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We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit
is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy
effective theory using two alternative approaches. The first consists of a mean-field approximation.
The second consists of a Random Phase approximation (RPA) for the single-particle Green’s func-
tions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The
resulting phase diagram consists of two competing chiral phases, one with Abelian and the other
with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the
Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid
on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the
Kitaev model) domain walls propagating along only one of the two space directions.
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I. INTRODUCTION AND RESULTS

A. Motivation

Most of the observed low-temperature phases in con-
densed matter physics are characterized by spontaneous
symmetry breaking (SSB) through the onset of a local
order parameter acquiring a non-vanishing expectation
value. Antiferromagnetism is the paradigmatic example
of SSB with the staggered magnetization as the local or-
der parameter. On the other hand, it has been found
that such states as exist in the fractional quantum Hall
effect (FQHE) possess a hidden (topological) order not
associated with any local order parameter. This type
of order may exist only if the bulk is incompressible, in
which case it reveals itself in several ways. In particu-
lar, a sufficient condition for the topological order is the
existence of robust gapless boundary excitations. If the
system is situated on a manifold without boundaries, the
ground state is degenerate and the degeneracy depends
on the genus of the manifold. These characteristics of
topological order were formulated by Wen in Ref. 1, but
the notion has been later refined by relating it to the pres-
ence of long-range quantum entanglement in Refs. 2–4.
The other feature in (2 + 1)-dimensional spacetime is the
presence of gapped point-like excitations obeying braid-
ing statistics that is neither fermionic nor bosonic. This
sharpening of what constitutes the essence of topological
order in (2 + 1)-dimensional spacetime has opened the
possibility of its classification.5,6 However, these discus-
sions of topological order have been conducted with little
reference to microscopic models. There are very few of
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FIG. 1. (Color online) (a) Alignment of blocks along an open line. Each block represents a non-chiral conformal field theory in
(1 + 1)-dimensional spacetime. One half of the gapless modes are left movers, the other half are right movers. This partition
into movers with opposite chirality is represented by the coloring blue and red, respectively. (b) Alignment of blocks along a
circle.

them which can be treated by controlled approximations;
most notably the quantum dimer model on the triangular
lattice7 and the Kitaev model on the honeycomb lattice8.
The latter is a model of interacting quantum spins, whose
excitations are Majorana fermions. Their propagation is
facilitated by the presence of the so-called visons which
in this model are immobile Z2 gauge field fluxes.

One way to construct microscopic models with topo-
logical order is to use the so-called wire construction. The
idea, following Kane and his collaborators,9–12 is to cou-
ple elementary building blocks that realize a conformal-
field theory (CFT) in (1 + 1)-dimensional spacetime [by
construction this building block cannot be gapped into a
phase supporting topological order in (1+1)-dimensional
spacetime] so as to realize an incompressible phase of
matter in (d + 1)-dimensional spacetime that supports
topological order. Although, the diagnostic for topolog-
ical order is a degeneracy of the ground-state manifold
that depends on the genus of compactified space, it is
more convenient to use a stronger (a sufficient but not
necessary) condition for topological order, namely, the
existence of protected gapless boundary states that are
localized on the (d−1)-dimensional boundaries of d > 1-
dimensional space. It is then suggested to weakly couple
these building blocks so as to gap the bulk while leav-
ing the boundaries gapless. A generic coupling between
these building blocks will not do that, for such a coupling
can yield three possible outcomes. First, the resulting
phase of matter in (d+ 1)-dimensional spacetime may be
gapless and ordered. This is what happens when anti-
ferromagnetic spin-1/2 chains are coupled so as to real-
ize an antiferromagnetic square lattice.13–15 Second, the
resulting phase of matter in (d + 1)-dimensional space-
time may be gapful, but without topological order. This
is what happens when antiferromagnetic spin-1/2 chains
are weakly coupled pairwise so as to realize a stacking
of two-leg ladders which, in turn, are even more weakly
coupled pairwise.16 We are interested in the third out-
come, namely, when the resulting phase of matter in
(d+ 1)-dimensional spacetime is incompressible and sup-
ports topological order. Which outcome is realized is
determined by the choice of the couplings between the
building blocks, that is by the energetics.

In this paper we will be dealing with a model in two-
dimensional space. In this case, a sufficient but not neces-

sary condition for topological order is that in the infrared
limit (i) the first and last building blocks acquire a nonva-
nishing yet reduced central charge when their direct cou-
pling is forbidden by locality (open boundary conditions
along the stacking direction), whereas (ii) the ground
state is fully gapped when their direct coupling is com-
patible with locality (closed boundary conditions along
the stacking direction). This situation is pictured in Fig.
1. Each block represents some given non-chiral CFT in
(1 + 1)-dimensional spacetime. The stacking direction of
the blocks is oriented by the arrow. The coloring red
and blue represents the left- and right-movers from the
CFT, respectively. It is possible to gap out a pair of
movers of opposite chirality belonging to two consecu-
tive blocks by coupling in a local way the right movers
from a block to the left movers of the nearest-neighbor
block along the stacking direction. This leaves the left
movers from the first block and the right movers from
the last block gapless in panel (a) from Fig. 1, whereas
all states are gapped when periodic boundary conditions
are imposed as in panel (b) from Fig. 1. The challenge is
to realize Fig. 1 by appealing only to local couplings be-
tween the microscopic degrees of freedom such as lattice
electrons or magnetic moments. This challenge was met
for all symmetry classes from the ten-fold way in Ref. 17,
where it was shown that five of them can support Abelian
topological order (ATO) upon choosing local (electronic)
interactions between consecutive blocks.

A proposal to realize a spin liquid supporting chiral
edge states with non-integer valued central charges was
given in Refs. 18 and 19. It is the fractional part to the
chiral central charge of the edge states that signals the
non-Abelian topological order (NATO). This proposal re-
lies on local interactions within and between consecutive
blocks from Fig. 1 that are both marginally relevant and
compete with each other. Consequently, it could not be
proven that all states are gapped when periodic boundary
conditions are imposed as in panel (b) from Fig. 1. The
purpose of this paper is to modify the field theory stud-
ied in Ref. 19 to rule out the possibility that the flow to
strong coupling in Ref. 19, when periodic boundary con-
ditions are imposed as in panel (b) from Fig. 1, delivers
a gapless phase of matter. This modification makes the
theory amenable to a mean-field approximation that pre-
dicts two gapped phases separated by a gap-closing tran-
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FIG. 2. (Color online) Coupled quantum spin-1/2 two-leg ladders that realize the Ising topological order in two-dimensional
space. The intra-ladder couplings J1, J⊥, J× = −J⊥/2, and JU (represented by the blue curly bracket) are defined in Eq. (6.1).
The inter-ladder couplings J∨ (represented by the green bond), J∨/2 (represented by the magenta bond), and Jχ (represented
by the blue arrows) are defined in Eq. (7.1). The lattice geometry can also be thought of as that of a bilayer of two square
lattices.

sition when the couplings between consecutive blocks are
chosen to be marginally relevant. One gapped phase sup-
ports ATO. The other gapped phase supports NATO. We
also find a third gapless phase, a two-dimensional sliding
Luttinger phase when the couplings between consecutive
blocks are chosen to be marginally irrelevant.

B. Results and outline

As was the case with Ref. 19, we shall take the blocks
from Fig. 1 to realize an Ising CFT on the boundary,
i.e., a CFT with central charge c = 1/2. However, unlike
in Ref. 19 where this Ising CFT was driven by marginal
perturbations to a CFT with central charge c = 2, in this
paper the Ising CFT is driven by a strongly relevant per-
turbation. This distinction gives a much better control
on the strong coupling fixed point that realizes the Ising
NATO when two consecutive blocks are coupled through
interactions.

Throughout this paper, we are mostly preoccupied
with the analysis of the field theory corresponding to Fig.
1. The choice of a microscopic theory delivering the Ising
criticality is dictated by simplicity at the level of CFT
rather than by simplicity on the microscopic level. This
microscopic theory is a quantum spin-1/2 ladder, whose
low-energy effective field theory is depicted by any one
of the single square box colored in red and blue in Fig.
1. This was also the case in Ref. 19. However, instead of
relying on two-body spin-1/2 interactions which are re-
duced to marginal current-current interactions at low en-
ergies, as was the case in Ref. 19, we shall rely in this pa-
per on four-body spin-1/2 interactions which are reduced
to a mass term for three out of the four gapless Majorana
fields that encode the critical theory of two decoupled an-
tiferromagnetic quantum spin-1/2 chains. Once a single

spin-1/2 ladder is tuned to the Ising critical point, we
couple the ladders as was done in Ref. 19. The resulting
lattice model is depicted in Fig. 2. Each ladder viewed
from the side in Fig. 2. is represented by a square box
colored in red and blue in Fig. 1 at low energies.

The lattice model for a single spin-1/2 ladder is defined
in Sec. VI. The lattice model for a one-dimensional array
of coupled spin-1/2 ladders is defined in Sec. VII. Its
continuum limit is derived and shown to agree with the
Majorana Hamiltonian (2.1).

The continuum limit is derived under the assumption
that one can eliminate couplings between the most rele-
vant fields on consecutive ladders and neglect those be-
tween more distant ladders. Then, at low energies, the
coupled quantum spin-1/2 ladders in Fig. 2 admit an ef-
fective description in terms of an interacting quantum
field-theory with four Majorana fields per ladder. Deal-
ing with the fermionic field theory, one has to remem-
ber that its Hilbert space is greater than the one of
the original spin model. In particular, it allows states
created by odd numbers of Majorana fermions per lad-
der. There are no such states in the spin model. This
fermionic field theory is the starting point captured by
Eq. (2.1) from Sec. II. In this mapping the Majorana
fields carry a flavor index m = 1, · · · , n that labels the
quantum spin-1/2 ladders. The kinetic energy of the
Majorana fields is encoded by a Wess-Zumino-Novikov-

Witten (WZNW) action ĤWZNW. This kinetic energy
ignores all inter-ladder interactions and treats any one of
the ladders as two decoupled antiferromagnetic quantum
spin-1/2 chains, each of which is at an SU(2)1 quantum
critical point. The intra-ladder interactions between the
quantum spin-1/2 turn at low energies into bare masses
mµ ∈ R (µ = 0, 1, 2, 3) for each Majorana field. The
inter-ladder interactions between the quantum spin-1/2
turn at low energies into an O(4)-symmetric interaction
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that couples Majorana fields belonging to two consecu-
tive ladders. This interaction resembles the Gross-Neveu
interaction, and we shall call it a Gross-Neveu-like inter-
action.

We treat the O(4)-symmetric Gross-Neveu-like inter-
action by two alternative methods. In Sec. III A, we
use the mean field procedure based on decoupling of
the four-fermion interaction by means of the Hubbard-
Stratonovich transformation. In Secs. IV and V, we use
the approach which is based on combination of non-
perturbative results extracted from the exact solution
of the O(4)-symmetric Gross-Neveu model and Random
Phase approximation. The phase diagram from Fig. 3
is conjectured from a mean-field approximation that we
derive in the reminder of Sec. III. In Fig. 3, λ denotes the
coupling of the non-Abelian current-current interactions
between consecutive blocks. This interaction is either
marginally irrelevant for negative λ or marginally rele-
vant for positive λ. The mean-field phase diagram in
Fig. 5 is parametrized by mt and the mean-field value
of the spectral gap |φ (λ)|/2 under the assumption that
the so-called singlet Majorana is gapless, m0 ≡ ms = 0,
while a triplet of Majoranas have the isotropic mass
ma ≡ mt for a = 1, 2, 3. There exist mean-field critical
lines that correspond to the condition |φ (λ)|/2 = |mt|
along which the mean-field Majorana gap vanishes. The
regions |φ (λ)|/2 > |mt| and |φ (λ)|/2 < |mt| correspond
to phases of matter supporting NATO and ATO, respec-
tively.

From the mean-field phase diagram in Fig. 5, we con-
jecture the phase diagram in Fig. 3 that is parametrized
by the inter-ladder interaction with the uniform coupling
λ and by the triplet mass mt. The bare value of the
triplet mass is a function of the microscopic magnetic
couplings of any one of the ladders. For λ > 0, the
O(4)-symmetric Gross-Neveu-like interaction guarantees
a non-vanishing value for the mean-field φ(λ). On the
other hand, for λ < 0, the O(4) Gross-Neveu-like in-
teraction also guarantees that the mean-field φ(λ) van-
ishes. The line mt = 0 is exactly solvable and we use
this solution in IV. The dashed green line in Fig. 3 cor-
responds to the mean-field transition line. The phases
NATO and ATO in Fig. 3 correspond to the mean-field
regions |φ(λ)|/2 > |mt| and |φ(λ)|/2 < |mt|, respectively.

The nonvanishing mean-field values for φ(λ) follow
from integrating over the Majorana fields in Sec. III C
and deriving a mean field equation obeyed by φ(λ) in
Sec. III D.

In Secs. IV and V, we establish the form of the bulk
excitation spectrum. It consists of Majorana fermions
propagating in two spatial dimensions and visons excita-
tions which can propagate only along chains. As far as
we are aware this is the only microscopic model (besides
the Kitaev one) where such particles have been rigorously
obtained.

As we have mentioned above, the lattice model for a
single spin-1/2 ladder is defined in Sec. VI, where we also
derive its continuum limit. The lattice model for a one-
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FIG. 3. (Color online) Conjectured phase diagram of the
theory (2.1) with m0 = 0 and ma = mt for a = 1, 2, 3.

dimensional array of coupled spin-1/2 ladders is defined
in Sec. VII. We then discuss its continuum limit, which
is the Majorana Hamiltonian (2.1). We conclude with a
summary in Sec. VIII.

II. MAJORANA FIELD THEORY

A. Definition

We begin with

Ĥ ..= Ĥ0 + Ĥintra−ladder + Ĥinter−ladder, (2.1a)

Ĥ0 =

n∑
m=1

3∑
µ=0

i

2
vµ

(
χ̂µL,m∂xχ̂

µ
L,m − χ̂

µ
R,m∂xχ̂

µ
R,m

)
, (2.1b)

Ĥintra−ladder =

n∑
m=1

3∑
µ=0

imµ χ̂
µ
L,mχ̂

µ
R,m, (2.1c)

Ĥinter−ladder =

n−1∑
m=1

λ

4

(
3∑

µ=0

χ̂µL,m χ̂
µ
R,m+1

)2

, (2.1d)

where the velocities vµ, the masses mµ, and the coupling
λ are all real valued. The quantum fields obey the Ma-
jorana equal-time anti-commutators{

χ̂µM,m(x), χ̂µ
′

M′,m′(x
′)
}

= δMM′ δmm′ δµµ′ δ(x− x′), (2.1e)

where µ = 0, 1, 2, 3 labels a quartet of Majorana fields,
M = L,R denotes the left- and right-movers, and m, m′ =
1, · · · , n is the ladder index. Hamiltonian (2.1) has the
following symmetries.

First, the µ-resolved fermion parity is conserved owing
to the symmetry of Hamiltonian (2.1) under the Ising-like
transformation

χ̂µM,m(x) 7→ σµ χ̂µM,m(x), σµ = ±1, (2.2)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, and 0 ≤
x ≤ Lx.
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FIG. 4. (Color online) (a) A pictorial representation of the
theory (2.1) with m0 = 0 and ma = mt for a = 1, 2, 3 when
open boundary conditions (OBC) are imposed along the y
direction. (b) A pictorial representation of the theory (2.1)
with m0 = 0 and ma = mt for a = 1, 2, 3 when periodic
boundary conditions (PBC) are imposed along the y direction.

Second, Hamiltonian (2.1) is invariant under the m-
resolved Z2 transformation by which

χ̂µM,m(x) 7→ σm χ̂
µ
M,m(x), σm = ±1, (2.3)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, and 0 ≤
x ≤ Lx.

We observe that Ĥ0 defined by Eq. (2.1b) is O(4) sym-

metric if vµ ≡ v is independent of µ, Ĥintra−ladder defined
by Eq. (2.1c) is O(4) symmetric if mµ ≡ m is indepen-

dent of µ, and Ĥinter−ladder defined by Eq. (2.1d) is O(4)
symmetric. This global O(4) = Z2 × SO(4) symmetry
encodes the global Z2×SU(2)×SU(2) symmetry of the
microscopic inter-ladder interactions depicted in Fig. 2,
as will be explained in more details in Secs. VI and VII.

B. Limiting cases

In this subsection, we consider the following limiting
cases for the theory defined by Eq. (2.1) under the as-
sumptions that

v0 ≡ vs, m0 ≡ ms = 0,

va ≡ vt, ma ≡ mt, a = 1, 2, 3.
(2.4)

A cartoon picture of the theory (2.1) with these assump-
tions is depicted in Fig. 4(a).

Case λ = 0 and mt 6= 0. There are n gapless heli-
cal Majorana fields χ̂0

L,m and χ̂0
R,m for m = 1, · · · , n that

propagate in opposite directions in each bundle m. The
two-dimensional system is critical in the singlet Majorana
sector where it realizes a sliding Luttinger phase. This

case corresponds to the vertical axis of the conjectured
phase diagram in Fig. 3.
Case λ 6= 0 and mt = 0. The Hamiltonian (2.1)

simplifies to

Ĥ ..= Ĥedge−states,m=1 + Ĥedge−states,m=n +

n−1∑
m=1

ĤGN,m,

(2.5a)

Ĥedge−states,m=1 ..=

3∑
µ=0

i

2
vµ

(
−χ̂µR,m=1∂xχ̂

µ
R,m=1

)
,

(2.5b)

Ĥedge−states,m=n ..=

3∑
µ=0

i

2
vµ

(
+χ̂µL,m=n∂xχ̂

µ
L,m=n

)
,

(2.5c)

ĤGN,m ..=

3∑
µ=0

i

2
vµ

(
χ̂µL,m∂xχ̂

µ
L,m − χ̂

µ
R,m+1∂xχ̂

µ
R,m+1

)

+
λ

4

(
3∑

µ=0

χ̂µL,m χ̂
µ
R,m+1

)2

. (2.5d)

Here, the four-Majorana interaction in Eq. (2.5d) is an
O(4)-symmetric interaction of the Gross-Neveu type.

The m-resolved symmetry (2.3) of Hamiltonian (2.5) is
enhanced to the invariance under the M- and m-resolved
Z2 transformation

χ̂µM,m(x) 7→ σM,m χ̂
µ
M,m(x), σM,m = ±1, (2.6)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, and
0 ≤ x ≤ Lx. Indeed, whereas any transformation (2.6)
changes

φ̂m,m+1 ..= λ

3∑
µ=0

iχ̂µL,m χ̂
µ
R,m+1 (2.7)

according to the rule

φ̂m,m+1 7→ σL,m σR,m+1 φ̂m,m+1, (2.8)

it leaves φ̂2
m,m+1 unchanged. Any one of these M- and m-

resolved symmetries obeying the conditions σL,m σR,m+1 =
−1 and either σL,m = −σR,m or σL,m+1 = −σR,m+1 for some
m is broken if any one of the masses mµ is non-vanishing.
This enhanced symmetry relative to the symmetry (2.3)
reflects the fact that the limit with all masses mµ van-
ishing is nothing but n decoupled Hamiltonians, each of
which represents a pair of interacting non-chiral Majo-
rana fields evolving in (1 + 1)-dimensional spacetime.

In this limit, Hamiltonian (2.5) is known20 to be in-
tegrable and gapped (gapless) when vµ = v with µ =
0, 1, 2, 3 and λ > 0 (λ < 0). Thus, we should further
distinguish between the following two cases.

Case λ > 0. The bulk is gapped with the four gapless
chiral Majorana edge modes χ̂µR,m=1 and χ̂µL,m=n. Since
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FIG. 5. (Color online) The mean-field phase diagram pre-
sented in terms of mt and the mean-field value φ under the
condition of m0 = 0 and ma = mt for a = 1, 2, 3.

the chiral central charge of each edge is two, the cor-
responding bulk hosts an ATO. This case corresponds
to the positive horizontal-axis (represented by the solid
green line) of the conjectured phase diagram in Fig. 3.

Case λ < 0. The four pairs of gapless helical Majorana
fields χ̂µL,m and χ̂µR,m with µ = 0, 1, 2, 3 are freely propa-
gating in each ladder m = 1, · · · , n. The two-dimensional
bulk is critical and shares the same universality class
as a sliding Luttinger phase. This case corresponds to
the negative horizontal-axis (represented by the solid red
line) of the conjectured phase diagram in Fig. 3.

Case λ < 0 and mt 6= 0. We conjecture that, since
the Gross-Neveu interaction with λ < 0 is marginally
irrelevant, the resulting theory is the same as the case of
λ = 0 and mt 6= 0. This case corresponds to the blue
colored region of the conjectured phase diagram in Fig.
3.

Case λ > 0 and mt 6= 0. We conjecture the compe-
tition between two phases, an ATO phase and a NATO
phase separated by a bulk gap closing transition (repre-
sented by the dashed green lines in Fig. 3). This conjec-
ture will be verified within a mean-field approximation.

III. MEAN-FIELD APPROXIMATION

We are going to carry out a mean-field calculation from
which we deduce the mean-field phase diagram in Fig. 5.
Afterwards, we establish the conjectured phase diagram
in Fig. 3.

Our strategy does not rely on theO(4) symmetry of the
Gross-Neveu-like interaction, it can generically be broken
by anisotropic singlet (vs) and triplet (vt) velocities, i.e.,

vs 6= vt. (3.1)

If we decouple the Gross-Neveu-like interaction in an
O(4)-symmetric way through a scalar field φ, then a
uniform and non-vanishing expectation value for φ pro-
vides the singlet and triplet Majoranas with an O(4)-
symmetric mean-field mass.

In the process of solving the mean-field gap equation
(3.32a), we shall be primarily interested with the case
ms = 0 for which the decoupled ladders are fine-tuned
to an Ising critical point. In Fig. 3, we identify the re-
gions from the λ − mt plane for which the mean-field
single-particle singlet gap is non-vanishing when periodic
boundary conditions (PBC) are imposed.

A. Hubbard-Stratonovich transformation

We proceed with some manipulations on the partition
function

Z ..= Tr exp

−β Lx∫
0

dx Ĥ

 , (3.2)

where β is the inverse temperature, the trace is over the

Fock space spanned by the Majorana fields, and Ĥ was
defined in Eq. (2.1). We can manipulate the inter-ladder
current-current interaction (2.1d) by introducing an aux-
iliary scalar field. This we do using the path-integral
representation of the partition function.

We work in two-dimensional Euclidean spacetime and
use the path-integral representation of our model. Peri-
odic boundary conditions are imposed in space across the
rectangle of area Lx×Ly. We shall denote by ay ≡ 1/Λy
the separation between two consecutive ladders. We shall
denote by ax ≡ 1/Λx the ultraviolet cutoff along the lad-
ders. The boundary conditions along the imaginary-time
segment [0, β[ are periodic for bosonic fields and antiperi-
odic for Grassmann-valued fields. The model is defined
by

Z ..=

∫
D[φ]

∫
D[χ0, χ1, χ2, χ3] e−S , (3.3a)

S ..=

β∫
0

dτ

Lx∫
0

dx

Ly/ay∑
m=1

(
Lχ,m + Lφ,m + Lχ,φ,m

)
, (3.3b)

Lχ,m ..=
1

2

3∑
µ=0

[
χµL,m

(
∂τ + ivµ∂x

)
χµL,m

+ χµR,m
(
∂τ − ivµ∂x

)
χµR,m

]
, (3.3c)

Lφ,m ..=
1

4λ
(φm,m+1)2, (3.3d)

Lχ,φ,m ..=

3∑
µ=0

imµχ
µ
L,m χ

µ
R,m

+

3∑
µ=0

1

2

(
−iχµL,m χ

µ
R,m+1

)
φm,m+1. (3.3e)
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Here, the engineering dimensions of the Majoranas are

length−1/2, the engineering dimensions of the auxiliary
bosonic fields are length−1, and the engineering dimen-
sions of the couplings λ are length0. The action (3.3b)
has the following symmetries.

First, the µ-resolved Majorana parity is conserved ow-
ing to the symmetry of S defined in Eq. (3.3b) under the
Ising-like transformation

χµM,m(τ, x) 7→ σµ χµM,m(τ, x), σµ = ±1, (3.4)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, 0 ≤ τ ≤ β,
and 0 ≤ x ≤ Lx.

Second, action (3.3b) is invariant under the m-resolved
Ising-like transformation

χµM,m(τ, x) 7→ σm χ
µ
M,m(τ, x), σm = ±1,

φm,m+1(τ, x) 7→ σm σm+1 φm,m+1(τ, x),
(3.5)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, 0 ≤ τ ≤ β,
and 0 ≤ x ≤ Lx.

The m-resolved symmetry (3.5) of the action (3.3b) is
enhanced in the massless limit mµ = 0 for µ = 0, 1, 2, 3
to the M- and m-resolved symmetry under the transfor-
mation

χµM,m(τ, x) 7→ σM,m χ
µ
M,m(τ, x), σM,m = ±1,

φm,m+1(τ, x) 7→ σL,m σR,m+1 φm,m+1(τ, x),
(3.6)

for any µ = 0, · · · , 3, M = L,R, m = 1, · · · , n, 0 ≤ τ ≤ β,
and 0 ≤ x ≤ Lx. Any non-vanishing mass mµ reduces
the M- and m-resolved symmetry of the action (3.3b) to
the m-resolved symmetry (3.5).

B. Mean-field Majorana single-particle
Hamiltonian

To proceed, we assume that the scalar fields are inde-
pendent of spacetime and of the index m, i.e.,

φm,m+1(τ, x) ≡ φ, Sφ = β Lx
Ly
ay

1

4λ
φ2. (3.7)

This assumption implies translation symmetry in space-
time. Hence, we introduce the Fourier transformations

χµM,m(τ, x) =

√
ay

β Lx Ly

∑
ω,kx,ky

e−i(kx x+ky m ay−ω τ)χµM,ω,k

(3.8a)

with the reality condition

χµ∗M,ω,k = χµM,−ω,−k (3.8b)
for µ = 0, 1, 2, 3, M = L,R, and m = 1, · · · , Ly/ay. We
shall make use of the identity

β∫
0

dτ

Lx∫
0

dx

Ly/ay∑
m=1

χµL,m χ
µ
R,m+1 =

∑
ω,k

e−iky ay χµL,−ω,−k χ
µ
R,ω,k

(3.9)

for any µ = 0, 1, 2, 3. We should emphasize that we
have imposed periodic boundary condition along the y-
direction

χµM,n+1 ≡ χ
µ
M,1, M = L,R, (3.10)

when we perform the Fourier transformation. This
amounts to extending the upper limit for the summation
from n− 1 to n in the original inter-ladder Hamiltonian
(2.1d). This choice of boundary conditions is depicted in
Fig. 4(b). If so,

Sχ + Sχ,φ ≡
β∫

0

dτ

Lx∫
0

dx

Ly/ay∑
m=1

(
Lχ,m + Lχ,φ,m

)
=
∑
ω,k

3∑
µ=0

1

2

(
χµR,−ω,−kχ

µ
L,−ω,−k

)( iω − vµkx −i
(
mµ − e+iky ay 1

2φ
)

i
(
mµ − e−iky ay 1

2φ
)

iω + vµkx

) (
χµR,ω,k
χµL,ω,k

)
. (3.11a)

The mean-field Majorana single-particle Hamiltonian is
defined by

ĤMF
k ..=

3∑
µ=0

ĤMF
µ,k , (3.11b)

where

ĤMF
µ,k ..=

1

2

 −vµkx −i
(
mµ − e+ikyay φ

2

)
i
(
mµ − e−ikyay φ

2

)
vµkx

 .

(3.11c)
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Thus, there are eight branches of mean-field excitations
with the dispersions (under the assumption that φ is real
valued)

εµ,±(kx, ky) = ±1

2

√
v2
µk

2
x +m2

µ +
φ2

4
−mµφ cos

(
kyay

)
,

(3.12)
for µ = 0, · · · , 3. The mean-field gaps are non-vanishing
if and only if

mµ − e±iky ay
φ

2
6= 0. (3.13)

More specifically, the mean-field Majorana gap around
(kx = 0, ky = 0) and (kx = 0, ky = π) are, for µ =
0, · · · , 3,

εµ,+(0, 0)− εµ,−(0, 0) =

∣∣∣∣mµ −
φ

2

∣∣∣∣ , (3.14a)

and

εµ,+(0, π)− εµ,−(0, π) =

∣∣∣∣mµ +
φ

2

∣∣∣∣ , (3.14b)

respectively. The mean-field gap (3.14a) and (3.14b) is
the smallest gap when sgn(mµφ) = + and sgn(mµφ) =
−, respectively.

For any non-vanishing mean-field Majorana gap ∆µ

∆µ ..=

∣∣∣∣|mµ| −
|φ|
2

∣∣∣∣ , (3.15)

the flavor µ realizes an insulating phase. Whether this
insulating phase is trivial (no protected edge state when
OBC are imposed along the y-direction) or non-trivial
(existence of protected edge states when OBC are im-
posed along the y-direction) depends on the relative mag-
nitude of |mµ| with respect to the mean-field value |φ|/2.
The flavor µ realizes a topologically trivial insulating
phase if

|mµ| >
|φ|
2
, (3.16a)

while it realizes a topologically non-trivial insulating
phase if

|mµ| <
|φ|
2
. (3.16b)

The criteria (3.16) for the topological non-trivial and
trivial phases can be understood as follows. In the limit
|mµ|/|φ| = ∞, the single-particle mean-field Hamilto-
nian is gapped by pairing left- and right-moving Majo-
rana modes in one ladder at a time. By construction
there is no edge state. This is the topologically trivial
insulator. In the opposite limit of |mµ|/|φ| = 0, not all
Majorana modes are paired. A pair of Majorana modes
with opposite chiralities remains free to propagate in the
first and last ladder. A phase transition should occur

(a)

trivial'insulator'edge'state'
1
20

(a)

φ
χR

µ χL
µ

……'
χR

µ χL
µχR

µ χL
µ

φ φ
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µ χL

µ
……'

mµ
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µ χL
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1
20
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1
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µ
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mµ

χR
µ χL

µ

mµ

χR
µ χL

µ

(b)

FIG. 6. (Color online) (a) Flavor(µ)-resolved phase diagram
for the single-particle mean-field Hamiltonian as a function
of |mµ|/|φ|. The topologically trivial insulating phase in the
limit |mµ|/|φ| = ∞ is depicted in panel (b). The topologi-
cally non-trivial insulating phase in the limit |mµ|/|φ| = 0 is
depicted in panel (c). A phase transition should occur when
|mµ|/|φ| is of order 1/2. (b) When φ = 0 and mµ 6= 0, the
single-particle mean-field Hamiltonian is gapped by pairing
left- and right-moving Majorana modes in one ladder at a
time. By construction there is no edge state. This is the
topologically trivial insulator. (c) When mµ = 0 and φ 6= 0,
not all Majorana modes are paired. A pair of Majorana modes
with opposite chiralities remains free to propagate in the first
and last ladder. This is the topologically non-trivial insulator.

when |mµ|/|φ| is of order 1/2. Figure 6 captures the
essence of this criterion.

Once it is established that φ is non-vanishing, the re-
sulting central charge of the edge states depends on how
many mµ for µ = 0, 1, 2, 3 satisfy the topologically non-
trivial condition (3.16b). For instance, if one (three)
out of the four mµ satisfies Eq. (3.16b), then the cen-
tral charge of the edge state is 1/2 (3/2). We conclude
that the gapped bulk hosts NATO. Similarly, if two (four)
out of the four mµ satisfy Eq. (3.16b), then the central
charge of the edge states is 2 (4). We conclude that the
gapped bulk hosts ATO.

We close this discussion by observing that the mean-
field single-particle Hamiltonian (3.11c) was studied re-
cently by Kane et. al. in Ref. 12 [see their Eq. (58)] from a
different perspective, namely that of a wire construction
for paired states in the FQHE at an even-denominator
filling fraction ν, say ν = 1/2.

C. Integrating out the Majorana fields

In what follows, we only consider the case v0 ≡ vs,
m0 ≡ ms, va ≡ vt, and ma ≡ mt for any a = 1, 2, 3. The
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extension to the case of arbitrary values for vµ and mµ

does not present major difficulties.
Integration over the Majorana fields delivers the prod-

uct of two Pfaffians. There is a Pfaffian that arises from
integrating over the singlet χ0’s, and another Pfaffian
that arises from integrating over the triplet χa’s. It fol-
lows that

Z ∝
∫
D[φ] e−S

′
, (3.17a)

S′ ..= Sφ + SF, (3.17b)

Sφ ..=
β Lx Ly

ay

φ2

4λ
, (3.17c)

SF ..=

− 1

2

∑
ω,k

[
log

(
−ω2 − v2

s k
2
x −m2

s −
φ2

4
+msφ cos

ky
Λy

)

+3 log

(
−ω2 − v2

t k
2
x −m2

t −
φ2

4
+mtφ cos

ky
Λy

)]
.

(3.17d)

Here, we have introduce the momentum cutoff

Λy ..=
1

ay
. (3.17e)

The action S′ controls the global symmetries of the the-
ory. It is invariant under the global Ising-like (Z2) trans-
formation defined by

φ 7→ −φ (3.18a)

if we compensate this change of sign with the change of
variable

ky 7→ ky + πΛy (3.18b)

in the summation over ky.

D. Mean-field gap equations

The saddle-point equation

0 ≡
ay

β Lx Ly

∂S′

∂φ
(3.19)

are then explicitly given by

0 =
1

2λ
φ−

ay
β Lx Ly

∑
ω,k

1

2

1
2φ−ms cos

ky
Λy

ω2 + v2
s k

2
x +m2

s + 1
4φ

2 −ms φ cos
ky
Λy

+
3

2

1
2φ−mt cos

ky
Λy

ω2 + v2
t k

2
x +m2

t + 1
4φ

2 −mt φ cos
ky
Λy

 .
(3.20)

We observe that Eq. (3.20) is invariant under

φ 7→ −φ,
ms 7→ −ms,

mt 7→ −mt.

(3.21)

It is also invariant under

ms 7→ −ms, mt 7→ −mt, (3.22a)

if we compensate this change of sign with the change of
variable

ky 7→ ky + πΛy (3.22b)

in the summation over ky. The same is true of the par-
tition function defined in Eq. (3.17).

In the limit β →∞, Lx →∞, and Ly →∞ (zero tem-
perature and thermodynamic limit), the sums become in-
tegrals in three-dimensional spacetime. Power counting
predicts that those momentum integrals are logarithmi-
cally divergent in the ultraviolet. A momentum cutoff is
thus needed to evaluate those integrals. It is chosen to be

|kx| ≤ πΛx and |ky| ≤ πΛy. All integrals over the Mat-
subara frequencies are performed before the momentum
integrals by application of the Residue theorem. To this
end, the identity

+∞∫
−∞

dω

2π

a2

ω2 + b2
=

1

2

a2

√
b2
, a, b ∈ R, (3.23)

is used. The remaining integral over kx is of the form

b∫
0

dx
1√

x2 + a2
= arcsinh

(
b

a

)
, 0 < a, b. (3.24)

Finally, the remaining integral over ky can be simplified
by changing variable

q ..=
ky
Λy
. (3.25)

In summary, the saddle-point equation has become the
single integral
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0 =
φ

2πΛx
− λ

4π

 1

vs

+π∫
−π

dq

2π

(
φ

2πΛx
− 2ms

2πΛx
cos q

)
× arcsinh

(
2πΛxvs√

4m2
s + φ2 − 4ms φ cos q

)− 3λ

4π
[s→ t] . (3.26)

Equation (3.26) is a non-linear equation for one unknown
φ

2πΛx
. It can only be solved numerically for arbitrary

value of λ,
mt

2πΛx
, and

ms

2πΛx
(set vs = vt ≡ 1) if no further

approximation is imposed. Nevertheless, it is still useful
to look at two limiting cases of the saddle-point equation
(3.26).

Case λ = 0. The solution for φ is simply

φ = 0. (3.27)

Case ms = mt = 0. Assuming φ 6= 0, Eq. (3.26)
simplifies to (set vs = vt ≡ 1)

1 =
λ

π
arcsinh

(
2πΛx
|φ|

)
. (3.28)

Since arcsinh
(

2πΛx
|φ|

)
is positive, we must require λ >

0 to find the solution of φ from (3.28). Non-vanishing
solutions for φ are

|φ| = 2πΛx
1

sinh
(
π
λ

) , λ > 0. (3.29)

E. Approximate mean-field gap equations

Insertion of the asymptotic expansion

arcsinh(x) ≈ ln (2x) +O(x−2) (3.30)

into the saddle-point equation (3.26) gives

0 =
φ

2πΛx
− λ

4π

 1

vs

+π∫
−π

dq

2π

(
φ

2πΛx
− 2ms

2πΛx
cos q

)
× ln

(
4πΛxvs√

4m2
s + φ2 − 4ms φ cos q

)− 3λ

4π
[s→ t] (3.31a)

with the conditions

0 ≤
√

4m2
s + φ2 − 4ms φ cos q � 2πΛxvs (3.31b)

and

0 ≤
√

4m2
t + φ2 − 4mt φ cos q � 2πΛxvt. (3.31c)

The integrals in Eq. (3.31a) can be carried out. There
follows

0 =
φ

2πΛx
− λ

4π

1

vs

{
φ

2πΛx
× ln

(
4
√

2πΛxvs√
4m2

s + φ2 + |4m2
s − φ2|

)

− 1

4

(
φ

2πΛx

)−1
[(

φ

2πΛx

)2

+

(
2ms

2πΛx

)2

−

∣∣∣∣∣
(

φ

2πΛx

)2

−
(

2ms

2πΛx

)2
∣∣∣∣∣
]}

− 3λ

4π

1

vt

{s→ t}

(3.32a)

with the conditions

0 ≤ 2 |ms|+ |φ| � 2πΛxvs (3.32b)

and

0 ≤ 2 |mt|+ |φ| � 2πΛxvt. (3.32c)

From now on, we treat the case ms = 0 for which
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0 =
φ

2πΛx
− λ

4π

1

vs

φ

2πΛx
× ln

(
4πΛxvs

|φ|

)
− 3λ

4π

1

vt

{
φ

2πΛx
× ln

(
4
√

2πΛxvt√
4m2

t + φ2 + |4m2
t − φ2|

)

− 1

4

(
φ

2πΛx

)−1
[(

φ

2πΛx

)2

+

(
2mt

2πΛx

)2

−

∣∣∣∣∣
(

φ

2πΛx

)2

−
(

2mt

2πΛx

)2
∣∣∣∣∣
]} (3.33a)

with the conditions

0 ≤ |φ| � 2πΛxvs (3.33b)

and

0 ≤ 2 |mt|+ |φ| � 2πΛxvt. (3.33c)

Equation (3.33) is solved for the following four cases.

Case mt = 0. Assuming φ 6= 0, Eq. (3.33) simplifies
to (set vs = vt ≡ 1)

1 =
λ

π
ln

(
4πΛx
|φ|

)
(3.34a)

with

0 ≤ |φ| � 2πΛx. (3.34b)

Since ln (x) is positive for x > 1, we must require λ > 0
to find the solution of φ from (3.34a). Hence, a solution
with a non-vanishing |φ|/(2πΛx) is

|φ|
2πΛx

= 2× e−πλ , λ > 0. (3.35)

This is the usual weak-coupling BCS gap.

Case |φ| < 2|mt|. It follows that 4m2
t − φ2 > 0. As-

suming φ 6= 0, Eq. (3.33) simplifies to (set vs = vt ≡ 1)

1 =
λ

4π
ln

(
4πΛx
|φ|

)
+

3λ

4π
ln

(
2πΛx
|mt|

)
− 3λ

8π
(3.36a)

with

0 ≤ |φ| � 2πΛx (3.36b)

and

0 ≤ 2 |mt|+ |φ| � 2πΛx. (3.36c)

Hence, a solution with a non-vanishing |φ|/(2πΛx) is

|φ|
2πΛx

= 2× e−3/2 ×
(
|mt|
2πΛx

)−3

× e−4π/λ. (3.37)

Increasing |mt| decreases |φ|. Increasing λ > 0 decreases
|φ|. There is a competition between λ > 0 and |mt|.
Case |φ| > 2|mt|. It follows that 4m2

t − φ2 < 0. As-
suming φ 6= 0, Eq. (3.33) simplifies to (set vs = vt ≡ 1)

1 =
λ

π
ln

(
4πΛx
|φ|

)
− 3λ

2π

(
mt

φ

)2

(3.38a)

with

0 ≤ |φ| � 2πΛx (3.38b)

and

0 ≤ 2 |mt|+ |φ| � 2πΛx. (3.38c)

Hence, a solution with a non-vanishing |φ|/(2πΛx) is

|φ|
2πΛx

e+ 3
2 (

mt
φ )

2

= 2 e−π/λ. (3.39)

Case φ = ±2mt. Assuming φ 6= 0, Eq. (3.33) simpli-
fies to (set vs = vt ≡ 1)

1 =
λ

π
ln

(
4πΛx
|φ|

)
− 3λ

8π
(3.40a)

with

0 ≤ 2|φ| � 2πΛx. (3.40b)

Hence, a solution with a non-vanishing |φ|/(2πΛx) is

|φ|
2πΛx

=
2|mt|
2πΛx

= 2× e−3/8 × e−πλ . (3.41)

F. Hessian at the saddle points

We are going to compute the Hessian of the effective
potential defined by S′ in Eq. (3.17). To this end, define

Veff ..=
ay

β Lx Ly
S′. (3.42)

We begin with the saddle points of Veff for ms = 0 within
logarithmic accuracy. They are simply given by the right-
hand side of Eq. (3.33a). Next, we turn our attention to
the second-order derivative of Veff ,
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∂2 Veff

∂φ2
=

1

2λ
− 1

8π

1

vs

[
ln

(
4πΛxvs

|φ|

)
− 1

]

− 3

8π

1

vt

{
ln

(
4
√

2πΛxvt√
4m2

t + φ2 + |4m2
t − φ2|

)
− 1

+
1

4

(
φ

2πΛx

)−2
[(

φ

2πΛx

)2

+

(
2mt

2πΛx

)2

−

∣∣∣∣∣
(

φ

2πΛx

)2

−
(

2mt

2πΛx

)2
∣∣∣∣∣
]}

(3.43a)

with

0 ≤ |φ| � 2πΛxvs (3.43b)

and

0 ≤ 2 |mt|+ |φ| � 2πΛxvt. (3.43c)

There are four cases to consider.
Case mt = 0. Insertion of Eq. (3.35) into Eq. (3.43)

gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

=
1

2π
> 0. (3.44)

Solution (3.35) is a local minima of the effective potential.
Case |φ| < 2|mt|. Insertion of Eq. (3.37) into Eq.

(3.43) gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣
saddle

=
1

8π
> 0. (3.45)

Solution (3.37) is a local minima of the effective potential.
Case |φ| > 2|mt|. Insertion of Eq. (3.39) into Eq.

(3.43) gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

=
1

2π
− 3

2π

(
mt

φ

)2

> 0. (3.46)

Solution (3.39) is a local minima of the effective potential.
Case φ = ±2mt. Insertion of Eq. (3.41) into Eq.

(3.43) gives (set vs = vt ≡ 1)

∂2 Veff

∂φ2

∣∣∣∣
saddle

=
1

8π
> 0. (3.47)

Solution (3.41) with λ > 0 is a local minima of the effec-
tive potential.

G. Interpretation

To proceed, we recall the definition of the mean-field
Majorana gap (3.15)

∆0 ≡ ∆s ..=
|φ|
2

(3.48a)

for the singlet Majorana field with ms = 0, and

∆a ≡ ∆t ..=

∣∣∣∣|mt| −
|φ|
2

∣∣∣∣ , a = 1, 2, 3 (3.48b)

for the triplet of Majorana fields, and the corresponding
topological criteria (3.16). One observes that the singlet
Majorana gap ∆s (3.48a) is non-vanishing as long as φ 6=
0.

The approximate mean-field solution given by Eqs.
(3.35), (3.37), (3.39), and (3.41) when |mt| = 0, |φ| <
2|mt|, |φ| > 2|mt|, and |φ| = 2|mt|, respectively, im-
ply the mean-field phase diagram shown in Fig. 5. More
specifically, we first look at the line mt = 0, along which
we have a non-vanishing value of φ. This corresponds to
a phase with (mean-field) ATO, for which the boundary
realizes a CFT with central charge 2 as both the singlet
and triplet of chiral Majorana edge states are gapless.
We also find that |φ| reaches its maximum value when
mt = 0 for a given λ > 0. The generic trend is that |φ|
decreases as |mt| increases. If we increase |mt| a little
away from 0, |φ| decreases a little. However, the ATO
phase is robust, for the mean-field bulk gap ∆s and ∆t

(3.48) remain non-vanishing. We have to increase |mt|
until it satisfies 2|mt| = |φ| for the mean-field triplet
bulk gap ∆t (3.48b) to close. Only then can the (mean-
field) ATO phase be destroyed. The triplet bulk gap ∆t

reopens when 2|mt| > |φ|, however the triplet of chi-
ral Majorana edge states are now gapped, leaving only
a singlet of massless chiral Majorana edge states. This
mean-field phase supports (mean-field) NATO, for which
the boundary realizes a CFT with central charge 1/2. In
the large |mt| limit, the value of |φ| is further suppressed
[see Eq. (3.37)]. However, the mean-field bulk gap ∆s and
∆t remain gapped, whatever the small but non-vanishing
value of |φ| is.

The assumption that the singlet mass ms vanishes in
order to derive the non-vanishing solutions (3.35), (3.37),
(3.39), and (3.41) to the gap equation (3.33) is not essen-
tial as long as a non-vanishing ms is smaller in magnitude
than the saddle-point |φ/2|. This is to say that the ATO
and NATO phases for λ > 0 and ms=0 extend to non-
vanishing yet not too strong |φ/2| > |ms| > 0. The ATO
and NATO phases do not require a precise tuning of the
two-leg ladders to their Ising critical point provided the
detuning is smaller in magnitude than |φ/2|.
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IV. BEYOND MEAN-FIELD THEORY:
DIMENSIONAL CROSSOVER FROM A
RANDOM PHASE APPROXIMATION

The mean-field approximation of Sec. III is done in
two-dimensional space. It posits that all excitations be-
long to a quartet of point-like particles obeying the Majo-
rana equal-time algebra. However, the line mt = ms = 0
when vµ = v for µ = 0, 1, 2, 3 in Fig. 3 corresponds to an
integrable model for which this is not the case. As was
alluded to below Eq. (2.5), Hamiltonian (2.5) with λ > 0
is a massive theory in which the quartet of Majoranas do
not exist as sharp (coherent) excitations, i.e., none of the
components

G1d
µ,M,m;µ′M′,m′(ω, kx) ..=

− 〈0|χ̂µM,m(ω, kx) χ̂µ
′

M′,m′(−ω,−kx) |0〉 (4.1)

(the ket |0〉 denotes the ground state) support poles.
Here, ω is a fermionic Matsubara frequency, kx is a one-
dimensional momentum, µ, µ′ = 0, 1, 2, 3 refer to the in-
dex for the quartet of Majorana fields, M,M′ = L,R refer
to the left- and right-moving components of the Majo-
rana fields, and m, m′ = 1, · · · , n refer to the index of the
ladders.

The line mt = ms = 0 when vµ = v for µ = 0, 1, 2, 3 in
Fig. 3 consists of decoupled one-dimensional Gross-Neveu
Hamiltonians withO(4) symmetry, recall Eq. (2.5d), each
one of which has the Lagrangian density

L̂GN ..= L̂0 + Ĥint, (4.2a)

L̂0 =
1

2

3∑
µ=0

[χ̂µL (∂τ + iv ∂x) χ̂µL + χ̂µR (∂τ − iv ∂x) χ̂µR] ,

(4.2b)

Ĥint =
λ

4

(
3∑

µ=0

χ̂µL χ̂
µ
R

)2

. (4.2c)

where the velocity v and the coupling λ are all real val-
ued.

We are going to extract the single-particle Green func-
tion for the Majorana fermions with the Hamiltonian
(4.2) using non-perturbative results valid for integrable
systems. We will then treat a non-vanishing mass mt 6= 0
non-perturbatively within a Random Phase Approxima-
tion (RPA).

It is known20 that the O(4) GN defined by the La-
grangian density (4.2) is equivalent to two independent
copies of the sine-Gordon model. We identify the first
copy as the spin-sector and the second copy as the charge
sector for interacting spin-1/2 electrons. In turn, the cre-

ation ψ̂†M,σ and annihilation ψ̂M,σ operators for the elec-

trons are related to the Majorana fermions by

ψ̂†M,↑ ≡
1√
2

(
χ̂1

M − iχ̂2
M

)
, ψ̂M,↑ ≡

1√
2

(
χ̂1

M + iχ̂2
M

)
,

(4.3a)

ψ̂†M,↓ ≡
1√
2

(
χ̂3

M − iχ̂0
M

)
, ψ̂M,↓ ≡

1√
2

(
χ̂3

M + iχ̂0
M

)
,

(4.3b)

where M = L,R and σ =↑, ↓. By relying on Abelian
bosonization rules, the O(4) GN Lagrangian density (4.2)
becomes

L̂GN = L̂GN,s + L̂GN,c, (4.4a)

L̂GN,s =
1

2

[
v−1

s (∂τ ϕ̂s)
2

+ vs (∂xϕ̂s)
2
]
− λ

4
cos(β ϕ̂s),

(4.4b)

L̂GN,c =
1

2

[
v−1

c (∂τ ϕ̂c)
2

+ vc (∂xϕ̂c)
2
]
− λ

4
cos(β ϕ̂c),

(4.4c)

with

vs = vc ≡ v (4.4d)

and

β =

√
8π

1 + λ
2π

. (4.4e)

Equation (4.4) is also derived in Sec. VII starting from
the spin-1/2 lattice model depicted in Fig. 2.

The quantum critical point λ = 0 (β2 = 8π) sup-
ports an ŝu(2)1 ⊕ ŝu(2)1 current algebra. When λ > 0
(β2 < 8π) each cosine interaction becomes marginally
relevant, a spectral gap opens up, and soliton-like excita-
tions (kinks) by which the asymptotic expectation values
of ϕ̂a(x, τ) with a = s, c at x = −∞ and x = +∞ changes
by ±2π/β over a region of size 1/M can be thought of as
massive particles with the mass M a function of the devi-

ation 8π−β2 > 0. At β2 = 4π, L̂GN,a is a non-interacting
massive Dirac theory for both a = s and a = c. When
β2 < 4π, breather modes supplement the kinks as mas-
sive point-like excitations.

If the real-valued scalar field ϕ̂a(τ, x) is decomposed
into left- and right-moving parts according to the rule

ϕ̂a(τ, x) = ϕ̂a,R(τ + ix) + ϕ̂a,L(τ − ix), (4.5a)

it is then possible to use the Mandelstam representation

ψ̂M,σ ..=
ησ√
2π

ei
√

2π ϕ̂c,M eifσ
√

2π ϕ̂s,M (4.5b)

with M = L,R, σ =↑, ↓, f↑ = −f↓ = 1, and ησ the Klein
factors fulfilling

{ησ, ησ′} = 2δσ,σ′ . (4.5c)
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The chiral vertex operator exp(±i
√

2π ϕ̂a,M) carries the
Lorentz spin

s ..= ±1/4, (4.6)

i.e., under the rotation

τ + ix 7→ eiα(τ + ix) (4.7)

of two-dimensional Euclidean space, it is multiplied by
the phase exp(±iα/4). The chiral electron annihilation
operator, which must carry the Lorentz spin s = 1/2,
is glued by taking the product of two chiral vertex op-
erators, each of which carries the Lorentz spin s = 1/4,
according to Eq. (4.5).

To calculate the two-point correlation functions for the
chiral Majorana fields, they are first expressed in terms
of two-point functions for the chiral electron fields using
Eq. (4.3). The Mandelstam representation (4.5) is then
used to represent the two-point Green’s functions for the
Majorana fields in terms of two-point functions for the
chiral vertex operators. Finally, the two-point functions
for the chiral vertex operators are calculated using the
form factors of the massive integrable theory defined by
the Lagrangian density (4.4).

In a relativistically invariant massive integrable the-
ory in two-dimensional Euclidean space, all multiparticle
states are the kets

|θn, · · · , θ1〉εn,··· ,ε1 (4.8a)

with the many-body energy

n∑
j=1

Eεj (θj), Eεj (θj)
..= M cosh θj , (4.8b)

the many-body momentum

n∑
j=1

Pεj (θj), Pεj (θj)
..=

M

v
sinh θj , (4.8c)

where θi denotes the rapidity of a single-particle state
with the quantum number εi. They are pairwise orthog-
onal and orthogonal to the ground state |0〉 with the res-
olution of the identity

1 = |0〉〈0|+
+∞∑
n=1

∑
εi

+∞∫
−∞

dθ1 · · · dθn
(2π)nn!

× |θn, · · · , θ1〉εn,··· ,ε1
ε1,··· ,εn〈θ1, · · · , θn|.

(4.8d)

The two-point functions for the chiral vertex operators
are calculated using an integral representation for the
form factor〈

0
∣∣∣e±i

√
2π ϕ̂a,M

∣∣∣ θn, · · · , θ1

〉
εn,··· ,ε1

(4.9)

due to Ref. 21. Following Refs. 22 and 23 we will trun-
cate the resolution of the identity (4.8d) to the order
n = 1 when evaluating the form factors for the electron
operators.

The one-particle form factors for the pair of chiral ver-
tex operators exp(i

√
2πϕ̂a,M) between the vacuum and a

state supporting a single soliton are〈
0
∣∣∣ei
√

2π ϕ̂a,R

∣∣∣ θ〉 ≈√Z0

(
2πMv−1

)1/4
e+θ/4, (4.10a)〈

0
∣∣∣ei
√

2π ϕ̂a,L

∣∣∣ θ〉 ≈√Z0

(
2πMv−1

)1/4
e−θ/4. (4.10b)

The dependence on the rapidity θ is fixed by Lorentz
invariance, whereas the positive constant Z0 is not fixed
by symmetry, but was calculated in Ref. 21 to be

Z0 ≈ 0.92. (4.10c)

In the same work it was demonstrated that most of the
spectral weight is contained in the emission of a single
kink. For example, about 80 percent of the spectral
weight in the spectral functions entering the Majorana
two-point functions (4.12) originate from the emission of
a single kink. After substituting these matrix elements
into the Lehmann expansion for the Majorana two-point
functions in (1 + 1)-dimensional Euclidean space, we ob-
tain, for any µ = 0, 1, 2, 3 and after setting v = 1,

G1d
LL(τ, x) ..= −〈0|χ̂µL(τ, x) χ̂µL(0, 0)|0〉 = −Z2

0

(
τ + ix

τ − ix

)1/2
 +∞∫
−∞

dθ

2π
e−θ/2 e−M ρ cosh θ

2

= − Z
2
0 e
−2M ρ

2π(τ − ix)
, (4.11a)

G1d
RR(τ, x) ..= −〈0|χ̂µR(τ, x) χ̂µR(0, 0)|0〉 = −Z2

0

(
τ − ix

τ + ix

)1/2
 +∞∫
−∞

dθ

2π
e+θ/2 e−M ρ cosh θ

2

= − Z
2
0 e
−2M ρ

2π(τ + ix)
, (4.11b)

G1d
LR(τ, x) = G1d

RL(τ, x) ..= −〈0|χ̂µL(τ, x) χ̂µR(0, 0)|0〉 = −Z2
0 M

 +∞∫
−∞

dθ

2π
e−M ρ cosh θ

2

= −Z
2
0 M K2

0 (M ρ)

π2
, (4.11c)



15

where

K0(z) ..=
1

2

+∞∫
−∞

dt e−z coshz, ρ ..=
√
τ2 + x2. (4.11d)

Fourier transformation to imaginary frequency (ω̄) and momentum (q) space followed by the analytic continuation
ω̄ → −iω + 0+ delivers the retarded two-point Green functions for the chiral Majorana fields given by

G1d
LL(ω, q) ..= lim

ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq xG1d

LL(τ, x) ≈ Z2
0

ω − q

(
1− 1√

1− s2/(2M)2

)
, (4.12a)

G1d
RR(ω, q) ..= lim

ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq xG1d

RR(τ, x) ≈ Z2
0

ω + q

(
1− 1√

1− s2/(2M)2

)
, (4.12b)

G1d
LR(ω, q) = G1d

RL(ω, q) ..= lim
ω̄→−iω+0+

∫
dτdx eiω̄ τ−iq xG1d

LR(τ, x) ≈ − Z2
0

2M

2

π

arcsin (s/2M)

[s/(2M)]
√

1− [s/(2M)]2
, (4.12c)

where

s2 ..= ω2 − q2. (4.12d)

Observe that the Green functions (4.12a) and (4.12b)
are even functions of M , while the Green function (4.12c)
is an odd function of M . This latter fact follows from the
bond operator (2.7) being odd under any transformation
(2.6) with σL,m σR,m+1 = −1.

Once we turn on a non-vanishing mt, we restore true
two-dimensionality of space. In the spirit of the RPA
for dimensional crossovers from lower to higher dimen-
sions, we make the RPA Ansatz for the retarded Green’s
function in momentum space

Ĝ2d RPA(ω, kx, ky) ..=
1[

Ĝ1d(ω, kx)
]−1

− M̂(ky)
,

(4.13a)
where

Ĝ1d(ω, kx) ..=

G1d
LL(ω, kx) G1d

LR(ω, kx)

G1d
RL(ω, kx) G1d

RR(ω, kx)

 (4.13b)

and the Fourier transform of the perturbation M̂(ky)
given by

M̂(ky) ..=

(
0 mµ e

+iky

mµ e
−iky 0

)
. (4.13c)

If the operator-valued denominator on the right-hand
side of Eq. (4.13a) acquires first-order zeros as eigen-
values, then this RPA predicts that a non-vanishing
mµ turns the Majorana fields into well-defined quasi-
particles. The condition for this to happen is that the
determinant of the denominator on the right-hand side
of Eq. (4.13a) vanishes, namely

0 = 1− 2mµG
1d
LR(ω, kx) cos ky −m2

µ det Ĝ1d(ω, kx).

(4.14)

Substituting the retarded Green’s functions from Eq.
(4.12), we obtain the dispersion for the triplet of Ma-
joranas (the singlet ones at ms = 0 do not propagate, at
least in this RPA formalism) from solving

cos ky ≈
1−

(
Z2

0 mt

2M

)2 [
g2
(
s

2M

)
− f2

(
s

2M

) ]
(−2)

(
Z2

0 mt

2M

)
f
(
s

2M

) , (4.15a)

where we have introduced the auxiliary functions

g(x) ..=
1

x

(
1− 1√

1− x2

)
, f(x) ..=

2

π

arcsin (x)

x
√

1− x2
,

(4.15b)
with the limiting values

lim
x→0

g(x) = 0, lim
x→0

f(x) = 2/π, (4.15c)

and the asymptotic expansion for |x| � 1

g(x) = −1

2
x− 3

8
x3 · · · , f(x) =

2

π

(
1 +

2

3
x2 + · · ·

)
.

(4.15d)

We note that the RPA spectrum (4.15a) is invariant un-
der the simultaneous transformation

ky 7→ ky ± π, mt 7→ −mt. (4.16)

For small |mt/M | � 1, we deduce from Eq. (4.15) the
relation

(s/2M)2 ≈ 1− (Z2
0 mt/M)2 cos2 ky, |ky| < π/2.

(4.17)
As it should be, no RPA excitations can be found below
the threshold 2M for the two-soliton continuum when
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mt = 0. However, for any infinitesimal mt 6= 0, one finds
RPA excitations that are dispersing along the m direction
with the momentum ky below the threshold 2M .

For arbitrary |mt/M |, one can solve Eq. (4.15) numer-
ically, thereby confirming the analytical results obtained
for |mt/M | � 1. Figure 7 displays the values of the pair

(ky, s) ≡ (ky,
√
ω2 − k2

x) (4.18)

that solve Eq. (4.15a) holding

A ..= −Z
2
0 mt

2M
> 0 (4.19)

fixed. By inspection of the dispersions (s, ky) for different
values of A, we deduce the existence of a spectral gap
except for the special case when

A→ π

2
, (4.20)

which is nothing but the solution to Eq. (4.15a) in the
limit ky → 0 and s→ 0, namely the solution to

0 =

(
1− 2

π
A

)2

. (4.21)

The condition

− Z2
0 mt

2M
=
π

2
(4.22)

is nothing but the RPA counterpart to the mean-field
transition from the ATO to the NATO phases by which
the number of Majorana edge states changes. The nu-
merical value of the condition (4.22) with Z2

0 ≈ 0.85 is

|mt|
M
≈ 3.7. (4.23)

When |A− (π/2)| � 1, we can expand the right-hand
side of Eq. (4.15a) in powers of s/(2M) with the help of
the asymptotic expansion (4.15d). One finds the disper-
sion

ω2 ≈ k2
x +

[
32

3πA
cos ky +

(
1− 64

3π2

)]−1(
4M

A

)2

×

[
sin2 ky +

(
2A

π
− cos ky

)2
]
.

(4.24a)

The squared mass [take A ≈ π/2 in the first square
bracket and kx = ky = 0 on the right-hand-side of Eq.
(4.24a)]

m2
RPA ≈

(
8M

πA

)2 (
A− π

2

)2

�M2 (4.24b)

for the triplet of Majorana fields follows.
At values of A > π/2 the gap increases fast. It should

also be noted that the dispersion does not include the
entire Brillouin zone; there is a critical value of ky beyond
which it crosses into the two-soliton continuum above the
energy threshold 2M .

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.0
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0.4
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0.8

1.0

ky

s 2
M
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2

A = 2

A = 2.3

A = 2.6

FIG. 7. (Color online) The solid lines are the dispersions
s/(2M) for the triplet of Majorana modes as a function of ky
that follows from solving Eq. (4.15a) for different values of
A = −Z2

0 mt/(2M). The dashed lines are the corresponding
dispersions obtained from the approximate dispersion relation
(4.24a).

V. TWO-DIMENSIONAL MAJORANA
FERMIONS, ONE-DIMENSIONAL SOLITONS

Both the mean-field approach and the one based on
combining the exact solution for the Majorana two-point
correlation functions of the one-dimensional Gross-Neveu
Hamiltonian (2.5) with the RPA tell us that the exci-
tations of the model of coupled wires obeying periodic
boundary conditions in all space directions can include
Majorana modes.

In the limit mt = ms = 0, the low lying excitations of
the Gross-Neveu Hamiltonian (2.5) are exclusively made
of solitons. These solitons propagate along the x direc-
tion only (i.e., in one dimension only) above the energy
threshold M introduced in Sec. IV. Remarkably, these
solitons are also present in the spectrum when a small in
magnitude mt 6= 0 is added to the Gross-Neveu Hamilto-
nian (2.5), i.e., they are not confined by the crossover to
two-dimensional space induced by the coupling mt 6= 0.
To arrive at this conclusion, we proceed as follows.

We are going to show that the symmetry (3.5), which
implies the conservation of the m-resolved Majorana par-
ity, (i) cannot be spontaneously broken at any non-
vanishing temperature T > 0, (ii) is spontaneously bro-
ken at zero temperature T = 0. The free-energy ar-
gument underlying claim (i) is that there are gapped
one-dimensional excitations of solitonic character in the
many-body excitation spectrum of Hamiltonian (2.1)
above the energy threshold M . Their Boltzmann weight
at the temperature T is of order e−M/T so that their
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average separation is of order

ξ(T ) ∼ eM/T . (5.1)

This length scale thus diverges exponentially fast upon
approaching the zero-temperature limit at which long-
range order associated to the spontaneous symmetry
breaking of the symmetry (3.5) occurs.

Absence of spontaneous symmetry breaking of the
symmetry (3.5) at any non-vanishing temperature T is
a consequence of the local character of the symmetry
(3.5) with respect to the label m. Spontaneous symmetry
breaking of the symmetry (3.5) at T = 0 results from
the global nature of the symmetry (3.5) with respect to
imaginary time τ and the coordinate x.

The proof of claim (i) goes as follows. Integrating the
Majorana fermions in the partition function (3.3) endows
the dynamical field φm,m+1(τ, x) (that carries the engineer-

ing dimension of length−1) with an effective action that
must obey the symmetry (3.5).

The effective action for the dynamical field φm,m+1(τ, x)
with a local Lagrangian density cannot contain a term
such as

Lκ ..= κ
[
φm,m+1(τ, x)− φm+1,m+2(τ, x)

]2
, (5.2)

whereas a term like

Lζ ..=
ζ

M2

[
φ2
m,m+1(τ, x)− φ2

m+1,m+2(τ, x)
]2

(5.3)

is allowed by the symmetry (3.5). Here, the couplings κ
and ζ are dimensionless. If we define the length scale

` ..=
1

M
(5.4)

and assume that φm,m+1 has the two-soliton profile

φm,m+1(τ, x) ∝φ
[
arctan

(
x+R

`

)
−arctan

(
x−R
`

)]
,

(5.5)

along the x direction (φ > 0 is arbitrary), we find that,
if R� `, the action penalties are given by

Sκ ∼
κφ2

T
R (5.6)

and

Sζ ∼
ζ `2 φ4

T
`, (5.7)

respectively. At any non-vanishing temperature T > 0,
the action penalty (5.6) causes the linear confinement of
the pair of solitons, centered at R and −R, respectively
At any non-vanishing temperature T > 0, the action
penalty (5.7) is independent of the separation R between
the pair of solitons centered at R and −R, respectively,

i.e., solitons are deconfined. Thus, at any non-vanishing
temperature T > 0, the thermal fluctuations that are
encoded by the proliferation of solitons that interpolate
between all the symmetry sectors of the symmetry (3.5)
about any mean-field that breaks the symmetry (3.5) re-
store this symmetry.

The proof of claim (ii) goes as follows. At zero temper-
ature, there is no contribution from the solitons owing to
the finite energy of order of M needed to create them.
The fact that the symmetry (3.5) is m-resolved is inop-
erative when T = 0. On the other hand, the symmetry
(3.5) is global with respect to τ and x. Because it is Ising
like, the effective quantum action at zero temperature
can be thought of as a set of coupled Landau-Ginzburg
actions, each one of which describes the classical Ising
model in two-dimensional space and is labeled by the di-
rected bond 〈m, m + 1〉. Their coupling is controlled by
the Majorana mass mt for the triplet of Majorana fields
(we are setting ms = 0). Upon decoupling these classical
Ising models in two-dimensional space by setting mt = 0,
we know from Sec. IV that the Ising symmetry is spon-
taneously broken. Switching on mt 6= 0 only reinforces
this spontaneous breaking of the Ising symmetry as the
coupling induced by mt 6= 0 is not frustrating.

It is instructive to establish the degeneracy of the
ground state manifold that is spontaneously broken. In
the limit

mt = ms = 0, (5.8)

the Majorana modes decouple into the non-chiral pairs
χµL,m and χµR,m+1 with µ = 0, 1, 2, 3, i.e., four flavors
of Majorana fields of opposite chiralities for each di-
rected bond 〈m, m+ 1〉. For each directed bond 〈m, m+ 1〉,
the corresponding Majorana fields are strongly interact-
ing through a O(4)-symmetric Gross-Neveu interaction.
However, the Majorana fields belonging to distinct di-
rected bonds, say 〈m, m + 1〉 and 〈m + 1, m + 2〉, are de-
coupled. We may thus identify these pairs of interacting
non-chiral Majorana modes as one-dimensional bundles
labeled by the directed bond variable 〈m, m + 1〉. Each
bundle 〈m, m + 1〉 can be bosonized. The interacting the-
ory for the bundle 〈m, m + 1〉 is characterized by the gap〈

ei
√

2π(ϕ̂L,m+ϕ̂R,m+1)
〉

= ±|M |1/2. (5.9)

The sign ambiguity on the right-hand side signals the
breaking of a global Z2 symmetry for each bundle 〈m, m+
1〉. Correspondingly, the soliton-like excitations are noth-
ing but sine-Gordon solitons, i.e., domain walls separat-
ing regions along the x coordinate with different signs
of the order parameter. From the point of view of the
Majorana fermions χµL,m and χµR,m+1 with µ = 0, 1, 2, 3,
different vacua are connected by the gauge transforma-
tion that changes a sign of either the left- or the right-
moving Majorana fermion. As follows from Eqs. (4.10)
and (4.11c), the Green’s function G1d

LR(τ, x) for a given
bundle 〈m, m+1〉 is proportional to φm,m+1 on this bundle.
At the mean-field level, φm,m+1 is nothing but an order
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parameter that breaks the symmetry of the Hamiltonian
under

χµL,m χ
µ
R,m+1 → σL,m σR,m+1 χ

µ
L,m χ

µ
R,m+1, σL,m, σR,m+1 = ±1.

(5.10)
In other words, the sign of the Green’s function (4.12c) is
arbitrary. Choosing one sign breaks spontaneously a two-
fold degeneracy for the bundle 〈m, m+1〉. Given that there
are n decoupled bundles of the form 〈m, m+ 1〉, given the
periodic boundary conditions identifying m with m+n, one
deduces the degeneracy 2n among all the possible sym-
metry breaking ground states that can be spontaneously
selected.

However, the true degeneracy to be broken sponta-
neously in a system with periodic boundary conditions
is 2n−1 once we switch on

mt 6= 0 (5.11)

while retaining ms = 0. The symmetry (3.5) allows us to
freely change the sign of the mean-field order parameter

φm′,m′+1(τ, x) = σm′ σm′+1 φ, m′ = 1, · · · , n, φ > 0,
(5.12)

for each bundle 〈m, m+ 1〉, as long as the global condition

n∏
m′=1

φm′,m′+1(τ, x) = ±φn (5.13)

is satisfied. The sign on the right-hand side of Eq. (5.13)
is a gauge invariant quantity. The global condition re-
duces the number of choices by half, hence the 2n−1

ground state degeneracy when mt 6= 0. [Notice that,
when ms = mt = 0, symmetry (3.6) can be used instead
of symmetry (3.5), in which case condition (5.13) does
not apply anymore.]

The symmetry (3.5) thus implies that the sign of the
Green’s function (4.12c) remains arbitrary even if the
bundles 〈m, m+1〉 and 〈m+1, m+2〉 are coupled by having
mt 6= 0. As we have explained above, it follows that the
solitons, whose existence is guaranteed from bosoniza-
tion when mt = 0, are not confined by the interactions
induced by a mt 6= 0. On the other hand, the amplitude
of the order parameter undergoes a change in magnitude
in a region of size (5.4) around the soliton core. The soli-
ton energy is sensitive to any change of amplitude in the
order parameter. This is to say that solitons from dif-
ferent bundles 〈m, m+ 1〉 and 〈m+ 1, m+ 2〉 interact when
mt 6= 0. Because solitons cost energy which magnitude
is bounded from below by the energy scale of the order
of M , their average separation ξ(T ) is given by Eq. (5.1)
at any non-vanishing temperature T > 0. The diver-
gence of ξ(T ) in Eq. (5.1) is a signature of the onset of
long-range order at T = 0 that breaks spontaneously the
symmetry (3.5). Kitaev’s honeycomb model also has an
exponentially large correlation length at T > 0 related
to the thermal creation of local defects, “visons” that are
localized on the plaquette of the honeycomb lattice. In
that model the defects are not mobile. In our case they
are, although their mobility is one dimensional.

This proof can be generalized to any perturbation lo-
cal in the spin operators, as those described in Secs. VI
and VII. The proof holds since such perturbations are
invariant with respect to a simultaneous change of sign
of the left- and right-moving Majoranas on a given two-
leg ladder m. Our model has two sectors: the spin sector
and the fermionic one. In the latter sector, one is allowed
to have operators which include odd numbers of Majo-
rana fermions on a given two-leg ladder m. In the spin
sector this is not allowed. In the microscopic derivation
which starts with the lattice Hamiltonian of spins as in
Secs. VI and VII, we arrive to the spin sector only. Hence,
the 2n−1-degeneracy described above is not directly ob-
servable in the spin sector of our model, that is in the
subspace of the Hilbert space generated by the local spin
operators.

VI. A SINGLE TWO-LEG LADDER

A. Microscopic lattice model and its continuum
limit

Consider the following quantum spin-1/2 Hamiltonian
on a (two-leg) ladder

Ĥladder ..= Ĥleg + Ĥ ′leg + Ĥrung + Ĥcross + Ĥfour−spin.
(6.1a)

The first leg of the ladder hosts the quantum spin-1/2

operators Ŝi on every site i = 1, · · · , N , where any two
consecutive sites is displaced by the lattice spacing a.
Similarly, the second leg of the ladder hosts the quan-

tum spin-1/2 operators Ŝ′i′ on every site i′ = 1, · · · , N .

Hamiltonians Ĥleg and Ĥ ′leg are a pair of decoupled quan-

tum spin-1/2 antiferromagnetic Heisenberg model at crit-
icality given by

Ĥleg ..=

N∑
i=1

J1 Ŝi · Ŝi+1 (6.1b)

and

Ĥ ′leg ..=

N∑
i=1

J1 Ŝ
′
i · Ŝ′i+1 (6.1c)

with J1 ≥ 0, respectively. The quantum spin-1/2 op-
erators on the two legs also interact through a SU(2)-
symmetric Heisenberg exchange interaction for each rung

Ĥrung ..=

N∑
i=1

J⊥ Ŝi · Ŝ′i (6.1d)

with sgn(J⊥) arbitrary, a cross-type interaction for each
plaquette

Ĥcross ..=

N∑
i=1

(
J\ Ŝi · Ŝ

′
i+1 + J/ Ŝi+1 · Ŝ′i

)
(6.1e)
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FIG. 8. (Color online) (a) Two quantum spin-1/2 chains can be arranged into a two-leg ladder. The intra-chain couplings J1
are defined in Eqs. (6.1b) and (6.1c). The inter-chain couplings J⊥ (represented by the vertical black bond), J\ (represented by
the dashed orange bond), and J/ (represented by the dashed green bond) are defined in Eqs. (6.1d) and (6.1e). The inter-chain
four-spin coupling JU (represented by the blue open-bracket) is defined in Eq. (6.1f). (b) The special case of Fig. 8(a) under
the condition (6.9). Here, J× = −J⊥/2.

with sgn(J\ J/) arbitrary, and a four-spin interaction for

each plaquette

Ĥfour−spin ..=

N∑
i

JU

(
Ŝi · Ŝi+1

)(
Ŝ′i · Ŝ′i+1

)
(6.1f)

with sgn(JU ) arbitrary. Hamiltonian (6.1) has the fol-
lowing symmetries.

There is the global unitary SU(2) symmetry generated
by the spin operator

Ŝtot ..= Ŝ + Ŝ′, (6.2a)

where

Ŝ ..=

N∑
i=1

Ŝi, Ŝ′ ..=

N∑
i=1

Ŝ′i. (6.2b)

We also note that the sum of Hamiltonians (6.1b) and
(6.1c) has a global SU(2) × SU(2) symmetry generated

independently by Ŝ and Ŝ′, respectively. This global
symmetry is broken down to the diagonal subgroup with
the generator (6.2) by the interactions (6.1d), (6.1e), and
(6.1f).

There is the global anti-unitary symmetry under time
reversal under which

Ŝi 7→ −Ŝi, Ŝ′i 7→ −Ŝ′i, (6.3)

for all i = 1, · · · , N .
When the condition

J\ = J/ ≡ J× (6.4)

holds, there are two additional involutive (Z2) symme-
tries.

Under condition (6.4), Hamiltonian (6.1) is invariant
under the transformation

Ŝi 7→ Ŝ′i, Ŝ′i 7→ Ŝi, (6.5)

for all i = 1, · · · , N .

Finally, if PBC are imposed together with the con-

dition (6.4), Hamiltonian Ĥladder is invariant under all
lattice translations generated by

Ŝi 7→ Ŝi+1, Ŝ′i 7→ Ŝ′i+1, (6.6)

for all i = 1, · · · , N .

Figure 8 depicts Ĥladder (6.1). This Hamiltonian was
studied in Refs. 24 and 25. We also refer the reader to
Chapter 21 of Ref. 26 and the Chapter 36 of Ref. 27 for

some aspects of Ĥladder.

The naive continuum limit Ĥladder of Ĥladder defined
by Eq. (6.1) is a ŝu(2)1 ⊕ ŝu(2)1 Wess-Zumino-Novikov-
Witten (WZNW) model perturbed by local interactions.
For the upper leg, it is obtained by making the replace-
ments

i a→ x, N a→ L, (6.7a)

where the sites of the upper leg of the ladder are i =
1, · · · , N with N even and

Ŝ2i → a
[
ĴL(x) + ĴR(x) + n̂(x)

]
, (6.7b)

Ŝ2i+1 → a
[
ĴL(x) + ĴR(x)− n̂(x)

]
, (6.7c)

(−1)
i
Ŝi · Ŝi+1 → a ε̂(x), (6.7d)

for all sites i = 1, · · · , N/2 of the upper leg, assuming
that N is even. The left- and right- moving currents

ĴL and ĴR generate the ŝu(2)1 affine Lie algebra of the
c = 1 quantum critical point of the nearest-neighbor anti-
ferromagnetic quantum spin-1/2 chain. The fields n̂ and
ε̂ have anomalous scaling exponents 1/2 at this quan-
tum critical point. The same replacements are done af-
ter adding a prime to the sites and the quantum spin-1/2
hosted by the lower leg of the ladder. Hereto, the left-

and right- moving currents Ĵ ′L and Ĵ ′R generate another
ŝu(2)1 affine Lie algebra, while the fields n̂′ and ε̂′ have
the anomalous scaling dimensions 1/2 at this quantum
critical point. The perturbation to the ŝu(2)1 ⊕ ŝu(2)1
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WZNW model with the conserved currents ĴL, ĴR, Ĵ ′L,

and Ĵ ′R is

V̂(x) ..= gnn n̂(x) · n̂′(x) + gεε ε̂(x) ε̂′(x)

+ gjj

(
ĴL(x) · Ĵ ′L(x) + ĴR(x) · Ĵ ′R(x)

)
+ gjj

(
ĴL(x) · Ĵ ′R(x) + ĴR(x) · Ĵ ′L(x)

)
+ gtw,n n̂(x) · ∂xn̂′(x) + gtw,ε ε̂(x)∂xε̂

′(x)

(6.8a)

up to irrelevant local perturbations. Here, the bare values
of the couplings are

gnn ≡
(
g⊥nn + g/nn + g\nn

)
(6.8b)

= 2× a
(
J⊥ − J/ − J\

)
(6.8c)

for the inter-chain staggered magnetization coupling,

gεε ≡ a JU (6.8d)

for the inter-chain dimerization coupling,

gjj ≡
(
g⊥jj + g

/
jj + g

\
jj

)
= 2× a

(
J⊥ + J/ + J\

)
(6.8e)

for the inter-chain conformal current coupling,

gtw,n ≡
(
g
/
tw,n − g

\
tw,n

)
= a2

(
J/ − J\

)
(6.8f)

for the inter-chain twisted magnetization coupling, and

gtw,ε ≡ 0 (6.8g)

for the inter-chain twisted dimerization coupling.
The bare value of the inter-chain conformal current

coupling vanishes if 24

J⊥ = −
(
J/ + J\

)
. (6.9a)

The bare value of the inter-chain twist magnetization
coupling vanishes if 28

J/ = J\ ≡ J×. (6.9b)

If we impose conditions (6.9), then the effective local in-
teraction (6.8) simplifies to

V̂tuned(x) ..= gtuned
nn n̂(x) · n̂′(x) + gεε ε̂(x) ε̂′(x), (6.10a)

where

gtuned
nn ..= 4× a J⊥, gεε ..= a JU . (6.10b)

We depict the model Ĥladder (6.1) under the condition
(6.9) in Fig. 8(b). Its symmetry under transformations
(6.5) or (6.6) carries over in the continuum limit to the
symmetry by which unprimed and primed fields are ex-
changed or under sign reversal of the staggered fields,
respectively.

B. Abelian bosonization

To proceed, we follow Ref. 24 and apply the Abelian bosonization rules on the tuned interaction density (6.10). To

this end, we consider the upper leg (lower leg) of the ladder and introduce the pair of bosonic quantum fields φ̂(t, x)

and θ̂(t, x)
(
φ̂′(t, x) and θ̂′(t, x)

)
by demanding that they obey the equal-time algebra[

φ̂(t, x), θ̂(t, x′)
]

= − i

2
sgn(x− x′),

[
φ̂′(t, x), θ̂′(t, x′)

]
= − i

2
sgn(x− x′), (6.11a)

for any t ∈ R, and 0 ≤ x, x′ ≤ Lx. The equal-time commutators between unprimed and primed fields are all vanishing.
The two pairs of bosonic fields are related to the staggered magnetization and staggered dimerization by

n̂x = +
1

πa
cos
(√

2π θ̂
)
, n̂y = +

1

πa
sin
(√

2π θ̂
)
, n̂z = − 1

πa
sin
(√

2π φ̂
)
, ε̂ = +

1

πa
cos
(√

2π φ̂
)
,

(6.11b)
for the upper leg of the ladder and by

n̂′x = +
1

πa
cos
(√

2π θ̂′
)
, n̂′y = +

1

πa
sin
(√

2π θ̂′
)
, n̂′z = − 1

πa
sin
(√

2π φ̂′
)
, ε̂′ = +

1

πa
cos
(√

2π φ̂′
)
,

(6.11c)
for the lower leg of the ladder. After some algebra, we arrive at the Abelian bosonized representation of the ŝu(2)1 ⊕
ŝu(2)1 WZNW model with the conserved currents ĴL, ĴR, Ĵ ′L, and Ĵ ′R perturbed by the intra-ladder tuned interaction
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density (6.10) that is given by the Hamiltonian density

Ĥ ..= Ĥupper
leg + Ĥlower

leg + Ĥintra−ladder, (6.12a)

Ĥupper
leg

..=
v

2

[
Π̂2 +

(
∂xφ̂

)2
]
, Ĥlower

leg ..=
v

2

[
Π̂′2 +

(
∂xφ̂

′
)2
]
, (6.12b)

Ĥintra−ladder ..= −g
tuned
nn − gεε

2(πa)2
cos
(√

2π
(
φ̂+ φ̂′

))
+
gtuned
nn + gεε

2(πa)2
cos
(√

2π
(
φ̂− φ̂′

))
+
gtuned
nn

(πa)2
cos
(√

2π
(
θ̂ − θ̂′

))
.

(6.12c)

Here, we must supplement the equal-time algebra (6.11a) by the canonical bosonic equal-time commutators[
φ̂(t, x), Π̂(t, x′)

]
= iδ(x− x′),

[
φ̂′(t, x), Π̂′(t, x′)

]
= iδ(x− x′), (6.12d)

with

Π̂(t, x′) ..=
(
v−1 ∂tφ̂

)
(t, x′), Π̂′(t, x; ) ..=

(
v−1 ∂tφ̂

′
)

(t, x′). (6.12e)

The symmetry under the transformation (6.5) follows from the invariance of the bosonic theory defined by Eq. (6.12)
under the transformation

θ̂ 7→ θ̂′, φ̂ 7→ φ̂′, θ̂′ 7→ θ̂, φ̂′ 7→ φ̂. (6.13)

The symmetry under the transformation (6.6) follows from the invariance of the bosonic theory defined by Eq. (6.12)
under the transformation

φ̂ 7→ φ̂+

√
π

2
, θ̂ 7→ θ̂ +

√
π

2
, φ̂′ 7→ φ̂′ +

√
π

2
, θ̂′ 7→ θ̂′ +

√
π

2
. (6.14)

C. Majorana representation

Left- and right-moving Majorana fields are defined by

χ̂1
L ..=

1√
πa

cos
(√

4π φ̂+,L

)
≡ 1√

πa
cos
(√

π
(
φ̂+ + θ̂+

))
≡ 1√

πa
cos

(√
π

2

(
φ̂+ φ̂′ + θ̂ + θ̂′

))
, (6.15a)

χ̂2
L ..=

−1√
πa

sin
(√

4π φ̂+,L

)
≡ −1√

πa
sin
(√

π
(
φ̂+ + θ̂+

))
≡ −1√

πa
sin

(√
π

2

(
φ̂+ φ̂′ + θ̂ + θ̂′

))
, (6.15b)

χ̂3
L ..=

1√
πa

cos
(√

4π φ̂−,L

)
≡ 1√

πa
cos
(√

π
(
φ̂− + θ̂−

))
≡ 1√

πa
cos

(√
π

2

(
φ̂− φ̂′ + θ̂ − θ̂′

))
, (6.15c)

χ̂0
L ..=

−1√
πa

sin
(√

4π φ̂−,L

)
≡ −1√

πa
sin
(√

π
(
φ̂− + θ̂−

))
≡ −1√

πa
sin

(√
π

2

(
φ̂− φ̂′ + θ̂ − θ̂′

))
, (6.15d)

and

χ̂1
R ..=

1√
πa

cos
(√

4π φ̂+,R

)
≡ 1√

πa
cos
(√

π
(
φ̂+ − θ̂+

))
≡ 1√

πa
cos

(√
π

2

(
φ̂+ φ̂′ − θ̂ − θ̂′

))
, (6.15e)

χ̂2
R ..=

1√
πa

sin
(√

4π φ̂+,R

)
≡ 1√

πa
sin
(√

π
(
φ̂+ − θ̂+

))
≡ 1√

πa
sin

(√
π

2

(
φ̂+ φ̂′ − θ̂ − θ̂′

))
, (6.15f)

χ̂3
R ..=

1√
πa

cos
(√

4π φ̂−,R

)
≡ 1√

πa
cos
(√

π
(
φ̂− − θ̂−

))
≡ 1√

πa
cos

(√
π

2

(
φ̂− φ̂′ − θ̂ + θ̂′

))
, (6.15g)

χ̂0
R ..=

1√
πa

sin
(√

4π φ̂−,R

)
≡ 1√

πa
sin
(√

π
(
φ̂− − θ̂−

))
≡ 1√

πa
sin

(√
π

2

(
φ̂− φ̂′ − θ̂ + θ̂′

))
, (6.15h)

respectively.

After some algebra, we arrive at the Majorana repre- sentation of the ŝu(2)1 ⊕ ŝu(2)1 WZNW model with the
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conserved currents ĴL, ĴR, Ĵ ′L, and Ĵ ′R perturbed by the
intra-ladder interaction density (6.10) that is given by

Ĥtuned
ladder ..=

∑
µ=0,1,2,3

Ĥtuned
ladder,µ (6.16a)

with

Ĥtuned
ladder,µ ..=

i

2
v (χ̂µL∂xχ̂

µ
L − χ̂

µ
R∂xχ̂

µ
R) + imtuned

µ χ̂µL χ̂
µ
R,

(6.16b)
where

v ∝ J1 a (6.16c)

and

mtuned
µ =

{
mtuned

s , µ = 0,

mtuned
t , µ = 1, 2, 3.

(6.16d)

The singlet mass mtuned
s and the triplet mass mtuned

t are
here given by

mtuned
s ..=

−1

2πa

(
3gtuned
nn + gεε

)
=
−1

2π
(12 J⊥ + JU ) , (6.17a)

mtuned
t ..=

1

2πa

(
gtuned
nn − gεε

)
=

1

2π
(4 J⊥ − JU ) , (6.17b)

respectively. Upon tuning the ratio of JU/J⊥ such that
the singlet (triplet) mass mtuned

s (mtuned
t ) vanish, we

achieve the critical point with central charge 1/2 (3/2)
in a single ladder (6.1).

The symmetry under the transformation (6.5) is repre-
sented by the invariance of the Majorana theory defined
by Eq. (6.16) under the transformation

χ̂1
M 7→ +χ̂1

M, (6.18a)

χ̂2
M 7→ +χ̂2

M, (6.18b)

χ̂3
M 7→ +χ̂3

M, (6.18c)

χ̂0
M 7→ −χ̂0

M, (6.18d)

for any M = L,R.
The symmetry under the transformation (6.6) is rep-

resented in a trivial way for the Majorana theory defined
by Eq. (6.16), for the transformation (6.6) is represented
by the identity

χ̂µM 7→ χ̂µM (6.19)

for any µ = 0, 1, 2, 3 and M = L,R according to Eq.
(6.15).

We follow Ref. 25 to discuss the nature of the phase
transition. According to the sign of the singlet mass and
the triplet mass at the fine-tuned point (6.17), we sketch
the phase diagram in Fig. 9(a). There are 9 pairs of the

signature of ms and mt. These 9 pairs label 4 phases, 4
critical line and 1 trivial point at the origin. In Fig. 9(b)
a refined version of the phase diagram in Fig. 9(a) is
obtained by considering the difference of the magnitude
of the singlet mass and the triplet mass. As long as
|ms| > |mt|, namely the triplet branch of the spectrum
remain the lowest, the phase is related to the phase of
the bilinear and biquadratic spin-1 chain. We note that
the dashed green line is the mirror image of the blue line
around the JU axis. We also remark that the dashed
green line is not present in Fig. 9(a).

VII. COUPLED TWO-LEG LADDERS

A. Microscopic lattice model and its continuum
limit

We consider the following inter-ladder interaction

Ĥinter-ladder ..= Ĥ4 + Ĥ ′4 + Ĥ� + Ĥ ′�, (7.1a)

where

Ĥ4 ..=
Jχ
2

N∑
i=1

n−1∑
m=1

[
Ŝi,m+1 ·

(
Ŝi+1,m ∧ Ŝi,m

)
+ Ŝi+1,m ·

(
Ŝi,m+1 ∧ Ŝi+1,m+1

) ] (7.1b)

and

Ĥ� ..= J∨

N∑
i=1

n−1∑
m=1

(
Ŝi,m · Ŝi,m+1

+ κ\ Ŝi,m+1 · Ŝi+1,m + κ/ Ŝi,m · Ŝi+1,m+1

)
,

(7.1c)

with Ĥ ′4 and Ĥ ′� deduced from Ĥ4 and Ĥ� by the sub-

stitution Ŝi,m → Ŝ′i,m. The couplings κ\ and κ/ are di-

mensionless. (The choice κ\ = κ/ = 1/2 is shown in Fig.

2.)
The inter-ladder Hamiltonian (7.1) has a global

SU(2)×SU(2) symmetry that reflects the fact that there

is no coupling between the quantum spin Ŝi,m and the

quantum spin Ŝ′i′,m+1 for all i, i′ = 1, · · · , N .
For the same reason, the inter-ladder Hamiltonian

(7.1) has a global Z2 symmetry under the transforma-
tion [recall Eq. (6.5)]

Ŝi,m 7→ Ŝ′i,m, Ŝ′i,m 7→ Ŝi,m, (7.2)

for i = 1, · · · , N and m = 1, · · · , n.
If PBC are imposed on the indices i, the inter-ladder

Hamiltonian (7.1) is then invariant under all lattice trans-
lations generated by the transformation [recall Eq. (6.6)]

Ŝi,m 7→ Ŝi+1,m, Ŝ′i,m 7→ Ŝ′i+1,m, (7.3)

i = 1, · · · , N and m = 1, · · · , n.
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FIG. 9. (Color online) (a) Phase diagram of the fine-tuned quantum spin-1/2 ladder (6.9) based on the sign of the singlet mass
and the triplet mass (6.17). (b) A refined version of the phase diagram in Fig. 9(a) is obtained by considering the difference
of the magnitude of the singlet mass and the triplet mass. As long as |ms| > |mt|, namely the triplet branch of the spectrum
remains the lowest, the phase is related to the phase of the bilinear and biquadratic spin-1 chain.

Finally, the inter-ladder Hamiltonian (7.1) is invariant
under reversal of time, a global anti-unitary transforma-
tion under which

Ŝi,m → −Ŝi,m, Ŝ′i′,m′ → −Ŝ′i′,m′ , (7.4a)

for all i, i′ = 1, · · · , N and m, m′ = 1, · · · , n, combined
with the transformation

Jχ 7→ −Jχ. (7.4b)

Any fixed non-vanishing Jχ breaks time-reversal symme-
try.

The naive continuum limit of Ĥinter-ladder defined by
Eq. (7.1) was derived in Ref. 19 (see also Ref. 29). All the
bare values of the coupling constants entering Eq. (7.1)
that are relevant from the point of view of a one-loop
renormalization group analysis at the WZNW critical
point vanish at the fined-tuned point

κ\ = κ/ = 1/2, (7.5)

and the leading-order contribution is simply the current-
current interaction

Ĥ4,�(x) ..=

n−1∑
m=1

3∑
a=1

{
λ
[
ĴaL,m(x) ĴaR,m+1(x) + Ĵ ′aL,m(x) Ĵ ′aR,m+1(x)

]
+ λ̃

[
ĴaR,m(x) ĴaL,m+1(x) + Ĵ ′aR,m(x) Ĵ ′aL,m+1(x)

]}
(7.6a)

with

λ = 2a
[
(Jχ/π) + 2J∨

]
, λ̃ = 2a

[
−(Jχ/π) + 2J∨

]
. (7.6b)

Here, ĴaM,m(x) ∈ ŝu(2)k=1 and Ĵ ′aM,m(x) ∈ ŝu(2)k′=1 with
M = L,R, i.e., their equal-time commutators are those
of the affine Lie algebras ŝu(2)k=1 and ŝu(2)k′=1, respec-
tively.

The global SU(2)×SU(2) symmetry of the inter-ladder
Hamiltonian (7.1) is manifest in that there is no coupling

between the currents ĴaM,m(x) and Ĵ ′aM,m+1(x). They are

related to the original quantum spin 1/2 by adding the

label m on both sides of Eqs. (6.7b), (6.7c), and (6.7d) for
the unprimed fields, say.

The global Z2 symmetry under

ĴaM,m(x) 7→ Ĵ ′aM,m(x), Ĵ ′aM,m(x) 7→ ĴaM,m(x) (7.7)

is also manifest.
If PBC are imposed with respect to x, the symme-

try of the inter-ladder Hamiltonian (7.1) under all lat-
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tice translations generated by the transformation (7.3) is
then also manifest in the continuum Hamiltonian den-
sity (7.6), since the currents ĴaM,m(x) and Ĵ ′aM,m(x) are un-

changed by the transformation (7.3), unlike the staggered
fields on the right-hand sides of Eqs. (6.7b), (6.7c), and
(6.7d) for the unprimed fields, say.

Remarkably, the continuum Hamiltonian density (7.6)
has acquired an emergent symmetry, namely it is invari-
ant under the m-resolved transformations

n̂m 7→ σm n̂m, n̂′m 7→ σm n̂
′
m, (7.8a)

ε̂m 7→ σm ε̂m, ε̂′m 7→ σm ε̂
′
m, (7.8b)

where σm = ±1 for m = 1, · · · , n, unlike the microscopic
inter-ladder Hamiltonian (7.1) for which the lattice trans-
lation (7.3) must act simultaneously on all ladder for it
to leave the microscopic inter-ladder Hamiltonian (7.1)
invariant.

Reversal of time is explicitly broken by any non-
vanishing λ 6= λ̃.

Observe that the bare value of λ̃ vanishes if

Jχ
π

= 2J∨. (7.9)

Upon the fine tuning (7.9), the current-current interac-
tion (7.6a) simplifies to

Ĥinter−ladder(x) ..=

n−1∑
m=1

3∑
a=1

λ
[
ĴaL,m(x)ĴaR,m+1(x)

+ Ĵ ′aL,m(x)Ĵ ′aR,m+1(x)
]
.

(7.10)

The interaction Ĥinter−ladder(x) is represented by the di-
rected arcs in Fig. 4(a). The arrow on the arcs indicates
that this choice of current-current interaction completely
breaks time-reversal symmetry.

To summarize, we are considering a set of n ladders
labeled by the index m = 1, · · · , n. We are assigning the
coordinate x ∈ R along the direction of the leg to each
ladder. The ladders are all parallel and equally spaced
along a direction y perpendicular to the x axis. The
Hamiltonian for this set of ladders is approximated by

Ĥ ..=

Lx∫
0

dx

[
n∑

m=1

ĤWZNW,m(x) +

n∑
m=1

Ĥintra−ladder,m(x)

+

n−1∑
m=1

Ĥinter−ladder,m(x)

]
.

(7.11a)

The Hamiltonian density ĤWZNW,m(x) encodes the
conformal-field theory in two-dimensional space time
with the affine Lie algebra ŝu(2)1 ⊕ ŝu(2)1. It describes
a ladder at a quantum critical point with central charge

cm = 2 where m = 1, · · · , n. The intra-ladder interaction
is [c.f. Eq. (6.10)]

Ĥintra−ladder,m(x) ..= gtuned
nn n̂m(x) · n̂′m(x)

+ gεε ε̂m(x) ε̂ ′m(x).
(7.11b)

The couplings gtuned
nn and gεε are dimensionless. They

are related to the microscopic data of the spin-1/2 lad-
der depicted in Fig. 2 by Eq. (6.10b). The inter-ladder
interaction is [c.f. Eq. (7.10)]

Ĥinter−ladder,m(x) ..=

3∑
a=1

λ
[
ĴaL,m(x)ĴaR,m+1(x)

+ Ĵ ′aL,m(x)Ĵ ′aR,m+1(x)
]
,

(7.11c)

where ĴaM,m(x) ∈ ŝu(2)k=1 and Ĵ ′aM,m(x) ∈ ŝu(2)k′=1 with
M = L,R, i.e., their equal-time commutators are those
of the affine Lie algebras ŝu(2)k=1 and ŝu(2)k′=1, respec-
tively. The coupling λ is dimensionless. It is related to
the microscopic data of the spin-1/2 ladder depicted in
Fig. 2 by Eq. (7.6b). The symmetries of Hamiltonian
(7.11) are the following.

The local symmetry with the affine Lie algebra ŝu(2)1⊕
ŝu(2)1 associated to ĤWZNW(x) is reduced to the global
SU(2)×SU(2) symmetry by the inter-ladder interaction
densities, owing to its invariance under the interchange
of unprimed and primed fields.

There is a global Z2 symmetry under the interchange
of unprimed and primed fields.

If PBC are imposed, there is an emergent m-resolved
Z2 symmetry under the transformation

n̂m 7→ σm n̂m, n̂′m 7→ σm n̂
′
m, (7.12a)

ε̂m 7→ σm ε̂m, ε̂′m 7→ σm ε̂
′
m, (7.12b)

ĴM,m 7→ ĴM,m, Ĵ ′M,m 7→ Ĵ ′M,m, (7.12c)

where σm = ±1 for m = 1, · · · , n and M = L,R.

B. Majorana representation

Since ŝo(4)1 = ŝu(2)1 ⊕ ŝu(2)1, we can employ four
Majorana fields χ̂µM,m(x) (µ = 0, 1, 2, 3) with M = L,R
obeying the equal-time anti-commutators{

χ̂µM,m(x), χ̂µ
′

M′,m′(x
′)
}

= δMM′ δmm′ δµµ′ δ(x− x′) (7.13)

to describe the ŝu(2)1 ⊕ ŝu(2)1 WZNW model for two
decoupled chains making up a single ladder through the
Hamiltonian density

ĤWZNW,m =

3∑
µ=0

i

2
v
(
χ̂µL,m∂xχ̂

µ
L,m − χ̂

µ
R,m∂xχ̂

µ
R,m

)
. (7.14)

Here, v is the Fermi velocity. Furthermore, the ŝu(2)k=1

currents ĴaM,m(x) and the ŝu(2)k′=1 currents Ĵ ′aM,m(x) with
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M = L,R, a = 1, 2, 3, and m = 1, · · · , n can be repre-
sented by the bonding linear combination

K̂aM,m(x) = ĴaM,m(x) + Ĵ ′aM,m(x) = − i

2
εabcχ̂bM,m(x)χ̂cM,m(x),

(7.15a)
and the anti-bonding linear combination

ÎaM,m(x) = ĴaM,m(x)− Ĵ ′aM,m(x) = − iχ̂0
M,m(x)χ̂aM,m(x),

(7.15b)

respectively. One verifies that K̂aM,m(x) and ÎaM,m(x) gen-

erate a closed ŝu(2)1 ⊕ ŝu(2)1 algebra. For later use, we
invert Eq. (7.15) to obtain

ĴaM,m(x) =
1

2

(
K̂aM,m(x) + ÎaM,m(x)

)
=
−1

2

(
i

2
εabc χ̂bM,m(x) χ̂cM,m(x) + iχ̂0

M,m(x) χ̂aM,m(x)

)
, (7.16a)

Ĵ ′aM,m(x) =
1

2

(
K̂aM,m(x)− ÎaM,m(x)

)
=
−1

2

(
i

2
εabc χ̂bM,m(x) χ̂cM,m(x)− iχ̂0

M,m(x) χ̂aM,m(x)

)
. (7.16b)

There follows several important consequences from Eq. (7.16).

First, χ̂0
M,m(x) transforms under the global diagonal

SU(2) symmetry of the WZNW Hamiltonian ĤWZNW(x)
as the singlet (trivial) representation, while the triplet
χ̂aM,m(x) with a = 1, 2, 3 transforms under the same SU(2)
as the adjoint representation.

Second, reversal of time that is defined by exchanging
left- and right-moving labels together with sign reversal

of ĴaM,m(x) is represented by complex conjugation in the
Fock space spanned by the Majorana fields together with
exchanging left- and right-moving labels.

Third, the symmetry under

ĴaM,m(x) 7→ Ĵ ′aM,m(x) Ĵ ′aM,m(x) 7→ ĴaM,m(x) (7.17)

of the WZNW Hamiltonian ĤWZNW(x) is represented by

χ̂0
M,m(x) 7→ −χ̂0

M,m(x) χ̂aM,m(x) 7→ +χ̂aM,m(x) (7.18)

in the Majorana representation.
Fourth, the relation between the currents and the Ma-

jorana fields is one to many since the local gauge trans-
formation

χ̂µM,m(x) 7→ σM,m(x) χ̂µM,m(x) (7.19)

where σM,m(x) = ±1 leaves the right-hand side of Eq.

(7.16) unchanged.
Given the Majorana representation of the ŝu(2)1 ⊕

ŝu(2)1 currents entering the inter-ladder interaction
(7.15), we can rewrite the inter-ladder current-current in-
teractions (7.11c) in terms of 4n Majorana fields. More
specifically, we calculate the inter-ladder interactions
(7.11c) by making use of Eq. (7.16). For any m =
1, · · · , n − 1 and for any a = 1, 2, 3, we start from the
inter-ladder interaction (7.11c),

(
ĴaL,m Ĵ

a
R,m+1 + Ĵ ′aL,m Ĵ

′a
R,m+1

)
=

1

2

(
K̂aL,m K̂aR,m+1 + ÎaL,m ÎaR,m+1

)
. (7.20)

This bilinear form in the currents can be rewritten as a quartic form in terms of the Majorana fields. Thus, the
inter-ladder interactions (7.11c) can be written as

Ĥinter−ladder,m =
λ

4

( 3∑
a=1

χ̂aL,m χ̂
a
R,m+1

)2

+ 2
(
χ̂0

L,m χ̂
0
R,m+1

)( 3∑
a=1

χ̂aL,m χ̂
a
R,m+1

)
+ const

 (7.21a)

=
λ

4

(
3∑

µ=0

χ̂µL,m χ̂
µ
R,m+1

)2

+ const′. (7.21b)

We make three observations.

First, Eq. (7.21a) does not follow if we assume that the coupling λ breaks the SU(2) symmetry through a
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dependence on the index a = 1, 2, 3.
Second, Eq. (7.21b) displays an explicit global

O(4) = Z2 × SO(4) = Z2 × SO(3)× SO(3) (7.22)

symmetry. This symmetry is broken down to the diago-
nal subgroup

SO(3) ⊂ SO(4) = SO(3)× SO(3) (7.23)

if Heisenberg interactions between the quantum spin Ŝi,m
and the quantum spin Ŝ′i′,m+1 are added to the interaction

(7.11). Indeed, one verifies that such microscopic per-
turbations generate SO(3, 1)-symmetric perturbations of
the form(

3∑
a=1

χaL,m χ
a
R,m+1 − χ0

L,m χ
0
R,m+1

)2

(7.24)

and SO(3)-symmetric perturbations of the form

3∑
a,b,c=1

εabcχaL,mχ
b
R,m+1

(
χcL,m χ

0
R,m+1 + χ0

L,m χ
c
R,m+1

)
(7.25)

to the Gross-Neveu-like interaction (7.21b).
Third, the inter-ladder interactions (7.21a) resembles

the interactions considered in the paper of Fidkowski and
Kitaev30 (see also Ref. 31) in the context of the stabil-
ity of the topological classification of free fermions when
perturbed by interactions.

On the other hand, the intra-ladder interaction (7.11b)
is a mere quadratic form when expressed in terms of the
Majoranas [c.f. Eq. (6.16)],

Ĥintra−ladder,m = ims χ̂
0
L,m χ̂

0
R,m +

3∑
a=1

imt χ̂
a
L,m χ̂

a
R,m.

(7.26)
Here, ms,mt ∈ R are the bare masses of the Majorana
fields.

In short, the lattice model presented in Fig. 2 provides
a microscopic realization of the Majorana field theory
(2.1) with vµ ≡ v for µ = 0, 1, 2, 3, m0 ≡ ms, and ma ≡
mt for a = 1, 2, 3. Upon the fine tuning (6.9), (7.5), (7.9),

and ms = 0 from Eq. (6.17a), there only remains three
independent couplings out of the seven couplings from
the microscopic lattice model. We choose these three
independent microscopic couplings to be J1, J∨, and J⊥.
They condition the values of the velocity v, triplet mass
mt, and the coupling constant λ for the current-current
interaction through

v ∝ a J1, mt ∝ J⊥, λ ∝ a J∨. (7.27)

To realize a topologically ordered phase, we need to
choose J∨ > 0, while the signature of J⊥ is arbitrary
(see Fig. 3).

To summarize, the Majorana representation of Hamil-
tonian (7.11) obeying periodic boundary conditions with
respect to the coordinates x ∈ [0, Lx] and m = 1, · · · , n is
given by

Ĥ =

n∑
m=1

(
ĤWZNW,m + Ĥintra−ladder,m + Ĥinter−ladder,m

)
,

(7.28a)

ĤWZNW,m =

3∑
µ=0

i

2
v
(
χ̂µL,m∂xχ̂

µ
L,m − χ̂

µ
R,m∂xχ̂

µ
R,m

)
,

(7.28b)

Ĥintra−ladder,m = ims χ̂
0
L,m χ̂

0
R,m +

3∑
a=1

imt χ̂
a
L,m χ̂

a
R,m,

(7.28c)

Ĥinter−ladder,m =
λ

4

(
3∑

µ=0

χ̂µL,m χ̂
µ
R,m+1

)2

+ const′.

(7.28d)

C. Abelian bosonization

It is instructive to use Abelian bosonization to trade
the Majorana representation in Eq. (7.28) for a bosonic
one. With the help of the conventions from Secs. VI B
and VI C together with some trigonometric identities, one
finds
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Ĥ =

n∑
m=1

(
Ĥupper

leg,m + Ĥlower
leg,m + Ĥintra−ladder,m + Ĥinter−ladder,m

)
, (7.29a)

Ĥupper
leg,m =

v

2

[
Π̂2

m +
(
∂xφ̂m

)2
]
, Ĥlower

leg,m =
v

2

[
Π̂′2m +

(
∂xφ̂

′
m

)2
]
, (7.29b)

Ĥintra−ladder,m = −mt

πa
cos
(√

2π
(
φ̂m + φ̂′m

))
− mt +ms

2πa
cos
(√

2π
(
φ̂m − φ̂′m

))
+
mt −ms

2πa
cos
(√

2π
(
θ̂m − θ̂′m

))
,

(7.29c)

Ĥinter−ladder,m = −λ
4

(
1

πa

)2
[∑
±

cos

(√
π

2

[
φ̂m + θ̂m + φ̂m+1 − θ̂m+1 ± (unprimed→ primed)

])]2

, (7.29d)

where it is understood that the trigonometric functions
of the bosonic fields must be normal ordered.

The symmetry under the transformation (7.2) becomes
the invariance of the bosonic theory defined by Eq. (7.29)
under the global transformation

θ̂m 7→ θ̂′m, φ̂m 7→ φ̂′m, θ̂′m 7→ θ̂m, φ̂′m 7→ φ̂m,
(7.30)

for m = 1, · · · , n.
The symmetry under the transformation (7.3) becomes

the invariance of the bosonic theory defined by Eq. (7.29)
under the emergent m-resolved transformation

φ̂m 7→ φ̂m + σstag
m

√
π

2
, θ̂m 7→ θ̂m + σstag

m

√
π

2
,

φ̂′m 7→ φ̂′m + σstag
m

√
π

2
, θ̂′m 7→ θ̂′m + σstag

m

√
π

2
,

(7.31)

where σstag
m = 0, 1 for m = 1, · · · , n, for the arguments

of the two cosines on the right-hand side of Eq. (7.29d)
change at most by 2π under any one of these transfor-
mations.

Evidently, Ĥintra−ladder,m and Ĥintra−ladder,m+1 do not

commute with Ĥinter−ladder,m. Moreover, it is far from
obvious that the limit λ = 0 is nothing but a noninter-
acting theory of Majorana fields.

However, the bosonic representation (7.29) becomes
advantageous in the limit ms = mt = 0 for which the
intra-ladder interaction vanish, as we now explain. In this
limit, we are left with the inter-ladder interaction only.
The inter-ladder interaction density consists of squaring
the sum over two cosines that are given by

cos
(√

2π
(

Ξ̂m,m+1 + Ξ̂′m,m+1

))
(7.32a)

and

cos
(√

2π
(

Ξ̂m,m+1 − Ξ̂′m,m+1

))
, (7.32b)

respectively, where

Ξ̂m,m+1 ..=
1√
4

(
φ̂m + θ̂m + φ̂m+1 − θ̂m+1

)
, (7.32c)

and

Ξ̂′m,m+1 ..=
1√
4

(
φ̂′m + θ̂′m + φ̂′m+1 − θ̂′m+1

)
. (7.32d)

Now, the linear combination [recall Eq. (6.15)]

φ̂L,m ..= φ̂m + θ̂m

(
φ̂′L,m ..= φ̂′m + θ̂′m

)
(7.33)

defines a left-moving bosonic field on the upper (lower)
leg of ladder m, while the linear combination [recall Eq.
(6.15)]

φ̂R,m+1 ..= φ̂m+1 − θ̂m+1

(
φ̂′L,m+1 ..= φ̂′m+1 − θ̂′m+1

)
(7.34)

defines a right-moving bosonic field on the upper (lower)

leg of ladder m + 1. It follows that, at equal times, φ̂L,m

must commute with φ̂R,m+1, φ̂′L,m must commute with

φ̂′R,m+1, Ξ̂m,m+1 must commute with Ξ̂m+1,m+2, Ξ̂′m,m+1 must

commute with Ξ̂′m+1,m+2, the cosine (7.32a) must com-
mute with the cosine (7.32b), and

Ĥinter−ladder,m = −λ
4

(
1

πa

)2 [
cos
(√

2π
(

Ξ̂m,m+1 + Ξ̂′m,m+1

))
+ cos

(√
2π
(

Ξ̂m,m+1 − Ξ̂′m,m+1

))]2
(7.35)

must commute with Ĥinter−ladder,m′ for all m, m′ = 1, · · · , n. Hence, the set of operators {Ĥinter−ladder,m} la-
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beled by m = 1, · · · , n can be simultaneously diagonalized
by choosing the eigenfields

Ξm,m+1(x)± Ξ′m,m+1(x) (7.36a)

of

Ξ̂m,m+1(x)± Ξ̂′m,m+1(x) (7.36b)

to be either

Ξm,m+1(x)± Ξ′m,m+1(x) = 0 +
√

2π n±m,m+1, n
±
m,m+1 ∈ Z,

(7.36c)
or

Ξm,m+1(x)± Ξ′m,m+1(x) =

√
π

2
+
√

2π n±m,m+1, n
±
m,m+1 ∈ Z.

(7.36d)
Any eigenvalue from the family (7.36c) is to be inter-
preted as the positive expectation value〈

GS; +

∣∣∣∣∣
3∑

µ=0

iχ̂µL,m χ̂
µ
R,m+1

∣∣∣∣∣GS; +

〉
≡ +C > 0 (7.37a)

in the ground state |GS; +〉. Any eigenvalue from the
family (7.36d) is to be interpreted as the negative expec-
tation value〈

GS;−

∣∣∣∣∣
3∑

µ=0

iχ̂µL,m χ̂
µ
R,m+1

∣∣∣∣∣GS;−

〉
≡ −C < 0 (7.37b)

in the ground state |GS;−〉. Any non-vanishing value
of C > 0 breaks spontaneously the M- and m-resolved
symmetry under the transformation (2.6) of Hamilto-
nian (7.28) in the limit ms = mt = 0 [any non-vanishing
value of C > 0 also breaks spontaneously the m-resolved
symmetry under the transformation (2.3) of Hamiltonian
(7.28) for any one of ms or mt non-vanishing].

Classical static m-resolved solitons are time-
independent eigenfields (7.36a) that (i) interpolate
between any pair from the classical minima enumerated
in Eqs. (7.36c) and (7.36d) as x interpolates from
x = −∞ to x = +∞ (ii) and whose energy density is of
compact support with respect to x ∈ R.

Following Refs. 20 and 32, we identify among all
such solitons four types of m-resolved elementary soli-
tons. A type-I m-resolved soliton corresponds to both
Ξm,m+1 + Ξ′m,m+1 and Ξm,m+1 − Ξ′m,m+1 increasing mono-

tonically in their values by the amount
√
π/2 between

x = −∞ to x = +∞. A type-II m-resolved soliton cor-
responds to both Ξm,m+1 + Ξ′m,m+1 and Ξm,m+1 − Ξ′m,m+1

decreasing monotonically in their values by the amount√
π/2 between x = −∞ to x = +∞. A type-II m-resolved

soliton can be thought of as an m-resolved anti-soliton
of type I. A type-III m-resolved soliton corresponds to
Ξm,m+1 + Ξ′m,m+1 (Ξm,m+1 − Ξ′m,m+1) increasing (decreasing)

monotonically in value by the amount
√
π/2 between

x = −∞ to x = +∞. A type-IV soliton corresponds to
Ξm,m+1 + Ξ′m,m+1 (Ξm,m+1 − Ξ′m,m+1) decreasing (increasing)

monotonically in values by the amount
√
π/2 between

x = −∞ to x = +∞. A type-IV m-resolved soliton can be
thought of as and m-resolved anti-soliton of type III. Upon
quantization, Witten has shown in Ref. 20 that we may
associate these four types of elementary solitons to point-
like many-body excitations that form a four-dimensional
irreducible representation of a Clifford algebra with four
generators.

Solitons of type I, II, III, and IV interpolate between
any pair with one classical minima from the family
(7.36c) and the other classical minima from the family
(7.36d) as x interpolates from x = −∞ to x = +∞. Such
solitons should be distinguished from those solitons that
interpolate between any pair with both classical minima
from either one of the two families (7.36c) and (7.36d)
as x interpolates from x = −∞ to x = +∞. The former
solitons are associated with the spontaneous breaking of
the chiral symmetry. The solitons associated with two
classical minima of either one of the families (7.36c) or
(7.36d) differing by δn+

m,m+1 = ±1 while δn−m,m+1 = 0 are
associated with the spontaneous breaking of the symme-
try (7.31).

We close this discussion by deriving the sine-Gordon
representation (4.4) of Hamiltonian (7.29) in the limit
of vanishing intra-ladder interaction. The sine-Gordon
Hamiltonian (4.4) follows from expanding the squared
bracket on the right-hand side of Eq. (7.35). There are
four products of normal-ordered cosine interactions in
this expansion. Two of them involve squaring the same
normal-ordered cosine operator. This exercise requires
combining point splitting with the operator product ex-
pansion and results in a renormalization of the kinetic
contributions (7.29b). The remaining two products of
normal-ordered cosine interactions involve distinct com-
muting operators for which we can use the decomposition
rule for the multiplication of two cosines into the addi-
tion of two cosines. The sine-Gordon Hamiltonian (4.4)
follows with the identifications

ϕ̂s ..=

√
8π

β
Ξ̂m,m+1, ϕ̂c ..=

√
8π

β
Ξ̂′m,m+1. (7.38a)

D. Spontaneous symmetry breaking

We have shown that Hamiltonian (7.29) commutes
with any one of the 2n+1 transformations
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φ̂m 7→ φ̂m + 2σm

√
π

2
, θ̂m 7→ θ̂m, φ̂′m 7→ φ̂′m, θ̂′m 7→ θ̂′m, Majorana redundancy

(7.39a)

φ̂m 7→ φ̂′m θ̂m 7→ θ̂′m, φ̂′m 7→ φ̂m, θ̂′m 7→ θ̂m, Ŝi,m ↔ Ŝ′i,m
(7.39b)

φ̂m 7→ φ̂m + σm

√
π

2
, θ̂m 7→ θ̂m + σm

√
π

2
, φ̂′m 7→ φ̂′m + σm

√
π

2
, θ̂′m 7→ θ̂′m + σm

√
π

2
, Ŝ

(′)
i,m 7→ Ŝ

(′)
i+1,m

(7.39c)

with σm = 0, 1 for m = 1, · · · , n.

All these transformations commute pairwise and their ac-
tion on the trigonometric functions entering Hamiltonian
(7.29) is involutive. Consequently, all many-body energy
eigenstates of Hamiltonian (7.29) are 22n-fold degenerate
with the decomposition

22n = 2n−1 × 2× 2n, (7.40)

whereby the factor 2n−1 arises from the Majorana re-
dundancy as was deduced after Eq. (5.13), the factor 2
arises from the global symmetry under the exchange of
unprimed and primed fields in all ladders, and the fac-
tor 2n arises from the reversal in sign of all the stag-
gered fields in an arbitrarily chosen ladder. The degener-
acy 2n−1 was shown to be broken spontaneously at and
only at zero temperature through the breaking of the
chiral symmetry encoded by the order parameter (2.7)
in the Majorana representation. The remaining degen-
eracy 2 × 2n remains unbroken all the way to and at
zero temperature, as is evident from the fact that the
chiral order parameter for the Majorana fermions is in-
variant under the transformations (7.39b) and (7.39c).
In particular, the degeneracy 2n is invisible to the Ma-
jorana fields. Hence, the topological degeneracy in the
phase diagram from Fig. 3 coexists with the 22n degen-
eracy associated with the symmetries (7.39a), (7.39b),
and (7.39c). Whereas the degeneracy 2n−1 associated to
the symmetry (7.39a) originates from the redundancy of
the m-resolved Majorana representation of the conserved
chiral currents (7.15) and, as such, is intrinsic to the
Majorana representation and invisible to any probe from
the Fock space generated by the spin-1/2, the degener-
acy 2 × 2n associated with the symmetries (7.39b) and
(7.39c) is specific to any microscopic Hamiltonian with
the global symmetry (7.2) and a ladder-resolved exten-
sion of the global symmetry (7.3). In other words, the
degeneracy 2n resulting from the m-resolved symmetry
under the transformation (7.39c) is not intrinsic to the
microscopic inter-ladder interaction (7.1), but emerges
from neglecting perturbations to the inter-ladder Hamil-
tonian (7.11c) [see also Eqs. (7.28d) or (7.29d)] that we
now discuss.

E. Competing instabilities

The ATO and NATO phases of the effective low-energy
theory encoded by Hamiltonian (2.1) compete with the
ordered phases that are stabilized by the longer-range
interaction densities of the forms

[n̂m(x) + σ n̂′m(x)] ·
[
n̂m+r(x) + σ′ n̂′m+r(x)

]
, (7.41a)

[ε̂m(x) + σ ε̂′m(x)]
[
ε̂m+r(x) + σ′ ε̂′m+r(x)

]
, (7.41b)

[n̂m(x) + σ n̂′m(x)] · ∂x
[
n̂m+r(x) + σ′ n̂′m+r(x)

]
, (7.41c)

[ε̂m(x) + σ ε̂′m(x)] · ∂x
[
ε̂m+r(x) + σ′ ε̂′m+r(x)

]
, (7.41d)

where σ, σ′ = ±1 and |r| > 1. (Here we recall that, by
design, all the bare couplings vanish for r = 1.)

One consequence of these interaction densities is that
they can remove the emergent m-resolved symmetry un-
der the transformation (7.12) [(7.39c)]. The fate (con-
finement versus deconfinement) of the solitons associated
with the spontaneous breaking of the symmetry (7.12)
[(7.39c)] in the presence of such symmetry-breaking in-
teractions is left for future work.

The perturbative renormalization group allows to as-
sess the potency of the competing interaction densi-
ties (7.41) relative to the inter-ladder interaction density
(7.11c) [see also Eqs. (7.28d) or (7.29d)].

On the one hand, the interactions densities (7.41c) and
(7.41d) are marginal perturbations of the critical theory
(7.28b). As such, they can be safely ignored provided
their coupling constants are smaller than the couplings
of the leading current-current interactions.

On the other hand, the interaction densities (7.41a)
and (7.41b) are relevant perturbations of the critical the-
ory (7.28b). As such, they present certain difficulties.
For the spin-1/2 lattice Hamiltonian that we have cho-
sen, their coupling constants are of the order of ∼ J2

∨/J1,
but cannot be reliably determined otherwise. The prob-
lem is that at small microscopic bare couplings χ � J1

and J∨ � J1, the spectral gap M of the effectively
one-dimensional Hamiltonian (2.5) that originates from
the marginal current-current interaction is exponentially
small in the effective coupling λ of Hamiltonian (2.5).
Hence, to make M larger than ∼ J2

∨/J1, we have to go in
the region of intermediate to strong bare couplings λ/J1,
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with λ defined in Eq. (7.6b). Our methods do not allow
to establish whether the required parameter regime ex-
ists or whether it can be reached for some modification
of the lattice Hamiltonian. We take heart from the fact
that the required regime of large energy gap M ∼ J1

exists in the frustrated quantum spin 1/2 zig-zag ladder
with a three-spin interaction that was studied by Frahm
and Rödenbeck in Ref. 33. They demonstrated that, un-
der certain conditions corresponding to our λ = 0 in Eq.
(7.11c), their ladder is integrable with a spectrum that
is partially gapped with a gap of order of the leading ex-
change interaction, J1 in our setting. In this case, the
mass M exceeds the energy scale for the characteristic
energy scales associated to the relevant interactions from
Eq. (7.41), in which case their neglect in the effective
Hamiltonian (2.1) would be a posteriori consistent. Ulti-
mately, however, only numerical calculations can estab-
lish that the Majorana field theory (2.1) captures the low
energy physics of the microscopic spin 1/2 lattice model.

VIII. SUMMARY

In this paper, we put an emphasis on finding a field the-
ory which would lead to non-Abelian topological order.
We used the methods of quantum-field theory to solve
a fermionic model with a topologically nontrivial ground
state. We also presented a candidate lattice spin model
whose low energy sector is described by this fermionic
theory, namely, a model of quantum spin S = 1/2 lad-
ders coupled by a three-spin interaction. We found that
the bulk spectrum of the fermionic model is gapped and
that there are robust chiral gapless modes on the bound-
aries. There are two topologically nontrivial phases. In
one of them the boundary modes are described by a sin-
gle species of gapless Majorana fermions. This phase
realizes a Nonabelian Topological Order (NATO). In the

other phase, the boundary modes are four gapless modes.
This phase realizes an Abelian Topological Order (ATO).
In both cases the bulk excitations are gapped. We found
that their spectrum consists of two types of particles.
Particles of one type are Majoranas. They propagate
in two-dimensional space. Particles of the other type
are fractionalized solitons which remain confined to in-
dividual ladders. Since the Majoranas are bound states
of these particles, their spectrum is situated below the
soliton-antisoliton continuum.

Since spin operators are bosonic, single Majoranas can-
not be observed by measuring spin-spin correlation func-
tions. However, their presence can be ascertained by
measurements of thermal transport which are sensitive
to their statistics.

The presence of the solitons is a sign of the extensive
ground-state degeneracy in the fermionic sector of the
theory. This degeneracy is associated with the existence
of an order parameter that is not local in the original
spin variables. Hence, any operator that is local in the
spins has no access to this degeneracy.
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