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Exceptional points (EP) were recently predicted to modify the spontaneous emission rate or Purcell factor of

narrowband emitters embedded in resonant cavities. We demonstrate that EPs can have an even greater impact

on nonlinear optical processes like frequency conversion by deriving a general formula quantifying radiative

emission from a subwavelength emitter in the vicinity of triply resonant χ(2) cavity that supports an EP near

the emission frequency and a bright mode at the second harmonic. We show that the resulting frequency up-

conversion process can be enhanced by up to two orders of magnitude compared to non-degenerate scenarios

and that, in contrast to the recently predicted spontaneous-emission enhancements, nonlinear EP enhancements

can persist even when considering spatial distributions of broadband emitters, provided that the cavity satisfy

special nonlinear selection rules. This is demonstrated via a 2D proof-of-concept PhC designed to partially

fulfill the various criteria needed to approach the derived bounds on the maximum achievable up-conversion

efficiencies. Our predictions suggest an indirect but practically relevant route to experimentally observe the

impact of EPs on spontaneous emission, with implications to quantum information science.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

The change in radiative emission experienced by a sub-

wavelength particle near a resonant environment is typically

characterized by the well-known Purcell factor1,2. Recently,

we presented a generalization of Purcell enhancement that

applies to situations involving exceptional points (EP)3,4—

spectral singularities in non-Hermitian systems where two or

more eigenvectors and their corresponding complex eigen-

values coalesce, leading to a non-diagonalizable, defective

Hamiltonian. EPs are attended by a slew of intriguing physical

effects5,6 and have been studied in various contexts, includ-

ing lasers, atomic and molecular systems7,8, photonic crys-

tals4,9,10, parity-time symmetric lattices11–23, optomechanical

resonators24–26, and sensing27,28. An important but little ex-

plored property of EPs related to light-matter interactions is

their ability to modify and enhance the spontaneous emission

rate of dipolar emitters, characterized by the local density of

states (LDOS)3,4. The key to enhancing the LDOS at an EP

is to exploit the intricate physics arising from the coalescence

of dark and bright (leaky) resonances. Featuring infinite life-

times and vanishing decay rates, dark modes are by definition

generally inaccessible to external coupling. Consequently, an

emitter on resonance with a dark mode cannot radiate unless it

is also coupled to a leaky resonance. Such a shared resonance

underlies the EP enhancements described recently in Refs.3,4,

which showed that the LDOS at an EP exhibits a narrowed,

squared Lorentzian lineshape whose peak is four times larger

than the maximum achievable LDOS of a single resonance.

More generally, for an EP of order n, the maximum enhance-

ment factor scales as
√
n34. Although this effect makes it pos-

sible to enhance (albeit modestly) monochromatic emission

near the EP resonance, the existence of a sum rule29 which

forces the frequency-integrated LDOS to be a conserved pro-

hibits any enhancement in the case of broadband emitters (e.g.

fluorescent molecules).

In this article, we exploit a coupled-mode theory framework

to demonstrate that EPs can have broader and dramatic impli-

cations on nonlinear optical processes. In particular, we study

radiative emission from a subwavelength emitter, e.g. sponta-

neous emission from atoms or radiation from classical anten-

nas, that is embedded in a triply resonant nonlinear χ(2) cav-

ity supporting an EP at the emission frequency along with a

second-harmonic resonance, and show that the EP can greatly

enhance the resulting frequency up-conversion. The efficiency

of such a second-harmonic generation (SHG) process depends

strongly on the lifetimes and degree of confinement of the

cavity modes30, which we characterize by deriving a closed-

form, analytical formula for the nonlinear Purcell enhance-

ment: the emission rate at 2ωe from a dipole current source

oscillating at ωe compared to its emission in a bulk medium.

Specifically, we provide emission bounds for monochromatic

and broadband emitters, showing that the up-conversion rate

at the EP can be more than two orders-of-magnitude larger

than that of a single-mode cavity, depending on the position

of the emitter and on complicated but designable modal selec-

tion rules. We complement our analytical predictions with a

concrete physical example—a 2D PhC slab that partially ful-

fills all of the aforementioned criteria—and show that EPs can

enhance emission from both isolated and spatial distributions

of emitters. In combination with recently proposed inverse

designs for enhancing nonlinear interactions4,31, the expected

EP enhancements could result in several orders-of-magnitude

larger frequency-conversion efficiencies.

Second-harmonic generation (SHG) is a well-studied pro-

cess in which light at a frequency ω is converted to 2ω via a

χ(2) nonlinearity30. While this effect is typically weak in bulk

media30, it can be greatly enhanced in cavities that confine

light both temporally (long decay times) and spatially (small

mode volumes). In fact, there has been much interest in de-

signing multi-resonant cavities capable of lowering the power

requirements of such devices, which are typically excited with
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FIG. 1. Schematic of a dipolar Lorentzian emitter of frequecy ωe

and decay rate γe embedded in a triply resonant χ(2) nonlinear cav-

ity supporting an exceptional point (EP). The cavity consists of two

degenerate resonances (a1, b1) at ω1, one dark and one bright with

decay rate γ1, that are linearly coupled to one another with cou-

pling rate κ and nonlinearly coupled to a harmonic mode of fre-

quency ω2 = 2ω1 and decay rate γ2 by the χ(2) nonlinearity. The

spectrum of the cavity consists of two fundamental normal modes

ω± = ω1 ±
√

κ2 − γ2
1/4 of the same effective decay rate γ1/2.

An EP is formed when κ = γ1/2, leading to enhanced emission

at ω2 compared to emission in the limit κ → ∞ of two far-apart

resonances (assuming resonant excitation ωe = ω± of a single nor-

mal mode). The main plot shows the largest achievable nonlinear EP

enhancement factor, the ratio of the second-harmonic emission rate

P2 = γ2|a2|
2 at the EP to that of the single-mode limit [(10)], as a

function of the coupling efficiency ζ = γe/γ1. The inset (top-right)

shows P2 from a monochromatic emitter (γe → 0) as a function

of cavity detuning
(ωe−ω1)

γ1
, in both the EP (solid) and single-mode

(dashed) regimes. For convenience, both emission rates have been

normalized.

externally incident light (e.g. from laser sources). While EPs

have only been shown to increase the LDOS of cavities (and

not their scattering efficiency), one problem which motivates

us to explore their impact on nonlinear optics is the closely

related challenge of achieving on-chip high-efficiency visible-

to-telecom frequency conversion from quantum emitters, a

problem of practical value to applications in quantum infor-

mation science32. While there are many relevant nonlinear

processes (e.g. two-photon absorption and four-wave mixing)

to consider in that context, here we explore the simple but

illustrative SHG scheme described above, in which sponta-

neous emission from an emitter embedded in a triply resonant

cavity is up-converted and enhanced due to the presence of an

EP at the emission wavelength. Although the design of such

a cavity is made difficult by the relatively large number of

requirements that must be satisfied if one is to observe signifi-

cant enhancements, including stringest frequency- and phase-

matching criteria33,34, the creation of an EP at the fundamental

wavelength, and special nonlinar modal selection rules (de-

scribed below), we show that these design challenges can be

overcome by application of recently developed inverse-design

techniques31.

II. COUPLED-MODE ANALYSIS

To begin with, consider a generic triply resonant cavity sys-

tem, depicted schematically in Fig. 1, involving a two-fold de-

generacy (a1, b1) of dark and bright modes at ω1 and a single

mode a2 at ω2. Such a system is well described by the follow-

ing coupled-mode equations (CME)33:

ȧ1 = iω1a1 + iκb1 − β1a2a
∗
1 − β2a2b

∗
1 + sa(t) (1)

ḃ1 = (iω1 − γ1)b1 + iκa1 − β2a2a
∗
1 − β3a2b

∗
1 + sb(t) (2)

ȧ2 = (iω2 − γ2)a2 − β1a
2
1 − β3b

2
1 − β2a1b1 (3)

Mode a1 is dark while b1 and a2 have decay rates γ1 and γ2,

respectively. The two degenerate modes are coupled to one

another via a linear coefficient κ and nonlinearly coupled to a2
by a parametric χ(2) process characterized by mode-overlap

coefficients30,33,

βij =
iω1

∫

χ(2)E∗
2EiEj dr

√

∫

ǫr|E2|2 dr
√

∫

ǫr|Ei|2 dr
√

∫

ǫr|Ej |2 dr
, (4)

which are defined in terms of the linear cavity electric fields,

E{a,b,2}, corresponding to modes a1, b1, and a2, with i, j ∈
{a, b} and β1,2,3 ≡ {βaa, βab, βbb}. Note that while β1

and β2 involve up-conversion initiated by either the dark

or bright mode, respectively, β3 involves both. We focus

on emission from a dipolar emitter embedded within the

cavity at some position r, represented by the input terms

sa,b(t) = ca,bs(t), where the coefficients ca,b = 1√
Va,b

=

ǫr(r)|Ea,b(r)|/
(√

∫

dr ǫr|Ea,b|2
)

represent coupling con-

stants which are inversely proportional to the corresponding

effective mode volumes, and s(t) =
∫∞
−∞ dω

√
γe

γe+i(ω−ωe)
eiωt

is a pulse described by a temporal Lorentzian profile of fre-

quency ωe and decay rate γe, and whose Fourier amplitude

s(ω) is normalized so that the integrated power
∫

dω Pe(ω) =
π, with Pe(ω) = |s(ω)|2. Below, we focus on a scenario

in which the dipole couples exclusively to the dark mode,

such that cb = 0, and consider the consequences of the spec-

tral degeneracy on the emitter’s radiation spectrum, given by

P1(ω) = γ1|b1(ω)|2 and P2(ω) = γ2|a2(ω)|2. We begin with

a brief review of the familiar linear Purcell factor (β = 0), de-

rived for cavities which are well described by a sum of simple

Lorentzians, followed by an analysis of the expected modifi-

cations arising in the presence of EPs. Finally, we consider

the ramifications of EPs on the up-conversion rate (or nonlin-

ear Purcell factor) for finite β > 0.

III. LINEAR PURCELL ENHANCEMENT

The Purcell factor associated with an emitter which is res-

onantly coupled to a single-mode cavity of decay rate γ and

mode volume V is defined as the ratio of the power radiating

from the cavity Pcav to that in free space Pvac
35,36. In the case



3

of the Lorentzian emitter above, the enhancement is given by:

FP =
Pcav

Pvac

=

∫∞
∞ dω 2γ

(ω−ωe)2+γ2Pe(ω)

V
∫∞
−∞ dω 3ω2

π2c3Pe(ω)
=

3πc3

ω2
eV (γ + γe)

,

(5)

This well-known result shows that in order for FP to be large,

the system needs to be in the so-called “bad cavity” or “weak

emitter” regime of γe ≪ γ.

Because the spectrum of a cavity is altered at an EP3,4,8,

one naturally expects some modification to FP . To illus-

trate this, we analyze the radiation spectrum of the emitter

in the linear regime β = 0, in which case the source can

only couple to the fundamental modes. Solving the CMEs

in this regime, one finds that when κ ≥ γ1/2, the spectrum

P1(ω) = γ1κ
2|ca|2

[κ2−(ω−ω1)2]
2+γ2

1
(ω−ω1)2

Pe(ω), corresponding to

a doubly resonant cavity described by normal modes of fre-

quenciesω± = ω1±
√

κ2 − γ2
1/4 and equal decay rates γ1/2.

Notably, the normal modes coalesce at κEP = γ1/2, forming

an EP of complex frequency ω1 − iγ1/2 which results in the

modified spectrum,

PEP
1 (ω) =

2|ca|2
(

γ1

2

)3

[

(

γ1

2

)2
+ (ω − ω1)2

]2Pe(ω), (6)

corresponding to a squared Lorentzian of frequency ω1 and

bandwidth γ1/2. In the limit κ → ∞ of two strongly cou-

pled resonances, the spectrum is well described by a sum of

Lorentzians,

P∞
1 (ω) ≈

∑

±

γ1

2

∣

∣

∣

ca√
2

∣

∣

∣

2

(

γ1

2

)2
+ (ω − ω±)

2
Pe(ω), (7)

centered at far-apart frequencies |ω±| ≫ ω1 and having the

same bandwidth γ1/2 but smaller amplitudes c∞ = ca/
√
2

(or alternatively, larger effective mode volumes) compared to

the isolated Lorentzians at κ∞ (or single-mode regime). En-

suring that the emission is resonant with at least one of the

normal modes by setting ωe = ω±, and defining the coupling

efficiency ζ = γe/γ1, one obtains the following EP enhance-

ment factor:

F1(ζ) =

∫

dω PEP
1 (ω)

∫

dω P∞
1 (ω)

=
2(2 + ζ)

1 + ζ
. (8)

Note that this figure of merit quantifies enhancements relative

to the typical Purcell factor of (5), with the actual Purcell en-

hancement at the EP (the emission in the cavity relative to that

in vacuum) given by the product F × FP .

It follows that in the limit γe → 0 of a monochromatic

emitter, the emission rate at the EP is four times greater

than the corresponding rate in the single-mode regime, with

F1(ζ → 0) =
PEP

1
(ω1)

P∞
1

(ω±) = 4|ca|2/γ1

2|c∞|2/γ1
= 4. This result was re-

cently derived in Ref. [3] by exploiting a perturbative expan-

sion of the Maxwell Green’s function based on Jordan eigen-

vectors but, as shown, also follows from the coupled-mode

picture. Unfortunately, the larger peak emission at the EP is

precisely compensated by a narrowing of the cavity spectrum,

the consequence of a general sum rule29 derived from causal-

ity which constrains the frequency-integrated LDOS of any

passive system to be conserved, thus ensuring that the cavity

spectra above satisfy:

∫ ∞

−∞
dω

PEP
1 (ω)− P∞

1 (ω)

Pe(ω)
= 0 (9)

Consequently, F1 decreases as the bandwidth of the emit-

ter increases, with F1(ζ → ∞) → 2 in the “good cavity”

limit of a broadband emitter. (Note that while a factor of

two larger emission technically constitutes enhancement, this

is merely an artifact of the lack of degeneracy at κ∞, with

the Lorentzian emitter coupling to a single rather than two

modes.) As we show below, such a tradeoff between en-

hancement and bandwidth is not nearly as prohibitive in the

case of finite β > 0, enabling orders-of-magnitude larger

up-conversion rates from sources with bandwidths larger than

that of the cavity.

We remark that since the normal modes of the cavity exhibit

the same asymptotic decay rates at κEP and κ∞, the predicted

EP enhancements derive only from changes in the cavity dy-

namics (encoded in the modified spectrum). Moreover, while

there are many kinds of EPs one could consider, (at least in

passive systems) the factor of four enhancement can only be

attained by EPs comprising dark and bright states and sources

that couple strictly to the dark mode (resulting in the squared

Lorentzian profile). Intuitively, one could argue that such an

enhancement arises because, despite the fact that the under-

lying coupled resonances exhibit the same asymptotic decay

rates, the source is in some sense allowed to directly probe the

infinite lifetime of the dark mode. From this perspective, one

might expect that while the sum rule of Ref. [29] severely lim-

its the extent to which the emitter can probe the dark versus

bright mode, such a restriction could be mitigated in situations

involving nonlinear processes, by way of which the energy in

the cavity can be disproportionally (i.e. nonlinearly) affected

by the dark mode.

IV. NONLINEAR PURCELL ENHANCEMENT

To analyze this scenario, we focus on the typical situa-

tion of a weakly nonlinear medium, allowing us to exploit

the small-signal or non-depletion approximation of negligi-

ble down-conversion, and hence to ignore the nonlinear terms

(e.g. β1a2a
∗
1) entering (1) and (2). Moreover, to ensure

that the emitter is coupled resonantly to at least one of the

normal modes and that the former is frequency matched to

the harmonic mode33 regardless of κ, we let ωe = ω± and

ω2 = 2ω±, respectively. As before, any enhancement in the

up-conversion rate is expressed relative to the equivalent rate

obtained in the single-mode limit κ → ∞ of far-apart reso-

nances, in which case one recovers the more familiar descrip-

tion of SHG in doubly resonant cavities33. The relevant quan-

tity for this SHG process is the “nonlinear” EP enhancement
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factor,

F2(ζ) =

∫

dω PEP
2 (ω)

∫

dω P∞
2 (ω)

, (10)

which as before depends on the coupling efficiency ζ.

The perturbative nature of the non-depletion regime

allows us to express the spectral amplitude a2(ω)
of the harmonic mode as a simple convolution,

a2(ω) = iω1/2
i(ω−ω2)+γ2

∫∞
−∞ dq [β1a1 (ω) a1 (ω − q) +

β2b1 (ω) b1 (ω − q) + β3a1 (ω) b1 (ω − q)], of the linear

(β = 0) cavity modes at the fundamental frequency and

hence to obtain a closed-form expression for (10), which

is far too complicated to write here but is detailed in the

Appendix section. We do however find it instructive to

provide expressions for the nonlinear enhancements in the

asymptotic bad cavity regime of a monochromatic emitter

(ζ → 0) as well as the good cavity regime of a broadband

emitter (ζ → ∞), given by:

F2(ζ → 0) =
16(4β1 − β2)

2 + 64β2
3

(β1 + β2 + β3)2
(11)

F2(ζ → ∞) =
4(5β1 − β2)

2 + 16β2
3

(β1 + β2 + β3)2
. (12)

These expressions depend on the various nonlinear coeffi-

cients in a complicated way, illustrating the asymmetric con-

tribution of the different up-conversion processes, with the

dark mode taking a more prominent role. In particular, max-

imizing F2 with respect to β, we arrive at upper bounds on

the monochromatic and broadband enhancement factors of

F2(ζ → 0) = 256 and F2(ζ → ∞) = 100, respectively,

achieved under finite β1 6= 0 and β2 = β3 = 0. Here, in anal-

ogy with the linear result, the largest Purcell enhancements

are achieved when the emitter radiates directly into the dark

mode and when the latter, in turn, is solely responsible for

mediating up-conversion. We find that just as in the linear

regime, the harmonic emission spectrum exhibits a higher-

order, Lorentzian lineshape, illustrated in Fig. 1(top-right),

which shows the dependence of P2(ζ → 0) on the cavity

detuning ω1−ωe

γ1

in the monochromatic limit, γe → 0. Ev-

idently, the emission spectrum undergoes significantly less

narrowing compared to the linear scenario above, allowing
∫∞
−∞ dω

PEP

2
(ω)−P∞

2
(ω)

Pe(ω) > 0. Note that the above expressions

are obtained in the limit γ2 ≪ γ1 of long second-harmonic

lifetimes, since larger decay rates tend to weaken nonlinear

effects and hence reduce F2. Figure 1 summarizes the behav-

ior of F2 with respect to the coupling efficiency ζ, in analogy

with (8).

Naively, one might expect from the linear analysis that the

four-fold increase in the peak energy at the fundamental fre-

quency (equivalent to a halving of the mode volume) would

translate to a 16-fold increase in the up-conversion rate. In-

stead and surprisingly, underlying the predicted orders-of-

magnitude larger emission rates is the fact that the effective

reduction in mode volume enabled by the EP has a compound-

ing and enhancing effect on the nonlinear overlap factors. In
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FIG. 2. Inverse-designed 2D square PhC (unit cell). Dark/white re-

gions represent relative permittivities ǫr = 5.5/1. The correspond-

ing TM (out-of-plane, scalar electric-fields) band structure exhibits

a Dirac cone (red bands) centered at ω1 and a leaky harmonic res-

onance (blue band) at ω2 = 2ω1. A Dirac degeneracy at Γ is

formed by monopolar (M1) and dipolar (D) modes while the second-

harmonic resonance is a higher-order monopolar mode (M2), with

electric-field profiles shown as insets. Non-Hermiticity is introduced

by inserting a small amount of dielectric loss along the nodal line

of the M1 mode, allowing realization of an EP near ω1. Also de-

picted are two non-degenerate modes (I and II) at kxa/2π = 0.06
(vertical dashed line in the band diagram), arising from the mixing

of the monopole and dipole modes at Γ. The lower panels show

the spatially varying emission rate at ω2 from monochromatic dipole

sources distributed throughout the unit cell and oscillating at ω1, in

both the single-mode (left) and EP (right) regimes.

fact, inspection of the denominators in (11) and (12) and fur-

ther analysis of the CMEs reveal that at k∞, the effect of the

dark mode on the nonlinear coefficients is diluted and thus

mitigated by the coupling of the emitter to the bright mode,

resulting in an effective nonlinear single-mode coupling coef-

ficient β∞ = β1+β2+β3

2 that is reduced with respect to β1 by

a factor of two. Alternatively, upon inspection of the numera-

tors of (11) and (12), one can surmise that just as in the linear

scenario, those radiative processes which are directly probing

the infinitely longer-lived dark mode are enhanced (albeit dis-

proportionally) with respect to the others.

V. CAVITY DESIGN

We buttress our theoretical predictions by exploring a sim-

ple but concrete physical embodiment of our coupled-mode

model designed to satisfy the various criteria required to

achieve large nonlinear EP enhancements. First, in a phys-

ical cavity, the relative coupling of the emitter to the dark



5

and bright modes will depends on its position as well as on

the mode profiles, which must be chosen to ensure that it can

couple exclusively to the former. Second, the cavity must sup-

port an EP at ωe and a harmonic resonance at 2ωe. Third, the

mode profiles must be designed to ensure large β1 (known as

quasiphase matching33) and negligible β2 = β3 = 0. These

spectral conditions and nonlinear selection rules are all em-

bodied in a proof-of-concept 2D PhC structure, depicted in

Fig. 2, that was engineered through inverse design4.

The PhC supports an EP near Γ formed out of a Dirac-point

degeneracy9,31 of dark monopole (M1) and bright dipole (D)

modes at ωe, and a bright monopole mode (M2) at 2ωe,

depicted as insets in Fig. 2. As described in Ref. [4],

the band structure of the PhC in the vicinity of the Dirac

point can be described by an effective 2 × 2 Hamiltonian9,
(

ω1 vgk
vgk ω1 + iγ1

)

, where k denotes the Bloch wave num-

ber and vg the group velocity (the slope of the conical dis-

persion), the product of which which takes the role of the

coupling κ = kvg in our CMEs. Such a system exhibits

an EP at kEP = γ1/2vg and approaches the single-mode

or strong-coupling regime at larger k∞ ≫ kEP. For com-

putational and conceptual convenience, we introduce non-

Hermiticity to the system by adding a small amount of ab-

sorption (Im[ǫr] 6= 0) along the nodal line of M1, which

renders the other two modes (D and M2) leaky while keep-

ing M1 dark. (Note that extending this system to realize a

3D PhC slab leads to a similar effective Hamiltonian.) This

judicious choice of mode symmetries ensures that the dipole

source couples primarily to the dark mode when it is placed

at the center of the unit cell and has the added benefit of re-

alizing β1 ≈ 0.07(χ(2)/λ1) ≫ β2, β3. Note that technically,

the emission rate at a fixed k is the LDOS-per-wavenumber

or so-called mutual DOS37, corresponding to emission from

an array of coherent, dipole emitters periodically placed at the

center of each unit cell. Hence, angular emission is channeled

into the EP modes at kEP and up-converted into the corre-

sponding phase-matched second harmonic mode at 2kEP. To

find the achivable F2 in this system, we compute the position-

dependent coupling constants ci(r) = Ei(r)/
∫

dr ǫr|Ei(r)|2
corresponding to each mode i = {M1,D} and solve (1)–(3)

to compare the emission rates in the EP and single-mode sce-

narios. For a dipole located at the center of the unit cell, we

obtain monochromatic and broadband enhancement factors of

F2(ζ → 0) = 160 and F2(ζ → ∞) = 43, respectively. Note

that there is a slight asymmetry in the mode profiles of the far-

apart k∞ resonances, shown in Fig. 2(insets), indicating that

one mode is more localized (and thus has smaller mode vol-

ume) than the other. For fairness, the enhancement factor was

computed in relation to the more confined of the two modes

(labelled I), which explains why F2 does not reach the bounds

obtained above.

Figure 2 also shows the spatially varying, monochromatic

up-conversion rate P2(ζ → 0, r) at kEP and k∞. They dif-

fer in at least two important ways: First, the emission rate at

the EP depends sensitively on the relative coupling to the dark

and bright modes. It reaches its maximum value at the cen-

ter of the unit cell because away from the center, the source

can couple directly to the bright mode, thus diluting the en-

hancing effect of the dark mode. Second, strong mixing be-

tween the dark and bright modes at k∞ leads to different sets

of field profiles, with the k∞ fields reaching their maximum

away from the center. Consequently, the spatially varying

F2 will depend sensitively and in a complicated way on the

position of the emitter. To quantify the degree of spatial in-

homogeneity or sensitivity to source position, we consider

instead the spatially integrated (averaged) enhancement fac-

tor, F2 =
∫
drPEP

2
(ζ→0,r)∫

drP∞
2

(ζ→0,r)
, which captures the net enhance-

ment in the harmonic-emission rate of a uniform distribu-

tion of incoherent emitters. This quantity is relevant, for in-

stance, to efforts aimed at enhancing large-area fluorescence

and lasing in PhCs38, and will generally depend on the par-

ticular structure under consideration. We find that in this

geometry, F2 = 85, illustrating the robustness of the non-

linear EP enhancements with respect to the source location.

In contrast, the spatially integrated enhancement factor cor-

responding to monochromatic emission in the linear regime

is F1 =
∫
drPEP

1
(ζ→0,r)∫

drP∞
1

(ζ→0,r)
=

2
∫
dr |cM1|2∫
dr |cI|2 = 2, showing that

just as in the case of a spectrally broadband source ζ → ∞
[see (8)], there is a sum rule that limits spontaneous emission

enhancements from spatially broad sources.

VI. CONCLUDING REMARKS

In summary, we have shown that the efficiency of nonlin-

ear frequency conversion processes can be greatly enhanced in

cavities featuring EPs, with ultimate bounds dictated by com-

plicated but tunable modal selection rules favouring interac-

tions mediated by dark states. While luminescence enhance-

ments at EPs in linear media are nullified in the case of broad-

band emitters, nonlinear Purcell factors can be enhanced by

two orders of magnitudes even when the emission bandwidth

is much larger than the cavity bandwidth. The ability to ex-

ploit larger bandwidths is key to nonlinear applications requir-

ing either fast operational speeds39 and/or employing good

emission sources40. In combination with recently demon-

strated inverse-designed structures optimized to enhance non-

linear overlaps31, the proposed EP enhancements could lead

to orders-of-magnitude larger nonlinearities and emission ef-

ficiencies. We emphasize that our results have general valid-

ity and can be applied to a wide range of nonlinear systems,

including highly nonlinear mid-infrared quantum wells41, op-

tomechanical resonators26, and microwave super-conducting

qubits42, and that our proof-of-concept geometry is by no

means unique. In fact, given a choice of operating frequen-

cies (e.g. microwaves, infrared, or visible wavelengths) and

emitters (e.g. qubits, quantum dots, or SiV), there exist many

possible nonlinear materials and structures (e.g. ring resonan-

tors or PhC cavities) in which one could demonstrate these

effects (especially when aided by inverse design). Finally,

we expect that similar or potentially larger enhancements can

arise in systems supporting higher-order exceptional points4,26

or nonlinear processes, e.g. third-harmonic generation, four-

wave mixing, and two-photon down-conversion, which have
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applications in quantum information science.
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APPENDIX: NONLINEAR MODAL AMPLITUDE

To obtain an explicit expression for a2(ω), it suffices to

Fourier transform (3), in which case one finds the amplitude

at the second harmonic in terms of a convolution of the linear

modes:

a2(ω) =
iω1/2

i (ω − ω2) + γ2

∫ ∞

−∞
dq

[

β1a1 (ω) a1 (ω − q) + β3b1 (ω) b1 (ω − q) + β2a1 (ω) b1 (ω − q)
]

, (13)

which can be evaluated to yield a closed-form, analytical so- lution. Focusing on the EP scenario (κ = γ1/2) and defining
∆ = ω − 2ω1, one obtains:

aEP
2 (ω) = −8πγe

{

iβ2

[

2cacb
(

γ2
1∆+ iγ3

1 + γ1∆(4γe + i (−4ωe + 5ω − 6ω1)) + 2∆2 (iγe + ωe − ω + ω1)
)

+ γ1c
2
a (2γ1 + i∆) (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1)) + γ1∆c2b (2iγ1 + 2iγe + 2ωe − 3ω + 4ω1)

]

+ β1

[

2γ1cacb (2γ1 + i∆) (2iγ1 + 2iγe + 2ωe − 3ω + 4ω1)

+ c2a
(

8γ3
1 + γ2

1 (10γe + i (−10ωe + 21ω − 32ω1)) + 4γ1∆(3iγe + 3ωe − 4ω + 5ω1)

−4∆2 (γe + i (−ωe + ω − ω1))
)

+ γ2
1c

2
b (−2γ1 − 2γe + 2iωe − 3iω + 4iω1)

]

− β3

[

2γ1∆cacb (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1)) + γ2
1c

2
a (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1))

+ c2b
(

γ2
1 (−2γe + 2iωe − iω) + 4γ1∆(−iγe − ωe + ω − ω1) + 4∆2 (γe + i (−ωe + ω − ω1))

)

]

}

/

{

[γ1 + i (ω − 2ω1)]
3 [−iγ2 + ω − 2ω1) (γ1 + 2 (γe + i (−ωe + ω − ω1))]

2 (−2iγe − 2ωe + ω)

}

(14)

Given this unruly but general expression, we consider two

main limiting cases in the main text, corresponding to ei-

ther a monochromatic (γe → 0, ω = 2ωe) or broadband

(γe ≫ γ1, ωe = ω1) emitter, leading to the equations given

in the main text. For comparison, we also consider second-

harmonic generation in the κ → ∞, in which case the steady-

state amplitude is given by:

a∞2 (ω) =
16iπγeβ∞s∞

(−iγ1 +∆) (−iγ2 +∆) (γ1 + 2 (γe + i (−ωe + ω − ω1))) (−2iγe − 2ωe + ω)
, (15)

where c∞ = 1√
2
(ca + cb) and β∞ = 1

2 (β1 + β2 + β3).
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