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We address the superconducting singlet state of anisotropic Dirac fermions that disperse linearly
in one direction and parabolically in the other. For systems that have uniaxial anisotropy, we show
that the electromagnetic response to an external magnetic flux is extremely anisotropic near the
quantum critical point of the superconducting order. In the quantum critical regime and above a
critical magnetic field, we show that the superconductor may form a novel exotic smetic state, with
a stripe pattern of flux domains.
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Introduction.− Semi-Dirac metals form a class of two
dimensional (2D) systems with chiral quasiparticles that
disperse linearly in one direction and quadratically in a
different direction1. In the presence of spin-orbit cou-
pling, the zero energy crossings of the Dirac cones re-
main protected by space group symmetries of the crystal2

and may have a non-zero Chern number3,4. Examples of
semi-Dirac metals include a variety of systems, includ-
ing VO2/TiO2 heterostructures3,5, and strained crystals
such as graphene and black phosphorus, which can un-
dergo a topological phase transition towards a semi-Dirac
phase6,7. Semi-Dirac cones have been experimentally re-
alized on the top layer of black phosphorus under electric
field effects, which tune the system from a trivial band
gap insulator to a band inverted system8.

In this rapid communication, we explore the proper-
ties of s-wave singlet states for semi-Dirac fermions in the
vicinity of a quantum critical point (QCP). We show that
semi-Dirac fermion superconductors have an exotic elec-
tromagnetic response to an applied magnetic flux. Due
to the anisotropy of the quasiparticles, the stiffness of the
order parameter to the penetration of a magnetic flux can
be highly anisotropic near the QCP. In that regime, we
show that semi-Dirac metals with uniaxial anisotropy can
effectively behave as type I superconductors along one di-
rection, and as type II superconductors in the other. As
a result, instead of vortices, the system may form a novel
smetic state with stripes of superconducting domains in-
tercalated by thin normal strips of magnetic flux9.

Hamiltonian.− For concreteness, we start from a two-
orbital model on a square lattice,

H0(k) ≡ g(k) · ~σ, (1)

where g = (gx, gy, gz) is a vector with components
gx(k) = 4t′(cos kx − cos ky)2, gy(k) = 0 and gz(k) =
2t(cos kx + cos ky), t and t′ are effective hopping parame-
ters, k is the momentum with respect to the center of the
square Brillouin zone and σx and σz are Pauli matrices
in the orbital space1. The low energy Hamiltonian is de-
scribed by semi-Dirac fermions around four nodal points
k0 = (± 1

2 , ± 1
2 )π, with

H(+)
0,α (p) =

p2
x

2m
σx − αvpyσz ≡ h+,α(p) · ~σ, (2)

describing the pair of nodes at k0 = α(1
2 , 1

2 )π (α = ±),
where p is the momentum away from the nodes (we set
~ → 1), with px and py as momentum coordinates along
the two diagonal directions (1, 1̄) and (1, 1) respectively.
m is the mass of the quasiparticles that disperse quadrat-
ically with momentum px along one direction and v gives
the Fermi velocity of the quasiparticles that disperse lin-
early along the perpendicular direction. The other two
nodes at k0 = α(1

2 , − 1
2 )π are described by the low energy

Hamiltonian

H(−)
0,α (p) = −αvpxσx +

p2
y

2m
σz ≡ h−,α(p) · ~σ. (3)

In both sets of pairs, opposite nodal points are related
by time reversal symmetry (TRS).

The Bogoliubov-deGennes Hamiltonian for Eq. (1) is

HBdG(k) =

(

H0(k) ∆̂

∆̂ −T H0(k)T −1

)

, (4)

where the 2 × 2 matrix ∆̂ gives superconducting or-
der parameter matrix elements in the orbital space and
T H0(k)T −1 = H0(k) is the TRS operation of the Hamil-
tonian.

In the singlet state, there are two possible pairing chan-
nels. The first one is the intra-orbital pairing state, with
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Figure 1: Energy spectrum of the superconducting singlet
states of semi-Dirac fermions. a) Intra-orbital paring state,
which is fully gapped around each nodal point. b) inter-
orbital state, where the nodes split and remain gapless. The
gapped state is dominant.
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pairing matrix elements ∆̂ = ∆σ0, which result in a fully
gapped low energy spectrum

±Ep = ±
√

h2(p) + ∆2, (5)

with h(p) = |h(p)| (the valley indexes are omitted).
The second channel is the inter-orbital pairing state,

∆̂ = ∆σx, which leads to gapless superconductivity,
±Ep,s = ±

√

h2
x(p) + (hz(p) + s∆)2 with s = ± index-

ing two additional branches, shown in Fig. 1b. For a
given attractive interaction, the fully gapped state lowers
the free energy of the system more than the gapless one
by pushing the energy states down towards the bottom
of the band, as shown in Fig. 1a. In this letter, we will
focus on the dominant instability and address the ther-
modynamic and electromagnetic properties of the fully
gapped state.

Critical behavior.− The free energy of the super-
conducting state is F (T ) = ∆2/g − T

∑

k,γ log{2 +

2 cosh(γEk/T )}, with γ = ± indexing the particle and
hole branches of the spectrum respectively, T is the tem-
perature and g > 0 is the effective attractive interac-
tion that leads to formation of Cooper pairs. In mean
field, minimization of the free energy with respect to
∆ (assumed to be real) gives the standard BCS equa-
tion of state g−1 =

∑

q tanh( 1
2T Eq)/2Eq. Using the

parametrization where hx(p) = p2
x/2m = h cos θ and

hz(p) = vpy = h sin θ, with θ ∈ [− π
2 , π

2 ], the density
of states can be written in terms of the Jacobian of the
transformation (px, py) → (h, θ)10,

ρ(h, θ) =
N0

8π2

√
2mh

v cos θ
. (6)

Integration in θ gives the actual density of states,

ρ(h) = 2
∫ π/2

−π/2 dθρ(h, θ) = ρ0

√
h, where ρ0 =√

mN0K(1
2 )/(π2v), with K(1

2 ) ≈ 1.85 an elliptic func-
tion and N0 is the node degeneracy.

At zero temperature and half filling, the phase tran-
sition is quantum critical due to the vanishing DOS at
the nodal point11–13. Near the QCP, the mean field zero
temperature gap scales with the coupling as

∆(0, g) =
1

(c1ρ0)2

(

1

gc
− 1

g

)2

θ(g − gc), (7)

where c1 = Γ2
(

3
4

)

/
√

π ≈ 0.85, with Γ(x) a gamma func-

tion, and gc = 1/(
√

Λρ0) is the critical coupling defined
in terms of the effective energy bandwidth Λ. In the gap-
less state, the critical coupling is g′

c = 3/(
√

2Λρ0) > gc,
and hence the gapped instability clearly prevails. In the
two band model (1) where m−1 = 16t′, v = 2

√
2t and

Λ ∼ 2t, then gc/t = 8π2/[N0K(1
2 )]

√

t′/t. In the limit
where t′/t ≪ 1, the critical coupling can be small enough
to allow the QCP physics to be accessed experimentally.
In general, since gc ∝ v/

√
m scales with the velocity and

mass of the quasiparticles, the critical coupling can be
further lowered with strain effects14.

Figure 2: Phase diagram of temperature (in units of the cut-
off Λ) vs coupling for the fully gapped state in the vicinity
of the QCP at g = gc. The order parameter scales as ∆ ∝
(1 − gc/g)β near the QCP, with β = 2 in mean field.

The mean field critical temperature is given by Tc(g) ≈
c2

1∆(0, g), as shown in Fig. 2. In the critical regime,

∆(T ≈ Tc, g) ≈ 2.02 ∆(0, g)

√

Tc

T
− 1. (8)

The specific heat at fixed volume is defined as CV =
−T d2F/dT 2. At the phase transition, the specific heat
jump normalized by specific heat in the normal side of the
transition, δCV ≈ 0.7115. In the case of Dirac fermions in
2D (graphene), δCV ≈ 0.3516, while in the Fermi liquid
case δCV ≈ 1.4317.

Supercurrent.− To calculate the Meissner response to
an external magnetic flux, we include a vector potential
A in Hamiltonian (4) in the Coulomb gauge, explicitly
breaking TRS, T H0(k − e

c A)T −1 = H0(k + e
c A). When

the Fermi level is at the neutrality point, the energy spec-
trum can be calculated analytically,

Ek,s(A) =

√

g2
D + g2

ξ + ∆2 + 2s
√

(gD ·gξ)2 + g2
ξ∆2,

(9)
with s = ±, and gD,ξ = |gD,ξ|, with gD,ξ(k) =
1
2

∑

s=± sqg(k − s e
c A), where q = 0, 1 describe the sym-

metric (D) and anti-symmetric (ξ) combinations in the
vector potential, respectively.

The calculation of the supercurrent from Eq. (1)
and (4) can be done in a very general way for any
arbitrary vector g = (gx, gy, gz) defined in terms of
generic functions of momenta gi(p), i = x, y, z, pro-
vided TRS is preserved at zero field. From the min-
imal coupling between currents and electromagnetic
fields, HI = 1

c j · A, the current operator is j =
c∂HBdG/∂A. The supercurrent in the London limit

is 〈j〉 = −c tr 1
β

∑

iω,k∈BZ [∂AHBdG(k, A)] Ĝk(iω), where

Ĝk(iω) = [iω − ĤBdG(k, A)]−1 is the Green’s function.
In leading order in the vector potential, the diamag-

netic response in the Coulomb gauge is given by 〈ji〉 =
KijAj , where Kij is the London kernel. For anisotropic
superconductors that preserve inversion symmetry, the
kernel has the form Kij = (δij − k̂ik̂j)Qj , with k̂ a uni-
tary vector18. The off-diagonal components of the Kernel
result from phase modes19, which ensure that the static
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continuity equation k · 〈j〉 = 0 is satisfied in the Coulomb
gauge. Alternatively, we can simply fix the gauge in such
a way that 〈ji〉 = QiAi. After a proper regularization of
the deep energy states at the bottom of the band20, what
is done by imposing periodic boundary conditions at the
edge of the Brillouin zone18, the London kernel per node
is

Qi =
e2

~2c
∆2

∑

p

∂Ep

[

tanh(Ep/2T )

Ep

]

[∂ki
h(p)]2

Ep

, (10)

restoring ~. Although 〈ji〉 is calculated in a fixed gauge,
gauge invariance is restored by screening effects21, which
preserve the transversality condition of the supercurrent,
k · 〈j〉 = 0, irrespective of the gauge choice22.

In the semi-Dirac case, the supercurrent due to each
node is anisotropic, as expected, with

〈jx〉(T ) =
e2

~2c

Γ2
(

3
4

)

π5/2
Θ1(T )

1√
mv

Ax, (11)

and

〈jy〉(T ) =
e2

~2c

K
(

1
2

)

2π2
Θ0(T )

√
mvAy, (12)

where Θn(T ) = ∆2
∫ ∞

0 dh hn
√

h 1
E ∂E

[

tanh
(

E
2T

)

/E
]

,

with E =
√

h2 + ∆2. This integral can be analytically
calculated in the zero temperature limit and close to the
critical temperature,

Θ0(T ) = −







1√
π

Γ2(3
4 )

√
∆ , for T = 0

a0
∆2(T )

(2T )
3

2

, for T ≈ Tc
(13)

where a0 =
∫ ∞

0 dx x− 3

2 [x−1 tanh x − sech2x] ≈ 0.79, and

Θ1(T ) = −
{

1
4

√
π

Γ2(1
4 )∆

3

2 , for T = 0

a1
∆2(T )√

2T
, for T ≈ Tc.

(14)

with a1 = 1
2

∫ ∞
0 dx x− 3

2 tanh x ≈ 1.91.
Near the critical temperature, the kernel anisotropy

δ(T, g) ≡ Qx/Qy ∝ Tc(g)/(mv2) scales linearly with
Tc and vanishes at the QCP. In the zero temperature
limit, δ(0, g) ∼ ∆(g)/(mv2) and hence the anisotropy
δ(0, g) → 0 lineraly with the gap as one approaches the
QCP at g = gc (orange line in Fig 3). In that limit,
the system is extremely anisotropic23, with relativistic
quasiparticles carrying a supercurrent along the direc-
tion of linear dispersion. In Fig. 3, we show the plot
of the anisotropy per node δ versus the gap ∆(T0, g) for
fixed temperatures T0. When ∆ . T0 , the kernel Qi has
a crossover from the anomalous zero temperature scaling
regime, Qx ∝ ∆

3

2 , Qy ∝
√

∆, to the standard BCS scal-
ing, Qi ∝ ∆2, where the anisotropy δ(T0, g) saturates to
a constant.

Quantum fluctuations.−Allowing the condensate to
flow with momentum ks = (kx, ky), we expand the free
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Figure 3: (color online) Anisotropy δ ≡ Qx/Qy per node
times mv2/Λ versus coupling ∆(T0, g) (in Λ cut-off units) for
different temperatures T0. T0/Λ ranges from zero (orange
line) to 0.025 in 0.0025 steps. At T0 = 0, δ scales to zero
at the QCP. In that limit, the Meissner response becomes
quasi-one dimensional.

energy at zero temperature in powers of the order param-
eter φ and ks. The Ginzburg-Landau (GL) free energy,
which fully includes fluctuation effects, is

FGL =

(

cxk2
x√

mv
|φ| 3

2 + cy

√
mvk2

y

√

|φ|
)

+ r(g)φ2 + u|φ| 5

2 ,

(15)
where φ = ∆ + δφ gives the order parameter around
the saddle point solution ∆ in Eq. (7), r(g) = (g−1 −
g−1

c ), u = 4
5 c1ρ0, cx = N0Γ2

(

3
4

)

Γ2
(

1
4

)

/32π3 and cy =

N0K
(

1
2

)

Γ2
(

3
4

)

/16π
5

2 .
At finite magnetic field, ks = −(2e/~c)A by a suitable

gauge choice. Near the QCP, the GL supercurrent js =
c∂FGL/∂A independently recovers Eq. (11) and (12) at
T = 0. Hence, the anisotropic quantum critical scaling of
the London kernel with φ, namely Qy ∝

√

|φ| and Qx ∝
|φ| 3

2 , persists near the QCP, where quantum fluctuations
dominate.

Because the free energy (15) has non-analytic terms
both in the kinetic energy and in the interaction term u,
one cannot expand in the fluctuation fields δφ in order to
integrate them out and calculate the quantum fluctuation
corrections to the scaling of ∆(0, g) ∝ (g − gc)β , with
β = 2 in mean field24. Instead, one needs to resort to field
theoretical methods25,26, which are beyond the scope of
this work and will be addressed elsewhere. In any case,
the mean field analysis is accurate in the regime where
the quadratic term of (15) dominates over the interaction

term u, namely (g/gc − 1)2 & N−1
0 v/(

√
mΛ

3

2 ).
Penetration depth.− For a thin film of thickness d,

the penetration depth is given by the London kernel,
λi =

√

−cd/(4πQi), with i = x, y. In general, for
systems of semi-Dirac fermions with uniaxial anisotropy,
such as in uniaxially strained graphene or semi-metallic
black phosphorus, the total London kernel is calculated
from the Meissner response of a single nodal point times
the nodal degeneracy N0. In that case, at zero tempera-
ture,

λx ∝ ~c

e

√
d ∆− 3

4 (g)
(√

mv/N0

)
1

2 , (16)
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and

λy ∝ ~c

e

√
d ∆− 1

4 (g)/
(√

mvN0

)
1

2 , (17)

and hence the penetration depth along the x and y axes
grows near the QCP with different scaling exponents,
λx(g) ∝ (1 − gc/g)−3β/4 and λy(g) ∝ (1 − gc/g)−β/4.
Near the critical temperature, the penetration depth is
still anisotropic, but follows the standard BCS tempera-
ture scaling λ ∝ ∆−1(T ).

Coherence length.− In the zero temperature limit, the
coherence length ξ0 corresponds to the length scale where
the energy of the system changes by an amount set by
the mass gap 2∆. Near the neutrality point (µ ≪ ∆,
with µ the chemical potential away from half filling), the
corresponding change in the momentum domain δp sat-
isfies h(δp) ∼ 2∆. Since ξ0 ∼ ~/δp, variations along the
direction where the energy spectrum is linear imply that
ξ0,y ∼ ~vy/(2∆). A similar dimensional analysis along

the direction of parabolic dispersion gives δpx ∼
√

2m∆,
and hence

ξ0,x ∼ ~/
√

2m∆, (18)

in contrast with the standard Fermi liquid result (µ ≫
∆), where ξ0 ≡ ~vF /(π∆), with vF the Fermi velocity17.
Fluctuation effects are expected to give small deviations
in the quantum critical scaling of the coherence length
with ∆ due to the emergence of an anomalous dimension.

In mean field, the ratio between the penetration depth
in the London limit and the coherence length κ = λ/ξ0

is given by

κx ∼ ∆− 1

4 (g)
(√

mv
)

1

2 c

√
md

e
, (19)

and

κy ∼ ∆
3

4 (g)
(√

mv
)− 1

2
c

v

√
d

e
(20)

along the two principal directions x and y, with propor-
tionality factors of the order of 1. Therefore, in the vicin-
ity of the QCP, the order parameter becomes rigid for
amplitude variations along the direction where the quasi-
particles have linear dispersion (κy ∝ (1−gc/g)3/2 ≪ 1),
as in type I superconductors. At the same time, the
order parameter becomes soft for variations along the di-
rection of parabolic dispersion (κx ∝ (1−gc/g)−1/2 ≫ 1),
as in type II superconductors. While fluctuations could
provide corrections to the scaling of κ, the mean field
analysis is suggestive of a possible smetic instability near
the QCP.

Stripe phase.−The energy of a domain wall becomes
negative when κ > 1/

√
2. Near the QCP, the mag-

netic flux can form a stripe pattern of domain walls ori-
ented along the y direction, which coincides with the
“easy” direction for the supercurrent as indicated in Fig.
4a. Those domains separate superconducting regions (S),

0
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H/H
0
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0.5

1

1
/z

b)

ξ

N
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2

l

Figure 4: (color online) a) Stripe phase of superconducting
domains (S) oriented along the direction where the order pa-
rameter is stiff. The normal regions (N) have a magnetic field
H , and width of twice the coherence length ξ0. The separa-
tion between the center of the stripes is l ≫ ξ0. Red lines:
diamagnetic currents. b) Scaling of z = l/λ versus the mag-
netic field H . For H ≤ H0 ≡ Hc/

√
κ, l → ∞. For H > H0, l

is finite.

which are screened by diamagnetic currents (red arrows
in Fig. 4a), from normal regions (N) of width ∼ 2ξ0,x sep-
arated by a distance l ≫ ξ0,x. Because the magnetic field
H has a stiffness of the order of the penetration depth
λx ≫ ξ0,x along the x direction, those domain walls of
magnetic flux repel each other and can stabilize a stripe
phase in the regime where the magnetic field normal to
the sample is strong enough.

Domain wall formation in the bulk of macroscopic sam-
ples is ellusive and has been observed only in a few ferro-
magnetic superconductors28–30. For samples with finite
slab geometry, domain walls are observed in the interme-
diate state of type I superconductors, where the period
of the laminar state is set by the thickness of the sample,
l ∝

√
d. In semi-Dirac metals with uniaxial anisotropy,

the stripe phase will have lower energy compared to the
vortex state of type II superconductors near the QCP. In
the presence of magnetic fields, the Gibbs free energy of
a striped normal domain surrounded by superconducting
regions of width l is27

G(H, z) =
1

8πz

(

H2
c

κx
− H2 tanh z

)

, (21)

where z = l/λx is the distance between the normal do-
main walls normalized by the penetration depth and Hc

is the field that corresponds to the condensation energy
H2

c /8π. The equilibrium separation between the stripes
follows trivially from minimization of the free energy for
fixed field, ∂G(H, z)/∂z = 0.

In Fig. 4b, we show the scaling of z = l/λx as a func-
tion of the magnetic field H . Below the critical field H <
Hc/

√
κx, l → ∞, and the system has a uniform phase

(Meissner state). In the regime Hc/
√

κx < H . Hcκx , l
is finite and the system will form a smetic state with
stripes of superconducting domains separated by thin
strips of magnetic flux. Eventually, when H & Hcκx,
the separation of the domains l ∼ ξ0,x

27 and supercon-
ductivity will be destroyed.

Conclusions.− In summary, we examined the critical
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properties of semi-Dirac metal superconductors at zero
and finite magnetic fields. We showed that near the quan-
tum critical regime and at finite fields, the anisotropy of
the quasiparticles leads to an exotic electromagnetic re-
sponse which may stabilize a novel smetic state of super-

conducting stripes.
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