to
PM transition field in Fig. 32(a).

In a spin-flop transition of an otherwise collinear an-
tiferromagnet, the spins flop from alignment along the
z axis to what is generally thought to be an approxi-
mately perpendicular orientation. An interesting ques-
tion is how close to a 8 = 90° angle the moments in
the SF phase make with the z axis (fsr) on the (first-
order) transition line between the AFM and SF phases.
Shown in Fig. 33 are plots of fgp versus reduced tem-
perature ta for the parameters in the phase diagrams in
Figs. 32(b)-32(e). These data were obtained as part of
the calculations required to construct the phase diagrams
in Fig. 32. One sees rather strong dependences of fgy on
both tA and the anisotropy parameter ha;1. Futhermore,
the maximum angle of the moments from the z axis on
the transition line versus temperature depends strongly
on hai, varying from only about 40° for ha; = 3/4 to
about 77° for ha; = 1/8. Thus when a spin-flop transi-
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FIG. 31: (Color online) Zero-temperature phase diagrams in
the hi-ha1 plane for collinear z-axis AFMs with f; = —
to 0.5 and for spins (a) S =1/2 and (b) S = 7/2. The phases
in competition are the canted antiferromagnetic (AFM) and
the paramagnetic (PM) phase that occurs above the respec-
tive critical field h.;. The plots are drawn according to
Eq. (144). The ordinate axes are different for the two spin
values. The transitions from canted AFM to PM are second
order.

tion occurs, the angle that the moments make with the
z axis is generally not close to 90°. According to Fig. 33,
this discrepancy increases with increasing ha.

C. Magnetization versus Field Isotherms for Fields
Along the Easy Axis of Collinear Antiferromagnets

High-field magnetization versus field M (H) isotherm
measurements are basic to characterizing the magnetic
properties of AFMs. Here we utilize the above informa-
tion specifying the conditions for phase transitions be-
tween the AFM, SF, and PM phases with fields along
the easy z axis to calculate magnetization versus field
data at particular temperatures below the respective Tx.
These calculations allow direct comparisons to experi-
mental M, (H) data on single crystals.
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For anisotropy parameter ha; = 0, for the spin-flop
phase plots of [i,gr versus h, for a fixed temperature ty =
T/Tn = 1/2 and a selection of anisotropy parameters
ha1 = 0 to 1 were presented in Fig. 18 for spins S =
1/2 and S = 7/2, which included both the SF and PM
regimes. Plots of fi.sp versus h, for fixed ha1 = 1/2 with
different values of ¢ = T//Tny were presented in Fig. 16
for S =1/2,2, and 7/2.

The behaviors of fi, versus h, for S =1/2and f; = —1
were calculated for a values of t4 from ~ 0.1 to 0.9 and
ha1 values in the range 1/4 < hay < 1, including the
influence of phase transitions as applicable. The calcula-
tions are shown in Fig. 34, where the first or second-order
nature of the phase transitions are reflected in the field
dependence of the magnetization.

D. Phase Diagrams for Fields Perpendicular to the
Easy Axis or Plane of Collinear or Planary
Noncollinear Antiferromagnets

The critical field hciarpm dividing the canted AFM
from the PM state of collinear or planar noncollinear
AFMs versus reduced anisotropy hai and f; parame-
ters for fields perpendicular to the easy axis or plane
of collinear or planar noncollinear AFMs is given in
Eq. (86). Plots of he  apm versus ta are shown in Fig. 35
for the same values of ha; for which the phase diagrams
in Fig. 32 were constructed. From a comparison of the
two figures, one sees that for each value of hpay > 0, the
heiarm(ta) value in Fig. 35 lies at a higher field than
the maximum transition field in Fig. 32 at the same tem-
perature.

XI. SUMMARY

The main purpose of this work is to enable an esti-
mate of the amount of uniaxial or planar anisotropy that
exists in an otherwise isotropic Heisenberg spin system
to be made from experimental magnetic susceptibility
and/or high-field magnetization data. The systems de-
scribed contain identical crystallographically-equivalent
spins. Another important goal was to provide a classi-
cal description of magnetic anisotropy of quantum S =
1/2 systems for which quantum uniaxial DS? single-ion
anisotropy is not applicable. In this paper the anisotropy
is quantified by the fundamental reduced anisotropy pa-
rameter ha; in Eq. (le) which depends on S and the
unreduced anisotropy field Ha1, normalized by the Néel
temperature in the absence of anisotropy Tns, but not
on the temperature T'. The T" dependence is included via
the T dependence of the reduced ordered and/or field-
induced moment fi in Eq. (31a). The present treatment
is strictly valid for local-moment antiferromagnets but
not for itinerant ones.

There are several ways to extract hp; from experimen-
tal data for single crystals of local-moment collinear anti-
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FIG. 32: (Color online) Reduced parallel magnetic field h, versus reduced temperature ta phase diagrams for spin S = 1/2 and
reduced anisotropy fields ha1 equal to (a) 0, (b) 1/8, (c) 1/4, (d) 1/2, (e) 3/4, and (f) 1 obtained from numerical calculations.
The SF to PM transitions are second order and the AFM to SF transitions are first order. The AFM to PM transitions can
be second order [(a)—(d)], or both first and second order in different field ranges separated by a tricritical point [(e), (f)]. The

lines are guides to the eye.
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FIG. 33: (Color online) The angle 0sr that the ordered mo-
ments in the spin-flop phase make with the applied field along
the z axis on the first-order transition line between the AFM
and SF phases in Fig. 32 versus reduced temperature ta for
the same reduced anisotropy parameters hai for which the
phase diagrams in Figs. 32(b)-32(e) were constructed.

ferromagnets with uniaxial or planar anisotropy. Indeed,
if one has single-crystal low-field magnetic susceptibility
versus temperature data as well as high-field magnetiza-
tion isotherm data, this parameter is overdetermined and
one can compare the values obtained from analyses of the
respective data sets. Since g anisotropy is not included in
the present treatment, the single-spin Curie constant Cy
in the Curie-Weiss law (A1) is the same for fields parallel
and perpendicular to the easy axis or easy plane for the
known value of S. However, g anisotropy for the AFM
and PM phases is easily accomplished by substituting the
appropreate values of g, for g in the expression for the
Curie constant if the values of g, are known from inde-
pendent measurements such as electron spin resonance.

A. Analysis of Single-Crystal Magnetic
Susceptibility Data

An easy way to determine ha; is to measure the
anisotropy of the Weiss temperature 6, in the Curie-
Weiss law (Al) for the paramagnetic susceptibility at
T > T of single crystals. Here we only consider uni-
axial z-axis anisotropy, since xy-plane anisotropy gives
the same expression for ha;. From Eqs. (48) and (51),
respectively, the Weiss temperatures in the Curie-Weiss
law for the zy plane and z-axis field directions at tem-
peratures T' > Ty are

Gmy = 6pJ, (145&)
9pz = 6‘pJ—|—hA1TNJ, (145b)

SO
6. — Oy = harTxy. (146)
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Then using Eq. (1i), one obtains

haiTn

— 147
1+ ha1 (147)

9pz - epzy =

which allows one to easily solve for ha; from the two mea-
sured Weiss temperatures and the measured Néel temper-
ature Ty.

Another parameter of the theory is f; = 6,5/Tx, the
ratio of the Weiss and Néel temperatures due to exchange
interactions alone. This is not measurable directly but
can be derived as follows. Using Eqgs. (1i) and (145a),
one obtains

epwy _ epJ fJ

. - , 148
Tn  Tny(+hat) 1+ has (148)

from which f; can be obtained using ha; from above.

Another expression useful for determining the values of
ha1 and f; for collinear z-axis AFMs is Eq. (79¢), which
gives

X=(IN) hat
ANy ,
Xxy(TN) 1- fJ

(149)

Thus any of the combinations of two of Eqs. (146),
(148), and (149) can be used to solve for hay and fr. Self-
consistency can be checked by comparing the derived sets
with each other, and/or with values derived from high-
field magnetization data for collinear AFMs as described
in the following section.

B. Analysis of High-Field z-Axis Magnetization
Data

According to Figs. 4 and 15 for AFM and SF phases,
respectively, for T' < 0.27Tx the zero-field reduced or-
dered moment is nearly saturated at the value of unity,
irrespective of the spin value. It is this low-temperature
range of collinear antiferromagnets aligned along the
z axis for which the high-field behavior is examined in
this section.

For hai1 > 0, according to Eq. (135) and Figs. 30
and 34(a)-34(c), a spin-flop (SF) transition from the
AFM phase to the SEF phase occurs at the reduced SF
field

3
hsp = S——i—l\/hAl(l — f1—ha1). (150)

This transition is easy to see in M, (H) isotherm mea-
surements because it is first order. In the SF phase,
the magnetization is proportional to field according to
Eq. (129¢), which we reproduce here

fiz(ha,t — 0) = {?Z/hCSF
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FIG. 34: (Color online) Reduced z-axis magnetic moment fi. = p./psat versus reduced magnetic field h. = gusH./ksTns at
the listed reduced temperatures ta4 = T'/Tn for spins S = 1/2, f; = —1 and with reduced anisotropy parameters hai equal to
(a) 1/4, (b) 1/2, (c) 3/4, and (d) 1. The SF to PM transitions are second order and the AFM to SF transitions are first order.
The AFM to PM transitions can be second order [(a), (b)], or either first or second order in different field ranges separated by

a tricritical point (c, d) (see the phase diagram in Fig. 32).

where the SF critical field at which the SF phase under-
goes a second-order transition to its PM phase is

3(1—fs —har)
hesp = ————— 151b
cSF S+1 ( )
From Egs. (150) and (151b), one has the ratio
hesp /1= f7—ha
= . 152
hsy haa (152)

Thus if both h.sr and hgp can be measured at low tem-
peratures, an additional equation that does not involve
the spin S is available to solve for f; and ha;.

For h, < hcsr, the reduced single-spin susceptibility
Xzsr for the spin-flop phase is given by Eq. (106) as

Cosp = XzsFINg 1
: Cy L~ f7—hai’

(153)

where the single-spin Curie constant given in Eq. (A1b) is
assumed to be known from the fit of the high-temperature
susceptibility by the Curie-Weiss law, and y.sp is often
measurable at fields above hgp if the SF transition is
observed.

C. Analysis of High-Field Perpendicular
Magnetization Data

The present section discusses the magnetic response
to high fields applied perpendicular to the easy axis or
plane of a collinear or planar noncollinear antiferromag-
net. The reduced perpendicular susceptibility per spin
X.LAarM is given by Eq. (84) as

XLAFMINJ _ 1
Ch 1—fr+har

(154)
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Comparing this equation with Eq. (153) shows that
X1AFM < XzSF, With

Xiarm _ 1= fr—ha
X=SF 1—fr+ha
Finally, the critical field for the AFM to PM transition,

if it occurs instead of a transition to a SF phase, is given
by Eq. (87) as

(155)

3(1—=fs+ha1)
S+1

This field is somewhat larger than h.sp in Eq. (151b),
the difference being

helarm = (156)

3ha1

heiarm — hesF =
This expression is very useful because it does not con-
tain f;. The drawback is that these two critical fields
are often too large to measure except for materials with
low Tx. Alternatively, the ratio of the two critical fields
is

_ 1= f1—hai
Heiarm  1— fr4+hat

hese  Hesr

158
helAFPM (158)

The right side is the inverse of the respective ratio of the
susceptibilities obtained from Eq. (155).

D. Comparison of Classical Anisotropy with
Quantum DS? Anisotropy Predictions

Finally we compare the predictions of the present work
for Ty and 6, with those for quantum DS? anisotropy?.
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In the present case, the Néel temperature is simply de-
scribed by Eq. (1i) as

Tn = Tng(1+ hat), (159)

which is a linear function of ha; irrespective of its value.
However, for —DS? anisotropy, where a positive sign of
D is defined such that z-axis collinear AFM ordering is
favored over zy-plane ordering, and with d = D/kgTn,
one obtains a nonlinear dependence of Ty on d. On the
other hand, for small d one obtains*
d(25 —1)(25 + 3)

TN =T, 1 .
N Ng |1+ 15

(160)

In contrast to Eq. (159), this linear dependence on d
also depends explicitly on S for S > 1. Comparison of
Egs. (159) and (160) indicates that for weak anisotropy
one can relate the anisotropy parameters in the present
classical anisotropy model to that in the quantum —DS?
model for S > 1 by

~d(2S -1)(25 +3)

har = .
Al 15

(161)

Similarly, the Weiss temperature in the Curie-Weiss
law with the field applied along the easy axis of a uniaxial
antiferromagnet is given by Eq. (51d) as

Op = 0oy +Tnshar. (162)

In the case of uniaxial DS? anisotropy one also obtains
a linear dependence on d given by*

d(28 —1)(25 + 3)
15 ’

Op = 0oy +1INs (163)
where here again the second term depends on S, is zero

for S = 1/2, and gives the same correspondence as in
Eq. (161).
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Appendix A: Unified Molecular-Field Theory in the
Absence of Anisotropy

Here we review the properties of Heisenberg AFMs
within the context of the unified MFT# ¢ in the absence
of any type of anisotropy that are needed for the theoret-
ical development in the presence of classical anisotropy
fields. All spins are assumed to be identical and crystal-
lographically equivalent.



1. Curie-Weiss Law

The Curie-Weiss law for the magnetic susceptibility xq
in the paramagnetic (PM) state in the « principal-axis
direction at temperatures T' > T, where T is Néel tem-
perature resulting from the combined influences of the
anisotropy and Heisenberg exhange interactions, is writ-
ten for a representative spin by

Cy
=— Al
Xa T _ opav (Ala)
where the Weiss temperature 60,, depends in general

on «,

92S(S +1)uf

C p—
! 3kp

(Alb)

is the single-spin Curie constant, g is the spectroscopic
splitting factor (g factor), up is the Bohr magneton and
kg is Boltzmann’s constant. For simplicity it is assumed
in this paper that the g factor is isotropic. For moments
that are aligned along a principal axis «, g can be re-
placed by a variable g, in the respective equations. Here
we consider isotropic Weiss temperatures arising from ex-
change interactions only, denoted as 6, ;.

2. Exchange Field

In MFT, one replaces the sum of the Heisenberg ex-
change interactions acting on a representative central
spin ¢ by an effective magnetic field called the Weiss
molecular field or “exchange field” Hexen; and treats it
as an applied field where the exchange energy Fexen; for
spin ¢ is

Ecxchi = _ﬁi ' chchi- (A2)
Taking into account the exchange interactions of ji; with
all neighbors fi; with which it interacts, the exchange
field is given in general by

1 _
Hexeni = 5 9 Z Jijﬂjv (A?’)
9°HB

where J;; is the Heisenberg exchange interaction between
spins i and j and a positive (negative) value corresponds
to an AFM (ferromagnetic FM) interaction. Since all
magnetic moments are assumed to be identical and in
crystallographically equivalent positions in the lattice,
each spin has the same local exchange field in H = 0,
irrespective of the orientation of the spin with respect to
those of the other spins in the system. The component
of Hexen; in the direction of fi; is

N 1
Hexeni = fli * Hexeni = ——5— Z Jijpjcos i, (Ad)
9°HB
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where a; is the angle between [i; and fi; when H # 0.
If H =0 we denote these angles instead by ¢;;.

In the ordered magnetic state in H = 0, the component
of the local Heycnio in the direction of fi;, and also its
magnitude, is

Heoxeno = _% Z Jij cos ¢ji7 (A5)
9 HB J

where we dropped the subscript ¢ because of the equiva-
lence of each moment in H = 0 and pg is the magnitude
of the T-dependent ordered moment in H = 0 which is
the same for all spins because of their crystallographic
equivalence.

3. Antiferromagnetic Ordering

For H — 0, the AFM ordering temperature Ty and
the Weiss temperature 6,7 in the Curie-Weiss (A1) law
due to exchange interactions alone are respectively given
by

S(S+1)

TNJ = —73@3 ; Jij COS ¢jiu (AG&)
S(S+1)

O, = R T Zj: Jij, (A6D)

where the sums are over all neighbors j of a given central
spin i, the subscript J on the left sides signifies that
these quantities arise from exchange interactions only,
and ¢j; is the angle between moments j and ¢ in the
AFM structure at 7' < Ty with H = 0. The ratio f; is
defined as

Ty X, Jijcosdyi

(A7)
where to obtain the second equality Eqs. (A6) were used.
For a FM, ¢;; = 0 for all j, and hence f; = 1. For
AFMs, at least one of the J;; must be positive (AFM
interaction) and at least one of the ¢;; # 0, leading to
f7 < 1. Thus within MFT, for AFM ordering one has
—oo < fr < 1. (A8)
By comparing Egs. (A5) and (A6a), one can write the
zero-field exchange field Hexcno seen by each magnetic
moment ji; as

kTN fio Ny .

Hexchio = 55 a0 = — Hios A9
exch 10 gz/LQBS(S—Fl) Clﬂo ( )
Howno — 3ksTnspo TNJ'LLO

ey oA

where the single-spin Curie constant C; is defined in
Eq. (Alb).

Within MFT the thermal-average ordered and/or field-
induced magnetic moment ji; is in the direction of its



local magnetic induction B; = Hexch; + H. When a clas-
sical anisotropy field is present, one adds Hy,; to this.
The magnitude u; of ji; in that direction is determined
using the Brillouin function Bg(y) according to the self-
consistency requirement

i = psat Bs (yi) (Al10a)
where
guBDB;
;= A10b
Y T ( )

and B; is the component of B; in the direciton of ji;. Our
unconventional definition of the Brillouin function is'®

1

Bs(y) = 39

{(25’ + 1) coth {(25 + 1)%} — coth (%)} :
(Alla)
for which the lowest-order Taylor-series expansion about

y=0Iis

S+1
Bs) = T Logn. (A
The derivative of Bg(y) is
Bs(y) = LB;@) (Allc)
y

1
= E{csch2 (%) — (25 4 1)2csch? [(25 + 1)%} }
From Eq. (A11b), the lowest-order term of a Taylor-series
expansion of Bg(y) about y = 0 is

S+1
Bs(y) = —5—+O(y"). (Alld)
We define the reduced temperature ¢ and reduced zero-

field ordered moment fio(t) in H = 0 as

T

t = —, Al2a
INg ( )

_ o
= , Al12b
Ho 9Sus ( )

where the saturation moment pg,¢ of each spin is

Isat = gSUB- (Al2¢)

Using Eq. (A12b), one can write the magnitude of the
zero-field exchange field in Eq. (A9) as

3kpINiio
Hexeno = —————. Al3
O gup(S 1) (A13)
For H = 0, with B; = Hexeno in Eq. (A13), Eq. (A10a)

for calculating the ordered moment versus 7' in H = 0
becomes

3
with  yo =

S+t (AL4)

flo = Bs (o),
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This zero-field expression is valid within MFT for
a FM and any type of AFM containing identical
crystallographically-equivalent spins. The total deriva-
tive dfig/dt is obtained from Eq. (A14) as

dipo Ho
dt __t[<s+1>t _1}’ (A15)
3B (w0)

where fig(t) is obtained by numerically solving Eq. (A14)
and the Bg(y) and Bjg(y) functions are given in
Egs. (A11).

4. Internal Energy and Heat Capacity for AFM
Ordering in Zero Field

The internal energy per spin Up,,g in zero field is given
for any AFM containing identical crystallographically-
equivalent spins by

1
chchO = _i,lLOchchO; (A16)

where the factor of 1/2 compensates for the fact that
Hexeno arises from exchange interactions between a cen-
tral spin and each of its interacting neighbors, and hence
arises from pairs of spins, whereas Upag is per spin. Writ-
ing Umag in reduced parameters using Egs. (A12) and
using Eq. (A13) gives

UexchO — _ 3Sﬂ% . (Al?)

kTng 2(5+1)

The magnetic heat capacity per spin is given in reduced
units by

Cmag _ d(Uexcho/kBINg) _ { 3S ko } dfio
B B dt

kg dt (S+1)] dt (AL8)

where [ig(t) is obtained by solving Eq. (A14) and dfio/dt
is given by Eq. (A15).

5. Magnetization in the Paramagnetic State

Let the applied field be in the « principle-axis direc-
tion. In the paramagnetic state above Tx s, the thermal
average of each magnetic moment is in the direction of
the applied field. Hence aj; = 0 in Eq. (A4) and one
obtains

Ha oS
Hexeho = =53 3 Jij = === " i,
exch a Q2M2}3 - ij 9in - ij

(A19)

where we dropped the subscript ¢ because all induced mo-
ments are equivalent in the PM state. As in Eq. (A12b),
we define the reduced moment in the « direction as

- _ Mo

o= . A20
fla = o (A20)



Then using Eq. (A6b), Eq. (A19) becomes

3,L_La kB epJ

Hexcho = ——, A2la
" gun(S +1) (AZle)
SO
gMBHexcha 3ﬂa9pJ
= . A21b
knT (S+1)T (A21b)

Including the applied field H, in B;, Egs. (A10) give

3ﬂa9pJ g/J'BHoz
S+ 1T " ksl

fia = Bs (A22)

For H, — 0, using Eq. (A6b) and the first-order Taylor
series expansion in Eq. (A1lb), Eq. (A22) becomes

Oy,
Ho =T "9,

(A23a)

where C is the single-spin Curie constant in Eq. (Alb),
which yields an isotropic Curie-Weiss law (A1) given by

Ha Cl
JT) = 22 = , A23b
xpma(T) H. ~ T—0,, (A23b)
yielding
Cy
xpMa(INg) = 7TNJ 4., (A23c)

We define the reduced magnetic field h, in the «
principal-axis direction as

grBHa
ha = A24
ksTng (A24)
Then in reduced variables Eq. (A22) becomes
— 3ﬂa fJ ha
o= Bg | 2HadT | Do) t>1 A25
flo =5 [(S+ T ] (t=1)  (AZ)

where the ratio f; = 6,/Tx is given in terms of the ex-
change constants and the magnetic structure in Eq. (A7).
Equation (A25) must be solved numerically for f, for
given values of S, f;, hy and t.

6. Magnetization of a Planar AFM in a
Perpendicular Field

To determine the perpendicular component u; of a
magnetic moment in a collinear or planar noncollinear
AFM oriented in the zy plane, the net torque 7 on a
representative mmoment [i; is set to zero according to

T = [l; X Hexeni + fii X H=0. (A26)
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The magnetic moment vectors are written in spherical
coordinates as

o = u[sin@(cos $; i+ sin (blj) + cos@lA{]
1] sin B(cos ¢; i+sing;j)+ COS@IA{}
= ,u{ sin 6 [(cos ¢; coS ¢j; — sin ¢; sin gbjl-)i

+(sin ¢; cos ¢j; + cos @; sin ¢j;) j} + cosf l;},

(A27a)

i

where in the last equality we used trig identities with
bji = 5 — bs-

Using the definition of the exchange field in Eq. (A3) and
the requirement that > ; Jijsingj; = 0 for stability of an
AFM structure®, the first term in Eq. (A26) is found to
be

(A27b)

3% Skp
S+1

i X Hexeni = — sin cos8(Iny — Op.r)
X (sin ¢ 1 — cos ¢ j). (A28)
Taking H = H k, the second term in Eq. (A26) is
fi; x H=[igugSH, sinf(sin¢;i—cosd;j). (A29)

Substituting Eqs. (A28) and (A29) into (A26) gives

3k
Slu—i-Bl COS G(TNJ — 9pJ) = g/LBHL. (A30)
Using i = p1/(gSup) one obtains
3kp
n 1)ucos 0(Ing — Ops) = gusH .. (A31)

gusS(S

Referring to Fig. 2, the perpendicular component i of
the induced magnetic moment of each spin is
1 = pcosb, (A32)

where p(T') is the magnitude of the ordered moment.
Then Eq. (A31) gives

C1Hl

= 7= A33a
= T ( )
= x1sH,
_ ML Ch
Xl] = —=——"— (A33b)

Hi  Tnj—0p;

This applies for fields H; less than the critical field
H., j(T) at which the moments become parallel and the
system exhibits a second-order transition into the PM
state. From Eq. (A33a), the critical field is given by

wT)

HCJ_J(T) = )
XLJ

(A34)

where p(T') is the ordered moment in the AFM state
versus 7.



Comparing Eqgs. (A33b) and (A23c) one sees that

X1(T <Tng) = xpma(Tng). (A35)

Thus y1 s in the AFM state at T' < Ty is independent

of T with the value ypny of the PM state at T'= T .
Dividing each side of Eq. (A30) by kgTns gives

3pcosd
SR (U= ) = ho,
S+1 (A36)
3ﬂC0829(1 f)th_COSH
(S+1)t P
The magnitude of the induced moment is
i = Bs | 5B} (Hown; + Hy cos) (A37)
ksT
B 3t 9 h cost
_BS{(S—I—l)t[l (1= fy)cos 9}—}— " },

where H | cosf is the component of H in the direction
of each of the magnetic moments, the reduced field is
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hy = gupH, /kgTny from Eq. (A24) and the reduced
temperature is t = T'/Tn; according to Eq. (AT).

Substituting the left-hand side of Eq. (A36) for
hy cos(f)/t into Eq. (A37) and simplifying yields

fi— Bs {ﬁ] . (A38)

This is identical to Eq. (A14) for determining fio(t) with
H = 0. Hence the ordered moment magnitude is in-
dependent of field for h) less than the reduced perpen-
dicular critical field h.,, which is given by the first of
Eqgs. (A36) with 8 =0 as

~3u(l—fy)

hey = , A
+ S+1 (A39)

where the ordered reduced moment fi is temperature de-
pendent and hence so is hc .
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