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ABSTRACT 

For most glass-forming liquids, the temperature dependence of viscosity is non-Arrhenius. 
Despite the technological and geological importance, the origin of this non-Arrhenius 
temperature dependence of viscosity remains elusive to date and constitutes an important but 
unsolved problem in condensed matter physics. It has become increasingly clear in recent years 
that high-temperature elasticity and viscosity of glass-forming liquids are strongly correlated. 
This work proposes a modified elastic model to predict equilibrium viscosity of glass-forming 
liquids. The new elastic model considers the configurational entropy as a factor controlling the 
activation energy for viscous flow in addition to the high-frequency shear modulus as in the Dyre 
shoving model. It works much better than the shoving model in fitting equilibrium viscosity for 
both strong and fragile systems. The new model also has the capability to estimate the non-
equilibrium isostructural viscosity of glass from the equilibrium viscosity and the temperature-
dependent elasticity of the glassy state.  
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I. INTRODUCTION 

Each glass manufacturing operation — melting, fining, forming, and annealing — requires a 
certain well-defined shear viscosity range1 and consequently a specific temperature range for that 
operation.2 Hence, it can be said that industrial glass production is mostly governed by the 
temperature-dependent shear viscosity.1,3 It is thus of great importance to have accurate 
knowledge of the scaling of viscosity with temperature, considering its super-Arrhenius rise as a 
melt is cooled toward the glass transition. Experimental measurement of viscosity is challenging 
for high temperature melts, and time consuming or even prohibitively expensive at low 
temperatures.1,4,5  This has motivated great efforts in developing reliable viscosity models and in 
understanding the origin of the non-Arrhenius temperature dependence of viscosity in glass-
forming liquids.6 

The dynamic and thermodynamic origin of the non-Arrhenius temperature dependence of 
viscosity has been studied with great interest over the past century with no theory being accepted 
so far with consensus.7 The two most influential atomistic models that have been proposed over 
the years to explain this phenomenon are the configurational entropy model8 of Adam and Gibbs 
and the elastic shoving model9 of Dyre et al.7 While either model claims to work well alone to 
explain the temperature dependence of viscosity, some believe that both models are two sides of 
the same coin7,10,11, and a recent study indicated the necessity to combine the two.12 In this work, 
we argue that one model cannot be a replacement for the other and that both configurational 
entropy as well as elasticity influence viscosity and that both these factors together explain the 
non-Arrhenius nature of its temperature dependence.  

The Dyre shoving model assumes that the activation barrier for viscous flow has two 
contributions9: (i) rearrangements of molecules or structural units, when a thermal fluctuation 
leads to extra space being created locally; (ii) ‘shoving’ aside the surrounding liquid to reduce 
the first contribution. According to the shoving model, the main contribution comes from (ii), 
i.e., the activation energy is mainly elastic energy. Furthermore, it is assumed that all flow events 
possess spherical symmetry, i.e., the surroundings are subject to a pure shear displacement and 
not associated with any density change. Since this displacement happens on a short time scale, 
the shoving work is proportional to the instantaneous shear modulus13, which leads to the 
temperature-dependent shear viscosity  

( )( ) exp c

B

T VT
k T

μη η ∞
∞

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,                                                                                                             (1) 

where ( )Tη stands for viscosity at a temperature T, η∞  is the viscosity at high temperature, kB is 
Boltzmann’s constant, ( )Tμ∞ is the temperature-dependent instantaneous shear modulus14,15 at T 
and Vc is a characteristic microscopic volume, assumed to be temperature-independent in the 
shoving model. Thus, according to the shoving model, the dynamics of the glass-forming liquid 
is completely controlled by elasticity through the instantaneous shear modulus.4 Some limitations 
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of the shoving model are that it systematically underestimates the values of fragility4 and that it 
was originally derived for the equilibrium regime only.  

Apart from the viscosity of the glass forming melt, it is also very important to estimate the 
viscosity of the resultant glass. Phenomenological models for estimating the non-equilibrium 
viscosity as a function of temperature include Narayanaswamy16, Mazurin17, Avramov18 and 
Mauro-Allan-Potuzak (MAP)3 models, just to name a few. The limitations of these models are 
that they are empirical and that the model parameters lack a direct physical interpretation.19  The 
MAP model was recently modified with physically-meaningful parameters.19,20 The shoving 
model was previously extended to the non-equilibrium regime21 by including the effect of 
thermal history according to  

( ), ( , )
ln f f c

B

T T T T V
k T

η μ
η

∞

∞

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

.                                                                                                        (2) 

It was found that Eq.(2) yields a significantly smaller change in viscosity with fictive 
temperature compared to what is observed experimentally.21 It was suggested that there are 
factors beyond the evolution of shear modulus such as configurational entropy that control the 
non-equilibrium viscosity of glass.21

   

In this work, we propose a modified elastic model for viscosity which is an improvement 
over the Dyre shoving model in the equilibrium regime. The new elastic model considers the 
influence of both configurational entropy and high-frequency shear modulus in controlling the 
activation energy for viscous flow. With the new model, using only equilibrium viscosity data 
along with  glass elasticity, non-equilibrium isostructural viscosity can be estimated. This is 
particularly useful because elasticity of glass is much easier to measure than viscosity. Non-
equilibrium isostructural viscosity predicted by the new model agrees very well with Yue’s 
isostructural viscosity model22 as well as Mazurin’s experimental measurements on a standard 
NBS 710 glass.17 The modified elastic model makes way for a better understanding of the roles 
that elasticity and configurational entropy play in controlling viscosity. 

 

II. EXPERIMENTAL METHOD  

Silicate glasses from different chemical systems were studied in this work and shown in 
Table 1. The procedure by which the first eight sodium aluminosilicate glasses containing CaO 
and/or MgO were synthesized can be found elsewhere.4 Albite and diopside glasses were 
synthesized by the melt-quenching method and annealed near their respective glass transition 
temperatures for 1 hour before being cooled down in furnace to room temperature. NIST 710A 
was equilibrated and held isothermally for two minutes at 655 °C and then cooled at 50 °C/min 
(Tf= 564.4 °C) or at 0.2 °C/min (Tf= 516.9 °C) from the supercooled liquid to room temperature.  
The cathedral glass was rapidly quenched from 635 °C to room temperature after being held 
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isothermally for two minutes. Corning Jade® glass3 was annealed at various fixed temperatures 
(T<Tf ) and then cooled slowly to room temperature. The thermal history of Corning EAGLE 
XG® glass3 was set by the fusion draw process through which it was manufactured without 
annealing.19 A modified version of the calorimetric area matching method23 was used to 
determine fictive temperatures of the NIST 710A, cathedral glass, EAGLE XG, and Corning 
Jade glass. NBS 710 glass was annealed at 522 °C for 2 hours and then cooled at 50 °C/min to 
room temperature to match the thermal history of the glass samples used in Mazurin’s 
experiments.17 The fictive temperature of the NBS 710 glass sample so obtained is taken as 
522 °C. For albite, diopside, the eight sodium aluminosilicate glasses containing CaO and/or 
MgO, the glass transition temperature (Tg) was taken as the fictive temperature after annealing. 
Here, Tg is the temperature corresponding to a viscosity of 1012 Pa.s as obtained from viscosity 
fitting. 

 
TABLE 1. Glasses tested in this study. 

Glass Chemical composition (mol%) Tg 
(°C) m 

Average RMSD of 
log ,η η in Pa.s 

 SiO2 Al2O3 Na2O MgO CaO 
Other 

components 
  

Shoving 
model 

New 
model 

MgAl0 75.83 0.07 15.63 8.11 0.19 - 512 29.7 0.30 0.02 

MgAl8 68.07 7.99 15.71 7.98 0.09 - 618 31.5 0.40 0.06 

MgAl16 59.92 15.98 15.77 8.08 0.09 - 700 33.2 0.35 0.03 

MgAl24 52.02 23.97 15.82 7.93 0.09 - 739 38.6 0.49 0.04 

CaAl0 75.88 0.03 15.72 0.10 8.11 - 531 35.6 0.45 0.05 

CaAl8 68.08 8.02 15.72 0.09 7.92 - 594 35.3 0.34 0.04 

CaAl16 59.83 16.01 15.79 0.13 8.08 - 678 35.2 0.45 0.04 

CaAl24 51.82 23.97 15.81 0.13 8.11 - 765 39.8 0.51 0.06 

Albite 75.00 12.50 12.50 0.00 0.00 - 812 25.6 0.27 0.03 

Diopside 50.00 0.00 0.00 25.0 25.0 - 736 65.1 0.99 0.02 

 Chemical composition (wt%)     

Cathedral 
glass24 

53.26 1.0 2.9 7.11 12.81

17.12 K2O, 
4.4 P2O5, 
1.2 MnO2, 
0.2 Fe2O3 

586 38.8 0.39 0.05 

NIST 
710A25 

67.55 2.10 8.05 0.00 8.50 9.30 K2O, 
3.60 ZnO, 547 30.3 0.39 0.11 
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0.40 TiO2, 
0.05 As2O3, 
0.20 Sb2O3 

NBS 
71026 

70.5  8.7  11.6 

7.7 K2O, 
1.1 Sb2O3, 
0.2 SO3, 0.2 
R2O3 
(Fe2O3-
0.02) 

550 33.9 0.57 0.04 

EAGLE 
XG 

- 735 31.6 0.69 0.04 

Jade 
Glass 

- 792 35 0.37 0.06 

 

Brillouin light scattering (BLS) experiments based on an emulated platelet geometry (EPG) 
were conducted to measure high-temperature elastic properties; further details of the 
experimental setup can be found in our previous work.27 A Verdi V2 DPSS 532.18 nm green 
laser was used as the probing light source and a six-pass high-contrast Fabry–Perot 
interferometer from JSR Scientific Instruments was used to analyze the scattered light.  To 
monitor the evolution of elastic properties as a function of temperature, BLS measurements were 
taken through the top fused quartz window of a Linkam TS1500 heating stage. Glasses were 
heated from room temperature to temperatures above their glass transition temperatures (Tg) for 
each composition with a heating rate of 50 °C/min. After the temperature inside the heating stage 
was stabilized for 5 min, Brillouin spectra were collected. BLS measurements in the EPG setup 
allows the measurement of both longitudinal (VL) and transverse sound (VT) velocities at high 
temperatures. From the sound velocities measured in BLS, together with the sample density (ρ), 
the Young's modulus (E), bulk modulus (B), shear modulus (µ), and the Poisson's ratio (ν) can be 
calculated using  

2
11 LC Vρ= ,                                                                                                                                      (3) 

2
4 4 TC Vρ= ,                                                                                                                                (4) 

11 44
44

11 44

3 4C C
E C

C C
−

=
−

,                                                                                                                       (5) 

1 1 4 43 4
3

C C
B

−
= ,                                                                                                                       (6) 

44Cμ = ,                                                                                                                                     (7) 

and 
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1
2
E
μ

ν = − .                                                                                                                                     (8) 

The temperature dependence of equilibrium viscosity of the eight sodium alkaline-earth 
aluminosilicate glasses4, diopside glass, cathedral glass24, EAGLE XG3 and Jade glass4 were 
measured by performing beam bending, parallel plate, and concentric cylinder experiments.28  
The equilibrium viscosity of albite was obtained from literature29. The equilibrium viscosity of 
NIST 710A and NBS 710 were taken from the certificates published by the National Institute of 
Standards and Technology (NIST)25 and the National Bureau of Standards (NBS)26, respectively. 
In addition, isothermal equilibrium viscosity measurements24 were conducted in the vicinity of 
the glass transition range to obtain the fragility index and Tg values of NIST 710A glass using 
Angell’s fragility plot.24,30 

 

III. MODEL DERIVATION 

The activation barrier to viscous flow, ( )aG TΔ , is defined by  

( ) ( )ln a

B

T G T
k T

η
η∞

⎛ ⎞ Δ=⎜ ⎟
⎝ ⎠

.                                                                                                                  (9) 

According to the shoving model in Eq.(1), the activation barrier to viscous flow is 

( ) ( )a cG T T Vμ∞Δ = ,                                                                                                                        (10) 

implying that the non-Arrhenius behavior arises solely due to the temperature dependence of 
instantaneous shear modulus in the activation barrier.  

We calculate Vc using Eq.(1) from experimental viscosity and high-frequency shear modulus 
values assuming validity of the shoving model at each temperature and show them in Fig. 1, 
which clearly shows that Vc is a temperature-dependent quantity, increasing with decreasing 
temperature, in good agreement with the Adam-Gibbs (AG) model8, the random first-order 
transition (RFOT) theory31 and the elastically collective nonlinear Langevin equation (ECNLE) 
theory32. Accounting for the temperature dependence of Vc in Eq.(10) gives 

( ) ( ) ( )a cG T T V Tμ∞Δ = .                                                                                                                 (11) 

The functional form of Vc(T) is not known.  Based on the data of Fig. 1 we adopt the form 

( ) exp( )c
CV T V
T∞=                                                                                                                    (12) 

where C is a fitting parameter that is later shown to be expressible in terms of other model 
parameters. The above functional form is very similar to that of the temperature-dependent 
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configurational entropy used in the MYEGA model28, which is based on the energy landscape 
and temperature-dependent constraint theory. Furthermore, on comparing Fig. 1 with the 
temperature-dependent excess entropy33, a possible inverse relationship between Vc(T) and 
excess entropy is revealed.8,28 It is known that excess entropy is not the same as configurational 
entropy; it has both vibrational and configurational contributions.33 But it is generally agreed 
upon that excess entropy in the liquid regime is proportional to configurational entropy.33 The 
above observations show that Vc and configurational entropy seem to be fundamentally linked, 
and Vc  should not be assumed to be temperature independent as in the shoving model. Eq.(12) 
assumes that Vc changes with temperature, similar to the evolution of co-operatively rearranging 
units with temperature in the AG model. Eq.(11) indicates that both elasticity and configurational 
entropy contribute to the activation energy for temperature dependence viscosity.  

 

FIG. 1. Temperature dependence of characteristic volume (Vc) for glasses studied in this work. 

 

Adopting the functional form for Vc(T) as described in Eq.(12), we write the activation 
barrier for our new model as 

( )( ) ( ) ( ) ( ) exp( ) ( ) exp( )
( )a c a g

g g

C T C CG T T V T T V G T
T T T T

μμ μ
μ

∞
∞ ∞ ∞

∞

Δ = = = Δ − .                                     (13) 

The last expression in Eq.(13) uses Eq.(11) and Eq.(12), both evaluated at T=Tg, to obtain the 
relation 
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( )

( ) exp( ) exp( )
( )
a g

c g
g g g

G TC CV V T
T T Tμ∞

∞

Δ
= − = −   (14) 

used to reach the last equality in Eq.(13). 

Using viscosity Eq.(9) and activation barrier Eq.(13), we write 

( ) ( ) ( ) ( ) ( ) ( )ln ln ln exp( ) 1
( )

g a g a g ga

g B B g B g g g

G T G T TT T G T T C C
k T k T k T T T T T

ηη η μ
η η η μ

∞

∞ ∞ ∞

⎡ ⎤Δ ΔΔ
= − = − = − −⎢ ⎥

⎢ ⎥⎣ ⎦
        (15) 

where ηg is the viscosity at Tg which is 1012 Pa·s.  Any equation describing the viscosity of glass-
forming liquids in the equilibrium regime implies a value for fragility m, whose definition34 is 

( )
10log 1 ln

ln10 ln/
g

g
T Tg T T

m
TT T

η η
=

=

∂ ∂= = −
∂∂

.                                                                                   (16) 

Differentiating viscosity Eq.(15) and evaluating at T=Tg we get 

( ) ( )ln ln ( )1
ln ln

gg

a g

T TB g gT T

G TT T C
T k T T T

η μ∞

==

⎡ ⎤Δ∂⎛ ⎞ ∂⎛ ⎞= − + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦
. (17) 

We combine Eq.(16) and (17) to solve for 

( )
ln10

( )  
ln

1
ln

g

B g
a g

gT

mk T
G T

T C
T T

μ∞

Δ =
⎛ ⎞∂⎜ ⎟− +

∂⎜ ⎟
⎝ ⎠

 .                                                                                          (18) 

The use of viscosity Eq.(15) along with activation barrier Eq.(18) gives  

( )
( )

10
( )log  exp 1 1
( )ln

1
ln

g

g g

g g g

gT

T TT Tm C
T T T TT C

T T

η μ
η μμ

∞

∞
∞

⎡ ⎤⎛ ⎞⎛ ⎞
= − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎢ ⎥⎝ ⎠∂ ⎝ ⎠⎣ ⎦⎜ ⎟− +

∂⎜ ⎟
⎝ ⎠

 . (19) 

On taking T→∞, the first term in brackets vanishes and we are left with 

( )
( )10 10log log

ln
1

ln
g

g g

gT T

T m
T C

T T

η η
η ημ

∞

∞

=

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎛ ⎞→ ∞ ⎜ ⎟
= − =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎜ ⎟− +

⎜ ⎟∂
⎝ ⎠

. (20) 

It makes no difference whether we consider C or η∞ as a fitting parameter as they are related by 
Eq.(20).  Since most of viscosity models use η∞, we solve Eq.(20) to get C in terms of η∞ and 
then get rid of C completely from Eq.(19) to reach the final expression for the new model: 
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( ) ( )
10 10
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ln( )log  log 1 exp 1 1 .
( ) ln

log g

g g

g g g T T

g

T TT TT m
T T T T

η μη μ
η η μ η

η

∞∞ ∞

∞ =∞
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⎢ ⎥⎜ ⎟⎢ ⎥

⎛ ⎞ ⎛ ⎞ ∂⎢ ⎥⎛ ⎞⎜ ⎟⎢ ⎥= − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ∂⎛ ⎞ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦

          (21) 

Eq.(21) satisfies the correct values at T=Tg and T→∞ and uses the fragility parameter m. This 
new model is a three-parameter model just like the VFT35–37 or the MYEGA28 model. The three 
parameters, η∞, Tg, and m are meaningful physical properties for glass formers. The new model 
is an improvement over the shoving model in the equilibrium regime because it considers the 
contributions of both temperature-dependent shear modulus as well as characteristic volume 
(thus entropy) to explain the non-Arrhenius temperature dependence of viscosity.  

It was recently38 shown that the high-temperature viscosity limit (η∞) of silicate liquids has a 
universal value of 10−2.93 Pa·s. Fragility index (m) and glass transition temperature (Tg) would be 
the only two fitting parameters in Eq.(21) in the equilibrium viscosity regime. m and Tg values so 
obtained for the glasses tested in this work are presented in Table 1 and these numbers were 
found to closely agree with those obtained by other methods/fits.3,4,19,24,29  

This new elastic model can be extended to the glassy regime with a simple modification. We 
adopt the traditional view that structural arrest near the fictive temperature causes the 
configurational entropy of the glass to freeze at the same value as the liquid state just prior to the 
onset of glass transition.39 In other words, we assume that in the glassy state, the configurational 
entropy change is minimal22,33, and cV is a constant and equal to Vc(Tf) when T<Tf. The model 
will then be reduced in the non-equilibrium isostructural regime to 

 
( ), ( , ) ( )

ln f f c f

B

T T T T V T
k T

η μ
η

∞

∞

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

.                                                                                             (22)                            

Isostructural viscosity describes the viscosity of the glassy state based on the liquid structure 
from which it is frozen.40 It refers to ‘zero aging time’ viscosity when the structure that is 
quenched-in from the fictive temperature has no time to relax.41  The viscosity curves in Eq.(21) 
and Eq.(22) meet at Tf. On equating η(Tf) from Eq.(21) and Eq.(22), we get Vc(Tf).  This Vc(Tf) is 
then used in Eq.(22) to generate the entire non-equilibrium isostructural viscosity curve given the 
temperature-dependent shear modulus of a glass with a thermal history defined by Tf.  Eq.(22) 
implies that glass viscosity is largely dependent on glass elasticity and Vc(Tf); the latter is in turn 
determined by the dynamics of liquid. 

 
IV. RESULTS  

The high temperature elastic properties of all the glasses in this study were measured by the 
BLS technique described in Section II. Temperature-dependent BLS spectra are shown for a 
NIST 710A glass in Fig. 2(a) as an example. Fig 2(b) shows the high temperature shear modulus 
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of NIST 710A glasses of different thermal histories calculated from the BLS spectra. When the 
temperature of a glass is increased, near the glass transition range, a sharp change in the slope of 
the shear modulus is observed. As is evident from Fig. 2(b), thermal history affects only the 
properties of the glass but not those of the equilibrium liquid. Fig. 2(c) shows Vc(T) adopted by 
the present model where an exponential form is taken for T>Tf and a constant Vc is assumed for 
T<Tf. 

 

 

  

FIG. 2. (a) Brillouin spectra as a function of temperature from the EPG set-up for NIST 710A 
glass with high Tf, where the outer pair of peaks is from the Stoke’s and anti-Stoke’s scattering 
of longitudinal wave from the back scattering geometry, the middle and inner pair of peaks are 
from the longitudinal and shear waves from the platelet scattering geometry.  Note: spectra are 
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shifted vertically as function of temperature for clarity. (b) High temperature elastic properties of 
NIST 710A with high and low Tf, and (c) temperature-dependent characteristic volume used in 
the new model.  

The equilibrium viscosity in this work is represented by the MYEGA fit to experimentally-
measured viscosity, as this model has been shown to fit fairly well to the equilibrium 
viscosity.4,28 An example of the quality of fitting and the corresponding experimental data are 
shown for the standard NBS 710 glass26 in Fig. 3. Equilibrium viscosity values from the 
MYEGA model were taken at temperatures where shear modulus was measured to fit both the 
new model and the shoving model. With a knowledge of equilibrium viscosity and high-
temperature elasticity, the non-equilibrium isostructural viscosity can be predicted by following 
the procedure described in Section III. Figures 4 and 5 show the fitting to the equilibrium 
viscosity by the new model in comparison to the shoving model for strong liquids and fragile 
liquids. The non-equilibrium isostructural viscosity values are also included in Figs. 4 and 5.  

 

 

FIG. 3. Viscosity as a function of temperature for NBS 710 glass26. The data are fit with the 
MYEGA model.  
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FIG. 4. Equilibrium and non-equilibrium isostructural viscosity predicted by the new model and 
the shoving model for (a) MgAl0 glass and (b) CaAl24 glass with different fragility.  

 

   

FIG. 5. Equilibrium and non-equilibrium isostructural viscosity predicted by the new model and 
the shoving model for (a) strong albite glass29 and (b) fragile diopside glass. 

 

The above results show that the new model works much better than the shoving model in 
fitting the equilibrium viscosity. Table 1 compares the average root mean square deviation 
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(RMSD) in the equilibrium viscosity predicted by the shoving model and the new model. It 
shows that the RMSDs of the new elastic model are much lower than those of the shoving model 
for all the glasses studied here. Figures 4 and 5 clearly show that the shoving model seems to 
work well for strong glasses, but very poorly for fragile glasses such as diopside, while the new 
model works equally well for both strong and fragile systems.  

The viscosity and relaxation properties of the glassy state were previously shown to be linked 
to the equilibrium property, fragility.1,3 It was shown that fragile glasses experience a more 
sudden departure from equilibrium, i.e., a more sudden breakdown of ergodicity immediately 
below Tg.3  From Fig. 4 and 5, it is evident that the expected trend of fragile glasses experiencing 
a more sudden departure from equilibrium in the glassy state compared to strong glasses is 
captured by the new model.   

Next, we test our model on a modern commercial glass, Corning EAGLE XG and a medieval 
cathedral glass. The modified elastic model is compared against the shoving model for EAGLE 
XG for which shear modulus could be reliably measured to temperatures as high as Tg/T around 
0.7. The new elastic model fits the equilibrium viscosity to high temperatures perfectly as seen in 
Fig. 6(a), whereas the shoving model predicts a less steep or a stronger viscosity curve than what 
was observed experimentally. Results for a medieval cathedral glass composition from 
Westminster Abbey dated 1268 AD24 are shown in Fig. 6(b). The new model fits equilibrium 
viscosity better than the shoving model for this glass as well. Coincidentally, because 
Vc(Tf=633 °C) in our model matches with the Vc optimized from the shoving model, both give 
the same isostructural viscosity in the glassy state. The past two decades have seen a lot of 
interest on the viscous flow of such medieval glasses from European cathedrals in order to 
dismiss the popular legend that medieval glasses flow at room temperature24,40,42 Our new model 
predicts the room temperature isostructural viscosity to be 1039.98 Pa.s , close to the value of 
1041.3 Pa.s calculated by Zanotto and Gupta for a soda lime silicate glass.40 Using the room 

temperature μ∞ for this glass, 28.25 GPa, we find that the Maxwell relaxation time is 1.1x1022 

years, which is much longer than the lifetime of the cathedrals, once again proving that the flow 
of cathedral glasses at room temperature is just a myth. A recent work based on the MAP model 
for non-equilibrium viscosity calculated a much lower viscosity for the same glass, 1024.6 Pa.s, 
which is about 15 orders of magnitude lower than these estimates.24 It should be pointed out that 
the non-equilibrium viscosity described by the MAP model is different from the isostructural 
viscosity described here.19  
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FIG. 6. Equilibrium and non-equilibrium isostructural viscosity predicted by the current model 
and the shoving model for (a) EAGLE XG (Tf =764.8 °C) and (b) cathedral glass (Tf =633.2 °C). 

The VFT equation35–37 

  
0

( ) exp BT
T T

η η∞

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                                                                                                            (23)

was extended to the isostructural regime by Yue22 as  

0

( , ) exp
( )

f
f

f

BT
T T

T T T
η η∞

⎡ ⎤
= ⎢ ⎥−⎢ ⎥⎣ ⎦

.                                                                                                   

(24) 

On comparing the non-equilibrium isostructural viscosity predicted by our model against Yue’s 
isostructural viscosity model22 and against Mazurin’s experimental measurements on a standard 
NBS 710 glass17, we found excellent agreements as seen clearly in Fig. 7. 
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FIG. 7. Non-equilibrium isostructural viscosity predicted by the new model, Yue’s model22 and 
from experimental measurements17 for NBS 710. 

 

The modified elastic model was applied to glass samples of NIST 710 A and Corning Jade 
glass with different fictive temperatures and the results are represented in Fig. 8, which clearly 
shows that the new model successfully separates the isostructural viscosity of glasses based on 
their thermal history. These results show that a glass with a higher fictive temperature has a 
lower viscosity, in good agreement with previous studies on glass viscosity.3,21,41  
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FIG. 8. Equilibrium and non-equilibrium isostructural viscosity predicted by the current model 
for (a) NIST 710 A glasses and (b) Jade glass with different thermal histories.   

 

Figure 9 shows the variation of isostructural viscosity against fictive temperature of Jade 
glass at a constant temperature of 400 °C, i.e., Tg/T=1.58 (chosen just as an example). Viscosity 
changes by more than 2 orders of magnitude as fictive temperature changes about 60 °C in this 
viscosity/temperature range. A similar magnitude of viscosity variation with fictive temperature 
was reported previously using the MAP model on the same Jade glass.21 According to the present 
model, the activation energy in the glassy state not only depends on the shear modulus, but also 
Vc(Tf) as shown in Eq.(22). This was not considered in a previous work which extended the 
shoving model to the glassy regime according to Eq.(2).21 Fig. 9 also includes viscosity values 
predicted by the shoving model using Eq.(2), which gives too small changes in glass viscosity 
with the change in Tf  as Vc is kept constant. 
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FIG. 9. Dependence of isostructural viscosity on fictive temperature of Jade glass at Tg/T=1.58. 

 

V. DISCUSSION 

A. Overcoming the limitations of the shoving model 

Elastic models connect the short and long time scales via the following philosophy: 
relaxation is slow because the barriers to be overcome for a molecular rearrangement are large. 
The barrier transition itself, however, is a fast process which may well be determined by the 
system's short-time properties, for instance its elastic constants probed on the short time scale.13 
The energy barrier to be overcome for a molecular rearrangement is dominated by the elastic 
work done in ‘shoving aside’ the surrounding molecules, which is proportional to the short-time 
shear modulus. Several experiments were done to test the elastic models for viscosity like the 
shoving model to further the fundamental understanding of the origins of fragility and it was 
found that while some studies support the model10,13,43, many others do not4,44,45. The 
temperature dependence of shear modulus alone was found to be insufficient to explain the non-
Arrhenius temperature dependence of viscosity as discussed extensively in the Section IV. 

The current modified elastic model has its physical basis in both the shoving model and the 
AG model. A flow event takes place by barrier transition of co-operatively rearranging units. We 
argue that the activation free energy for this flow event depends both on the barrier height as 
well as the size of the co-operatively rearranging units. The barrier transition happens on very 
short timescales and its height depends on the high-frequency shear modulus. The size of the co-
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operatively rearranging units is temperature-dependent and related to the configurational 
entropy. Our model demonstrates that the non-Arrhenius temperature dependence of equilibrium 
viscosity is governed by both configurational entropy as well as elasticity. Thus, by 
incorporating the effect of configurational entropy, we overcome the limitations of the shoving 
model. The new model fits both strong and fragile glasses studied in this work equally well.  

 

B. Success of the MYEGA model: role of shear modulus? 
The MYEGA model is based on the Adam-Gibbs theory.28 Its ability to fit the viscosity of a 

diverse set of glass-forming liquids may question the importance of the role of shear modulus in 
controlling viscosity. In this section, we will compare it with the modified elastic model and 
examine why the MYEGA model seemingly works well even though it does not take into 
account the temperature-dependent shear modulus. 

The MYEGA viscosity model28  

 ( ) ( )10 10 10 10
10 10

log log log log exp 1 1
log log

g g
g

g

T TmT
T T

η η η η
η η∞ ∞

∞

⎡ ⎤⎛ ⎞⎛ ⎞
= + − − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

  (25) 

can be rewritten in the form: 
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10 10

10

log log 1 exp 1 1
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g g

g g

g

T TT m
T T

η η
ηη η
η

∞

∞

⎧ ⎫⎡ ⎤⎛ ⎞
⎪ ⎪⎢ ⎥⎜ ⎟⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟= − − − −⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎪ ⎪⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (26) 

and compared with the new model in Eq.(21). This side by side comparison makes it clear that 
these two models agree when  

 ( )
( )

( )
( )

ln
exp 1 1

/
g

g

g g T T

TT T
TT T T

μ μ
μ

∞ ∞

∞ =

⎡ ⎤⎛ ⎞∂ ⎛ ⎞⎢ ⎥⎜ ⎟− − =⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (27) 

or equivalently 

 ( ) ( ) ( )
( )

ln
ln ln 1

/
g

g
g

g T T

TT
T T

TT T
μ

μ μ ∞
∞ ∞

=

∂ ⎛ ⎞
= + −⎜ ⎟∂ ⎝ ⎠

. (28) 

This says when ( )ln  vs. /gT T Tμ∞  is a straight line, these two models agree. Indeed, an 

Arrhenius function seems to fit well for ( ) vs. /gT T Tμ∞  for glasses studied in this work (some 
examples are shown in Fig. 10) and for those studied in the literature10, implying a single 
activation barrier for ( )Tμ∞ . This may explain why models based on the Adam-Gibbs theory 
work well even though the importance of the shear modulus as a factor controlling viscosity was 
not considered. Therefore, the MYEGA model can be considered as a special case for the 
modified elastic viscosity model proposed here. In other words, the new model provides a 
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generalization of the MYEGA model regardless of how the instantaneous shear modulus changes 
with temperature. Furthermore, the new model can be easily extended into the non-equilibrium 
isostructural regime when temperature is below Tf  by simply switching the Vc to a constant 
corresponding to the characteristic volume at Tf.  ( )c fV T  carries the information of liquid 
dynamics and most of the information of thermal history into the isostructural viscosity of glass (

( )  Tμ∞ of the glassy state is only weakly dependent on Tf).  

 

 

FIG. 10. Temperature dependence of instantenous shear modulus for (a) MgAl0  and (b) 
CaAl24. 

   

C. Isostructural viscosity 

Results in Section IV demonstrate that the new isostructural viscosity model is able to 
capture the difference in viscosity trends expected with varying fictive temperature and varying 
fragility. Also, the numerical values of isostructural viscosity predicted by the new model were 
shown to be in excellent agreement with experiments17 and with Yue’s isostructural viscosity 

model22.  Activation enthalpy defined by 
ln

1( )
d

d
T

k η⎛ ⎞
⎜ ⎟
⎝ ⎠

 in the glassy state using Eq.(22) comes out 

to be ( ( , )1( )[ ( , ) ]1( )
f

c f f
d T TV T T T

T d
T

μμ ∞
∞

⎛ ⎞
⎜ ⎟+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

. This quantity weakly increases with decreasing 

temperature for normal glasses revealing slightly non-Arrhenius behavior in the non-equilibrium 
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viscosity. This trend is in agreement with experiments41 and a previous isostructural viscosity 
model.41  Also, according to the new model, glasses with higher fictive temperatures have lower 
activation enthalpy because ( )c fV T decreases with increasing fT . This trend is also in agreement 

with previous non-equilibrium viscosity models.41 

The present model uses a single quantity, fT , along with glassy state elasticity to calculate the 

isostructural viscosity. The model provided here is an important step forward which considers 
the temperature dependence of shear modulus of glass to be a significant factor contributing to 
the isostructural viscosity along with equilibrium viscosity parameters embodied in ( )c fV T . This 

indicates that the viscosity of glass is closely linked to glass elasticity and liquid dynamics, 
which agrees with recent studies19,22. 

The current isostructural viscosity model and some previous isostructural viscosity 
calculations22,40 in literature adopt the traditional view of configurational entropy frozen-in at Tf  

as opposed to the view that glass transition involves a gradual loss of configurational entropy.39 
The current model can be further improved with a full understanding of the temperature 
dependence of entropy in the glass transition range. If configurational entropy can be reliably 
measured in the glass transition, a functional form for its temperature dependence can be created. 
This will improve the isostructural form of the current model and will allow it to capture the 
gradual transition between the supercooled and glassy states. Advances in experiments and in 
theoretical understanding of entropy loss near glass transition and how it depends on fragility can 
meaningfully improve the current model. Alternatively, since it is very difficult to directly 
measure configurational entropy experimentally, reliable measurements of non-equilibrium 
viscosity and elasticity in the glass transition range can be used along with the new model to 
generate the temperature dependence of Vc, which in turn provides a way to understand the 
temperature dependence of configurational entropy. 

 

VI. CONCLUSIONS 

A modified elastic model was introduced to consider the impact of both configurational 
entropy and elasticity on viscosity. It shows better agreements with high-temperature viscosity 
compared to the shoving model in the equilibrium regime for both strong and fragile liquids. 
With a simple modification, the new model can be extended to the glassy regime. It successfully 
separates strong and fragile behavior in equilibrium and isostructural regimes and accounts for 
thermal history differences in the predicted isostructural viscosity. The new model also supports 
the recent finding that equilibrium melt dynamics is intimately linked to the dynamics of the 
glassy state. 
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